Open Access Open Access  Restricted Access Subscription or Fee Access

Physics as Infinite-dimensional Geometry I: Identification of the Configuration Space Kähler Function

Matti Pitkänen

Abstract


There are two basic approaches to quantum TGD. The first approach, which is discussed in this article,is a generalization of Einstein's geometrization program of physics to an infinite-dimensional context. Second approach is based on the identification of physics as a generalized number theory. The first approach relies on the vision of quantum physics as infinite-dimensional Kähler geometry for the "world of classical worlds" (WCW) identified as the space of 3-surfaces in in certain 8-dimensional space. There are three separate approaches to the challenge of constructing WCW Kähler geometry and spinor structure. The first approach relies on direct guess of Kähler function. Second approach relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry needed to guarantee the mathematical existence of Riemann connection. The third approach relies on the construction of spinor structure based on the hypothesis that complexified WCW gamma matrices are representable as linear combinations of fermionic oscillator operator for second quantized free spinor fields at space-time surface and on the geometrization of super-conformal symmetries in terms of WCW spinor structure.

In this article the proposal for Kähler function based on the requirement of 4-dimensional General Coordinate Invariance implying that its definition must assign to a given 3-surface a unique space-time surface. Quantum classical correspondence requires that this surface is a preferred extremal of some some general coordinate invariant action, and so called Kähler action is a unique candidate in this respect. The preferred extremal has interpretation as an analog of Bohr orbit so that classical physics becomes and exact part of WCW geometry and therefore also quantum physics.

 


Full Text:

PDF