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Article 
In Defense of Octonions 

 

Jonathan J. Dickau* & Ray B. Munroe, Jr.† 
 

Abstract 
Various authors have observed that the unit of the imaginary numbers, i, has a special significance as 
a quantity whose existence predates our discovery of it.  It gives us the ability to treat degrees of 
freedom in the same way mathematically that we treat degrees of fixity.  Thus; we can go beyond 
the Real number system to create or describe Complex numbers, which have a real part and an 
imaginary part.  This allows us to simultaneously represent quantities like tension and stiffness with 
real numbers and aspects of vibration or variation with imaginary numbers, and thus to model 
something like a vibrating guitar string or other oscillatory systems.  But if we take away the 
constraint of commutativity, this allows us to add more degrees of freedom, and to construct 
Quaternions, and if we remove the constraint of associativity, what results are called Octonions.  We 
might have called them super-Complex and hyper-Complex numbers.  But we can go no further, to 
envision a yet more complicated numbering system without losing essential algebraic properties.  A 
recent Scientific American article by John Baez and John Huerta suggests that Octonions provide a 
basis for the extra dimensions required by String Theory and are generally useful for Physics, but 
others disagree.  We examine this matter.  
 
Key Words:   octonions, quaternions, string theory, quantum gravity. 
 

Introduction 

 

The Octonions are numbers that possess seven degrees of freedom and one of fixity, representing the 

fourth normed division algebra, and thus having three less-complex cousins, the Quaternions, 

Complex numbers, and the Reals.  A recent article and papers by Baez and Huerta [1] suggest there 

may be a basis for the extra dimensions needed by String theory in the additional degrees of freedom 

afforded us by Octonions.  And there may be some truth to the idea that a quantity must be free to 

vary, before it can assume a particular value that is real.  This lends credence to the notions expressed 

in the article, but not all agree that the connection suggested by Baez and Huerta is reasonable or valid, 

in explaining origins of the Math and Physics relating to String theory.  Luboš Motl has been 

especially vocal in his protest of the idea that octonions are central to String theory, claiming they are 

peripheral at best and unrelated to its important questions [2].  But people outside that field feel that, 
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in the absence of more concrete results, at least the String theorists should be able to clearly explain 

how those extra dimensions originate. 

 

This question tends to be avoided by folks in String theory, but it has been the driving force to develop 

Background Independent theories such as Spin foams, Loop Quantum Gravity, and so on.  Similarly; 

constructivist Math and Geometry insist that it is inadmissible to simply posit a particular set of 

dimensions or a background space with specified properties.  To show it is real, we must be able to 

construct it.  And of course; administrators, grant writers, or people with funds to donate, often have 

legitimate questions about why there are extra dimensions, or how they came to be.  So; it appears 

admirable that Baez and Huerta, who are outside that field, have given considerable thought to how 

the conditions which allow String theory to work might arise.  And we likewise assert that the 

Octonions might indeed help dictate the mechanism by which dimensions come to be – at the extreme 

microscale – and thus create the specific dimensionality for String theory to operate.  However, the 

utility of higher-order number types is not limited to Strings, as they are useful in several areas – both 

in Physics and elsewhere.  The remainder of this paper discusses why the Octonions and Quaternions 

are of special importance to Physics, and should perhaps be regarded as part of the fundamental 

mathematical background in which reality and the principles of Physics have their origin. 

 

Fundamental Realities of Octonion Math 

 

The existence of i, the root or unit of the imaginary numbers, is almost senseless to dispute.  Though 

we call it imaginary, it is not simply a fictitious entity, as its utility shows it is a marvelous discovery.  

Nor is its value arbitrary.  As with  , the ratio between the diameter and circumference of a circle, 

the exact numerical value of i is fixed by its definition.  Specifically, 
2

i  must equal 1 .  But this 

condition implies a very interesting behavior, where i is a quantity that appears to oscillate between 

two values, rather than having a specific or fixed value.  Thus, its appearance in an equation of motion 

indicates the freedom to vary by a specified amount, rather than indicating a fixed quantity.  When 

imaginary elements appear in Complex numbers, Quaternions, or Octonions, this quantifies both the 

extent and the ways in which a numerical system is free to vary.  And this is precisely the property 

which makes these mathematical constructions so useful in Physics, as a way to model how physical 

systems naturally vary.  The higher-order number types simply extend the range or add to our 
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repertoire of useful tools.  Therefore the applicability of Math using quaternions and octonions in 

Physics hinges on whether that usage is more natural or appropriate, to simplify our reckoning. 

 

Complex numbers are commonly viewed on the Argand plane, with the Real axis left to right, and the 

Imaginary axis up and down.  In this framework, multiplication of any complex number by i is 

equivalent to rotating its location by 90 degrees.  We can carry this idea of imaginary excursions 

depicting rotation forward to describe the Quaternions as points on a sphere whose radius is the scalar 

value.  That is; if we wish, we can view any quaternion as a 3-d polar coordinate where the Real value 

defines a sphere of a certain size about the origin and the three imaginary components are rotations 

about orthogonal axes on that sphere.  If we want to extend this metaphor to the Octonions, one might 

think that this would be hard to visualize because it requires a hypersphere, but it turns out that there is 

a very nice correspondence if we use a torus instead of a sphere.  In that generalization, the scalar is 

again the size of the figure and three of the imaginary components are again rotational excursions on 

the surface of the figure, but the remaining components become the proper rotations of the torus itself.  

Lest you think we have one too many rotational components that way, I remind the reader that a torus 

can rotate by turning inside out such that its inner rim becomes its outer, and vice versa.  So we 

actually have exactly the correct number of rotational components or imaginaries. 

 

The torus is connected with the Octonions in a variety of ways, including the 7-color map problem, 

which we discuss later.  We note that a string can wrap around a torus and be constrained to create 

various winding modes.  The torus also has an interesting property where it stands alone, as it is a 

form which can exist as a self-contained propagation within a medium of a single density or viscosity.  

No boundary or discontinuity is required for it to arise.  But it clearly has a center and defines a sense 

of interiority and exteriority by its existence.  It can serve as a boundary and occupy or define a 

location in dimensional space.  Topological distinctions may thus arise in the form of a torus.  By 

defining a location, the concepts of a neighborhood and proximal or distal directions in space (toward 

or away) are also given meaning.  These concepts are seen as foundational in constructive geometry, 

and may also be a foundational underpinning of nature itself.  Concepts like size and distance, or 

duration and intervals of time, likely were loosely-defined or undefined at the inception of the cosmos 

– and emerged later – requiring that we assume the most general case at the outset, which is non-

associative geometry.  If we further assume that the specific geometry adopted by nature was 

Octonion near the Planck scale, a lot of things work out very nicely. 
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As stated earlier, the Octonions are the most complex of four normed division algebras (or NDAs).  

The essential property of NDAs is reversibility.  Any series of algebraic operations can be performed 

in the reverse order and sense (dividing where one had multiplied or subtracting where one had added), 

when using any NDA, to arrive at the original value.  We can add, subtract, multiply, and divide – in 

any sequence – yet later reverse the steps to return to where we were.  This implies or engenders the 

property which is known as Symmetry.  Modern Physics is deeply connected with Symmetry Groups, 

which are the product of such symmetries within the associated algebras.  As the highest order NDA, 

the Octonion algebra directly spawns the largest and most complex of the Exceptional Groups, 8E , 

which is equivalent to the Gosset lattice (see Figure 1 below) that Garrett Lisi [3] and others have 

explored for its connection to Physics.  While Lisi‟s „exceptionally simple‟ first try was apparently not 

exactly on target, subsequent attempts by Lisi and others to refine or extend the ideas he explored [4] 

are still regarded as promising.  Further; it is widely regarded as true that any effective GUT or TOE 

will be closely connected with some combination of the known symmetry groups, and we note that 

any of these can be derived beginning with Octonion algebra as a starting place. 

 

 

Figure 1 – A 2-D Projection of the Minimally 8-D Gosset Lattice 
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The property of non-associativity makes Octonion algebra the most demanding of all the NDAs, 

because the steps in any algebraic process must be applied in exact sequence, in order to obtain the 

correct result.  This is not to say that there is no room for variation with octonions.  In fact; there are 

480 different multiplication tables which all work, provided that you adopt just one version and use it 

throughout your calculations [5].  But this variety arises directly from the great range of possibilities 

octonions can encode or represent, and coincidentally, corresponds to the 480 roots of an 
 88 EE  

algebra.  It could be said that the Octonions are simply the most general of all the number types.  

However, where all those extra degrees of freedom or rotations are not needed; it is far easier to leave 

the additional terms aside, and to deal with numbers as real-valued scalars, real and complex vectors, 

or quaternions.  On the other hand; as our focus moves toward the Planck scale it may require that we 

leave some of these simplifications behind.  One approach that until recently was quite promising is 

Noncommutative geometry (or NCG).  It may be true that the shortcomings of this approach arise 

from the fact that it does not go far enough, and that to explore closer to the Planck domain we must 

assume that the underlying geometry is non-associative as well. 

 

This idea has some interesting implications.  One intriguing statement about NCG by Alain Connes is 

that “Noncommutative measure spaces evolve with time!” [6].  He follows this remark by saying that 

they have a „god-given‟ automorphism group driving their time evolution.  Connes implies that spaces 

with a noncommutative geometry evolve into something else, presumably sometimes or eventually 

into spaces possessing a geometry where movement does commute, and the familiar concepts of 

distance and scale do apply.  As we move from noncommutative to non-associative spaces and 

geometries though, his statement becomes even more profoundly true, making Octonion geometry 

quite fecund.  The property of non-associativity forces one to adopt an almost process-theoretic view 

of reality as the step-wise sequential nature of calculations is much like the procedural steps in a 

computer program.  A comment made by Jason Wolfe on Munroe‟s FQXi essay forum page [7] 

suggests that terms in parentheses in some Mathematical expressions are like the nested loops in a 

program, and with octonions this is exactly correct.  One must resolve or calculate all of the inner 

loops first, and then combine those intermediate results to obtain the final answer.  One could say that 

a quaternion is a qubit times a scalar.  This makes an octonion a string of seven (entangled) qubits [8] 

times a scalar.  Perhaps most interesting, in this connection, is that Octonion algebra thus results in the 

maximal connectivity or inter-connectedness which can be possessed by a computing network, as 

realized in a figure known as the heptaverton. 
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Though one can go on with the process of generalization (via the Cayley-Dickson construction) to 

even higher dimensioned algebras such as the Sedenions (16-D) and Pathions (32-D) [ 9 ] the 

maximum of flexibility and utility is reached with the Octonions, so these yet higher-order number 

types are of interest mainly to number theorists, and are not of as much use for Physics.  Thus; it is 

seen that octonions represent the richest starting place and offer the most opportunities or possibilities 

for the evolution of form of any numbering system.  Therefore it seems natural that reality would 

utilize this broad palette of possibilities to help create the universe of form we observe.  Though to say 

that the Octonions represent something that was a „given‟ at the outset of the universe may seem like 

an exercise in radical Platonism, it is not without a basis, and assuming this is true leads to some 

interesting consequences which can produce a cosmos much like the one we observe.  Various 

individuals including Wigner and Tegmark [ 10 , 11 ] have asserted that regular patterns and 

unchanging realities within Mathematics may be what generate the regular and unchanging aspects of 

physical law.  Wolfram‟s “A New Kind of Science” [12] suggests that instead of the Math, it is the 

ability to compute or calculate that defines reality.  If we combine these two notions, we arrive at the 

idea that the Mathematics or Computing strategy which allows for the greatest efficiency of 

determination may be the route nature chooses whenever possible. 

 

If this „principle of least computational action‟ holds true, then the usefulness of quaternions and 

octonions may be far more than just an aid to physicists.  Their efficiency may be one of the major 

determining factors which made reality turn out the way that it did, helping our world and the cosmos 

to become the way that we observe it today.  In that scenario; the Octonions take on a role as an 

important creative force and a shaper of the universe. 

Example 1 – Maxwell’s Equations as Quaternion Formalism 

 

Quaternion Grassman multiplication and differentiation is defined as [13, 14]: 

    
    RRRR

RRRRRRRR









ttt

qq

,,,

''' ,''',',
           (1) 

Note that a comma separates the scalar “time-like” and vector “space-like” components, and the 

derivative operator includes time derivatives, a gradient, a divergence and a curl.  Quaternion 

operations are non-commutative because of that last cross product: RRRR  .  Although this 

property may seem to be disadvantageous in describing Classical Physics, it may be an advantage in 
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describing Quantum Physics that utilizes commutator   baabba ,  and anti-commutator 

  baabba ,  operators.  Defining commutator and determinant forms of the quaternion derivative: 

    
   
   

 
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   
   

 









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






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R
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R
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t

t
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2

1
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2

1
  ,, ,

2

1

2

1

      (2) 

And we may write Maxwell‟s Equations in terms of these quaternion and commutator operators: 

         
   
   

   0,0, 
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,0,
 

2

1
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2

1

2

1 





 EBB
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BE
BE t

t

t

tt
  (3) 

         
   
   

   JBEE
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EB
EB ,4, 

,0,

,0,
 

2

1
,0, , ,0, ,

2

1

2

1





 t

t

t

tt
 (4) 

in Gaussian units.  Equation (3) yields the Homogeneous components of Maxwell‟s Equations by 

decomposing the scalar components into Gauss‟s Law for Magnetism: 0 B , and the vector 

components into Faraday‟s Law: 0 EBt .  Similarly, equation (4) yields the Inhomogeneous 

components of Maxwell‟s Equations by decomposing the scalar components into Gauss‟s Law for 

Electricity:   4 E , and the vector components into Ampere‟s Law with Maxwell‟s 

Displacement Current: JBE  4 t .  Now we may also use a combination of quaternion 

and commutator operators to define our scalar and vector potentials: 
 

  

      
   
   
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
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

t

t
t

tt
t

t
t

    (5) 

where the scalar component of E equals zero because of the Lorentz Gauge: 0    At .  

Combining Equations (4) and (5) yields the Riemann-Sommerfeld Equation [ 15 ] for the 

Inhomogeneous components of Maxwell‟s Equations: 
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  JA  4   in Gaussian units       (6) 

where  A, A ,  J, J , and the d‟Alembertian: 
22  t


  is the scalar 

component of a quaternion “Laplacian”:      ttttt ,,, 22
. 

Example 2 – Dirac’s Gamma Matrices as Quaternion Formalism 

 

Another example of quaternion algebra is Dirac‟s Gamma Matrices.  These matrices naturally arise 

from the solution of Dirac‟s Equation [16]: 

    0    
 mi ,  where                  (7) 

  
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
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
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x

x














 3210   &    ,   ,    (8) 

are 44  matrices constructed of the 22  Pauli  zyx  ,, , Identity I and Null 0 matrices: 

  . 
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
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 
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






  0I

i

i
zyx    (9) 

These Dirac matrices obey a quaternion   23,1 HCl  algebra with the anti-commutator relation: 

    g2  ,  .  Separately, the Pauli matrices obey a complex   22,1 CCl  algebra.  The fifth 

Gamma matrix: 

  







  32105

0I

I0
i                     (10) 

behaves like a   24,0 HCl  pseudoscalar – a scalar quaternion component that changes signs under 

inversion. 
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Example 3 – The Einstein Field Equations as Quaternion or Octonion Formalism 

 

The Einstein Field Equations (EFE) may be written as [17, 18]: 

  


T

c

G
gRgR

4

 8
  

2

1
                  (11) 

where R  is the Ricci curvature tensor, g  is the metric tensor, R is the scalar curvature,  is the 

cosmological constant, and T  is the stress-energy tensor.  The EFE is a set of ten independent 

symmetric tensor equations.  This particular formulation looks like a     2,3~43,2 SOCl C  algebra 

with (3,7) symmetries.  This set of four complex algebras may be intertwined via a Cayley-Dickson 

construction into the equivalent of an Octonion algebra [19, 20]. 

However, the freedom of choice of the four spacetime coordinates allow us to reduce the EFE down to 

a set of six independent tensor equations that resembles a     2,2~4 SOCl2,2 R  algebra with (1,5) 

symmetries.  This set of four real algebras may be intertwined into the equivalent of a Quaternion 

algebra. 

Do the Einstein Field Equations represent the equivalent of a Quaternion or an Octonion algebra?  

That appears to be a matter of perspective. 

 

Example 4 – A GUT of the Gravitational Sector Involving Quaternions and Octonions 

 

Example 3 implies that a     2,2~4 SOCl2,2 R  algebra with (1,5) symmetries is the minimal 

representation for Einstein‟s Gravity.  The “1” symmetry implies a spin-2 Graviton particle, but the 

“5” symmetry implies something else of spin-2.  If the Gravitational particle spectrum is more 

complex than a simple Graviton, then we need to explain these extra degrees-of-freedom, and we may 

need to explain why the Graviton is massless. 
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In Electro-Weak Theory, a  BU 1  mixes quantum numbers with an  WSU 2  via a rotation:
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where W  is the Weinberg (or weak) mixing angle [21] to yield a massless photon  , a massive 
0Z  

boson, massive 
W  bosons, and a unified Electro-Weak sector. 

Suppose that a     2,2~4 SOCl2,2 R  six-plet of tensors (looks like the simplified EFE) mixes 

quantum numbers with a     2,3~43,2 SOCl C  ten-plet of tensors (looks like the general EFE) to 

yield a massless  GU 1  of Graviton and a       2,2~2,4~44 SUSOCl2, H  fifteen-plet of massive 

WIMP-Gravitons [22] that resembles a Twistor Algebra [23].  These WIMP-Gravitons are “Weakly 

Interacting Massive Particle” Gravitons with five spin projections:   0,1 ,2  , where the 2  spin 

projections are purely transverse, the 0 spin projection is purely longitudinal, and the 1  spin 

projections are a mixture of transverse and longitudinal components.  Thus, these WIMP-Gravitons 

morph into an    1,3~3,3 SUSO  symmetry that implies three different WIMP-Gravitons, each with 

five different spin projections. 

   WGG SOU 2,41   is a 4-dimensional rotation of tensors – somewhat like Electro-Weak Theory, but 

more complex.  Perhaps this may be represented as left- and right-isoclinic component equations:  
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where a left isoclinic rotation is represented by left-multiplication on a unit quaternion 

kdjcibaqL
ˆˆˆˆ  , a right isoclinic rotation is represented by right-multiplication on a unit 

quaternion ksjriqpqR
ˆˆˆˆ  , and our initial massive Quaternion Graviton HG  and massive 

Octonion Graviton OG  tensors are represented as sets of vector components with L and R denoting 

left- and right-helicity – as are our final massless graviton g and massive WIMP-Graviton F  tensors.  
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Note that all capitalized symbols are tensors with effective mass, and longitudinal components are not 

considered in this “simplified” formalism that permits up to the six unique mixing angles of  2,4SO  

capable of describing mixing of quantum numbers between the Graviton and WIMP-Gravitons.  The 

 HH 5,1  and  OO 7,3  represent component Quaternion-like     2,2~4 SOCl2,2 R  and Octonion-

like     2,3~43,2 SOCl C  symmetries, respectively. 

This   44 H2,Cl  algebra is a set of four quaternion algebras that may be intertwined into the 

equivalent of two (7+1)-D Octonions via a Cayley-Dickson construction, and may thus be related to 

  288 32~ ZSpinEE


  Heterotic String Theory [24 ] with dual 8-dimensional Gosset lattices.  

Thus,    WGG SOU 2,41   may yield a potential GUT of the gravitational sector that also connects 

with Octonions, Gosset lattices, and Twistor and Heterotic String Theory. 

Example 5 – An Octonion Inspired Seven-Color Mapping of a Torus 

 

A recent FQXi Essay contest raised the question of whether Reality is fundamentally Discrete or 

Continuous.  Both authors [25] presented arguments and evidence showing why we think Reality is 

fundamentally both Discrete and Continuous.  If Octonion geometry is in effect near the Planck scale, 

this suggests that reality is actually seven ways analog before it manifests as digital, or discrete.  If 

Spacetime has a discrete nature at certain Scales, though, this may explain the AdS – CFT 

Correspondence by using a Graphene analogy for Spacetime structure [26].  If a graphene analogy 

might represent Spacetime‟s large-scaled structure, then another Carbon allotrope, the C-60 Buckyball 

[27] (or truncated icosahedron) might explain Spacetime‟s small-scaled structure and the apparent 

stability of the Black Hole singularity. 

It is well-known that – because of the approximate equality of the Compton wavelength and the 

Schwarzschild radius at the Planck scale – a Planck particle (if it emerged from the „Quantum soup,‟) 

would almost immediately be swallowed up by a Black Hole [28], however some geometries might 

survive a collapse.  The buckyball is a relatively-rigid, nearly-spherical geometry, but spinning 

buckyballs are unstable due to the Hairy Ball Theorem [29].  Thus a pair of nested, spinning 

buckyballs with 120 total vertices tend to morph into their homotopic cousin, a lattice-like torus.  This 

initial toroidal lattice consisting of 24 pentagons and 40 hexagons has the wrong symmetries for long-

term stability, and thus further decomposes into a seven-fold symmetry, which seems to be the most 
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stable of these geometries because of seven-color toroidal mapping [30] (see Figure 2 – the toroidal 

extension of four-color spherical surface mapping).  At least two cases deserve consideration: 

Case A – The toroidal lattice decomposes into a “donut” with 2173   pentagons and 3575   

hexagons via the underlying     15105~1,15~16~120 SOSO  symmetries within a minimal 

rank-7 representation.  We obtain 7-D out of an apparently 2-D toroidal surface (a 2-brane) within a                       

3-D space (a 3-brane) because this torus is allowed to roll in on itself as a 2-D vortex effect (another 

2-brane).  These extra degrees-of-freedom may be the root cause of the concept of intrinsic spin. 

The 15-plet becomes a “donut hole” with rank-3     312~1,3~3,3 SUSO  symmetries (a morphed 

Twistor Algebra like Example 4) shaped like an icosahedron within a minimum 3-D representation.  

Coincidentally, the original toroidal lattice of order 120 has the identical order as the Icosahedral Point 

group, hI  [31] : two singlets: 1 and i ; four 12-plets: 10
2
55 ,, SCC  and 

3
10S ; two 15-plets: 2C  and 

 ; and two 20-plets: 3C  and 6S .  This donut hole may represent the 15 degrees-of-freedom of the 

2
42 CC   icosahedral symmetries, and the WIMP-Gravitons from the previous example. 

 

Figure 2 – Seven-Color Toroidal Mapping [32] – Top and Bottom Views – Note that each color shares 

a boundary with the other six colors.  Such a mapping implies a minimum of a rank-7 representation. 
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How does this example relate to Quaternion and Octonion symmetries?  It is interesting that this 

toroidal lattice might have 7-dimensional  15SO  space-like symmetries plus one time-like symmetry 

(“Octonionic time” is the dynamic variable that separates these toroidal vertices and inflates this 

toroidal lattice – the negative time-like metric provides the “degree of fixity” required for the outward 

tension against gravity) while the icosahedron has 3-dimensional space-like symmetries plus another 

time-like symmetry (“Quaternionic time” is the dynamic variable that separates these icosahedral 

vertices and inflates this icosahedron).  These dimensional symmetries are exactly what we might 

expect from the union of the (7+1)-D Octonion and the (3+1)-D Quaternion from the previous 

example into a 12-D F-Theory. 

 

Case B – Another possible decomposition of the initial toroidal lattice would be a  16~120 SO  

  3121491~2991~2,14~ SO , which produces a final donut with 2173   pentagons and 

2874   hexagons, but now the donut hole is the 3-plet and icosahedron of the prior case plus a 

2G  14-plet.  A rank-2 2G  contains the three-fold symmetries of  3SU , and may thus represent 

three generations of matter (compare with the Strong Force with an  3SU  of three colors).  As such, 

this 2G  is fundamental to understanding both the CKM and PMNS Matrices [ 33 , 34].  These 

symmetries of Octonion (7+1)-D, Quaternion (3+1)-D and minimum 2-D 2G  add up to an effective 

14-D theory as we might expect from the rank-14  14 Spin  sub-component of a 

   2,14 ~16 SpinSpin  Theory.  Furthermore, a rank-(14+2)      2,4     10 2,14 SpinSpinSpin   

could easily represent the union of an effectively 10-D  10 Spin  GUT (not including Gravity) [35] 

and an effectively (4+2)-D  2,4 Spin  Gravitational GUT from Example 4 while simultaneously 

mirroring the minimum (14+2)-D properties of a pair of (7+1)-D Octonions. 

These lattices build an impenetrable structure around the Black Hole singularity, and thus prevent the 

singularity from consuming the entire Black Hole.  More exotic allotropes with seven-fold symmetries 

might involve a pair of C-70 fullerenes – each with 12 pentagons and 25 hexagons, but these options 

seem to be less stable than pairs of C-60, and lack the beautiful symmetries of  16SO  (although a 

final donut with 21 pentagons and 42 hexagons has 119 vertices – close to the 120 order of  16SO ). 
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Conclusions 

 

There are numerous texts [36] which focus on the utility of the Quaternions and Octonions in Physics, 

and there have been quite a few papers by various authors [37] which explicitly utilize the Octonions 

as a basis for a GUT or TOE, or for explaining numerous aspects of known Physics.  The Quaternions 

have come to be used quite extensively for computations in Video Games and in both Spacecraft and 

Aircraft Navigation [38], as they greatly simplify trajectory calculations.  The Octonions, on the other 

hand, are still poorly regarded and seldom used.  John Baez described them as „the crazy old uncle‟ of 

the number family [39] which the rest of the family would rather keep in the attic, but perhaps this 

analogy is too harsh, and they should be thought of as the wealthy and eccentric old uncle who does 

not associate with others, but has a lot to share for those who take the time.  What octonions offer lies 

mainly in the area of possibilities, as their seven imaginary components are the freedom to vary, and 

represent seven different kinds of variation that may be present at once. 

Several interesting geometric structures and algebras were presented in this paper, and these deserve 

extra emphasis and a relational summary.  A pair of nested C-60 Buckyballs is homotopic to a torus, 

and contains 120 vertices – equivalent to the order of an    16~11 SOSU  algebra, and the 

Icosahedral Point Group symmetries.  The Gosset lattice contains 240 vertices within an 8-D space, 

which is equivalent to the order of a  16 Spin  algebra, or the number of 8E  roots.  The Octonion has 

480 different possible multiplication tables, which is equivalent to the number of 
 88 EE  roots.  And 

finally,    88~32 EESO  each have an order of 496, and  32SO  has a complex representation 

capable of mathematically describing CP Symmetry violation. 

 

We have provided some examples of the general usefulness of octonions and quaternions in Physics.  

We have also suggested a beautiful top-down example (Example 4) of the potential need for octonions 

in a Quantum Gravity Theory.  And we give a bottom-up example (Example 5) suggesting the 

potential need for octonions in the stability of Black Hole singularities.  Interestingly, the seven space-

like dimensions of the octonion may correspond to the minimum 7-dimensions of Hyperspace that are 

required for 10-D String Theory, 11-D M-Theory and / or 12-D F-Theory.  Thus it is seen that the 

degrees of freedom provided by the Octonions allow for the emergence of the full range of observed 

form, and may provide insights into additional particles to be found, and other aspects of reality we 
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have not observed yet.  It is our hope that more researchers will give serious consideration to the 

potential usefulness of the Octonions in Quantum Gravity and String Theories. 
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