Open Access Open Access  Restricted Access Subscription or Fee Access

From Principles to Diagrams in TGD Framework

Matti Pitkänen

Abstract


In this article, I explore a more explicit realization of twistorialization as lifting of the preferred extremal X4 of Kähler action to corresponding 6-D twistor space X 6 identified as surface in the 12-D product of twistor spaces of M 4 and CP2. Contrary to original expectations, the twistorial approach is not mere reformulation but leads to identification of cosmological constant and perhaps also of gravitational constant based on a first principle and to a modification of the dynamics of Kähler action but preserving the known extremals and basic properties of Kähler action and allowing to interpret induced Kähler form in terms of preferred imaginary unit defining twistor structure. Another new aspect is the fusion of twistorial approach with the vision that diagrams are representations for computations. Also, quantum criticality demands that the diagrams should allow huge symmetries transforming them to braided generalizations of tree-diagrams. Several guiding principles are involved and what is new is the observation that they indeed seem to form a coherent whole.

Full Text:

PDF