Open Access Open Access  Restricted Access Subscription or Fee Access

Space-Time Foam Differential Algebras of Generalized Functions and a Global Cauchy-Kovalevskaia Theorem

Elemer E. Rosinger

Abstract


The new global version of the Cauchy-Kovalevskaia theorem presented here is a strengthening and extension of the regularity of similar global solutions obtained earlier by the author. Recently the space-time foam differential algebras of generalized functions with dense singularities were introduced. A main motivation for these algebras comes from the so called space-time foam structures in General Relativity, where the set of singularities can be dense. A variety of applications of these algebras have been presented elsewhere, including in de Rham cohomology, Abstract Differential Geometry, Quantum Gravity, etc. Here a global Cauchy-Kovalevskaia theorem is presented for arbitrary analytic nonlinear systems of PDEs. The respective global generalized solutions are analytic on the whole of the domain of the equations considered, except for singularity sets which are closed and nowhere dense, and which upon convenience can be chosen to have zero Lebesgue measure. In view of the severe limitations due to the polynomial type growth conditions in the definition of Colombeau algebras, the class of singularities such algebras can deal with is considerably limited. Consequently, in such algebras one cannot even formulate, let alone obtain, the global version of the Cauchy-Kovalevskaia theorem presented in this paper.

Full Text:

PDF