Open Access
Subscription or Fee Access
Quantum Measurement & Quantum Computation in TGD Universe
Abstract
For years I have been thinking about how quantum computation could be carried out in TGD Universe. There are considerable deviations from the standard view. Zero Energy Ontology (ZEO), weak form of NMP dictating the dynamics of state function reduction, negentropic entanglement (NE), and hierarchy of Planck constants define the basic differences between TGD based and standard quantum measurement theory. TGD suggests also the importance of topological quantum computation (TQC) like processes with braids represented as magnetic flux tubes/strings along them. The natural question that popped in my mind was how NMP and Zero Energy Ontology (ZEO) could affect the existing view about TQC. The outcome was a more precise view about TQC. The basic observation is that the phase transition to dark matter phase reduces dramatically the noise affecting quantum quits. This together with robustness of braiding as TQC program raises excellent hopes about TQC in TGD Universe. The restriction to negentropic space-like entanglement (NE) defined by a unitary matrix is something new but does not seem to have any fatal consequences as the study of Shor's algorithm shows.