Ultraviolet Completion of Electroweak Theory on Minimal Fractal Manifolds
Abstract
The experimental discovery of the Higgs boson at the Large Hadron Collider (LHC) has effectively disqualified all Higgs-less models developed prior to July 2012. Today, despite its conclusive validation, the Higgs sector of the Standard Model (SM) remains a largely uncharted territory. This raises the following question: Are there any hidden insights brought up by Higgs-less models that can still be beneficial for the on-going research in particle physics? Pursuing this thought, we re-examine here Moffat’s scenario based on a finite electroweak Lagrangian built outside the Higgs paradigm. Unlike the original proposal, we place the model on a spacetime support equipped with minimal fractality. In doing so, we find that the theory is perturbatively well-behaved at large scattering cross-sections and that it gracefully connects with the conventional formulation of the SM in the limit of vanishing fractality.