Physics as Generalized Number Theory II: Classical Number Fields
Abstract
Physics as a generalized number theory program involves three threads: various p-adic physics and their fusion together with real number based physics to a larger structure, the attempt to understand basic physics in terms of classical number fields discussed in this article, and infinite primes whose construction is formally analogous to a repeated second quantization of an arithmetic quantum field theory.
In this article the connection between standard model symmetries and classical number fields is discussed. The basis vision is that the geometry of the infinite-dimensional WCW ("world of classical worlds") is unique from its mere existence. This leads to its identification as union of symmetric spaces whose Kähler geometries are fixed by generalized conformal symmetries. This fixes space-time dimension and the decomposition M4 X S and the idea is that the symmetries of the Kähler manifold S make it somehow unique. The motivating observations are that the dimensions of classical number fields are the dimensions of partonic 2-surfaces, space-time surfaces, and imbedding space and M8 can be identified as hyper-octonions- a sub-space of complexified octonions obtained by adding a commuting imaginary unit. This stimulates some questions.