Open Access Open Access  Restricted Access Subscription or Fee Access

Space, Time & Quantum Mechanics: A Process Approach (Part II)

Blazej Kot

Abstract


Since the time of Newton, physicists have imagined a background "stage" called space and time (later spacetime) permeating the entire universe. The contents of the world around us are then seen as objects embedded in this background at a defined location, and with a defined size and other properties (color, mass, spin etc.).We refer to this traditional view as the Objects in Space and Time (OST) model. It works very well for picturing classical physics; but once we move into the quantum domain it is no longer of much use. In the quantum realm objects no longer have defined locations at all times, their properties can become entangled and undefined until observed. In this paper, we seek to present an alternative to the OST model in which the "weirdness" of quantum phenomena goes away and is replaced by clarity, obviousness and inescapability. In this model the world is viewed as a network of fundamental processes by which indivisible units called tomas bring each other into and out of existence. We show that this model yields the same equations and predictions as the current OST-based formalism of quantum mechanics. While not contradicting the success of quantum theory, the toma model lets us get rid of the "weirdness" of the quantum world and understand reality at a deeper level than the OST model. We illustrate this by discussing two classic quantum experiments and their interpretations.

Part II of this two-part article includes: 5. Motion, Space and Time; 6. Discussion; and 7.  Conclusion.

Full Text:

PDF