Leaving the Aristotelean Realm: Some Comments Inspired by the Articles of Elemer E. Rosinger
Abstract
In the following I represent some comments on the articles of Elemer Rosinger as a physicist from the point of view of Topological Geometrodynamics. The construction of ultrapower fields (loosely surreals) is associated with physics using the close analogies with gauge theories, gauge invariance, and with the singularities of classical fields. Non-standard numbers are compared with the numbers generated by infinite primes and it is found that the construction of infinite primes, integers, and rationals has a close similarity with construction of the generalized scalars. The construction replaces at the lowest level the index set Ʌ= N of natural numbers with algebraic numbers A, Frechet filter of N with that of A, and R with unit circle S1 represented as complex numbers of unit magnitude. At higher levels of the hierarchy generalized -possibly infinite and infinitesimal- algebraic numbers emerge. This correspondence maps a given set in the dual of Frechet filter of A to a phase factor characterizing infinite rational algebraically so that correspondence is like representation of algebra. The basic difference between two approaches to infinite numbers is that the counterpart of infinitesimals is infinitude of real units with complex number theoretic anatomy: one might loosely say that these real units are exponentials of infinitesimals.