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Lorentz-Invariant Gravitation Theory 

Chapter 11. Solution of the Kepler problem in the framework of LIGT 

 

Introduction 

In present chapter, based on results of previous chapter 9, we consider the solution of the Kepler 

problem, i.e., the solution of the problem of motion of two bodies in a centrally symmetric 

gravitational field of a stationary source. It is shown that this solution coincides with that obtained in 

GR. 

As the motion equation of LITG we use the Hamilton-Jacobi equation (Chapter 8). According to 

Chapter 7, the equation of motion of Hamilton-Jacobi has a one-to-one connection with the square of 

the interval (square of arc element of trajectory) in framework of LITG. Therefore, as we will show 

below, it is not necessarily to find an appropriate interval to write the corresponding Hamilton-Jacobi 

equation for particle motion in gravitation field. 

1.0. Effects of Lorentz transformation  

A consequence of the previously adopted axiomatics (chap. 3) of  Lorentz-invariant gravitation 

theory (LIGT) is the assertion that all features of the motion of matter in the gravitational field owed 

their origin to effects associated with the Lorentz transformations. This means that the elaboration of 

the equations of Newton's gravitation must follow from considering of these effects.  

As is well known (Becker, 2013), these questions can be considered without special relativity 

theory, using only the Maxwell equations.  

Effects, that owe their existence to the Lorentz transformations are discussed in many textbooks 

devoted to the EM theory or SRT (Becker, 2013; Pauli, 1981; et al.). We will not dwell on their 

withdrawal, and we will only briefly mention some of them. 

From the Lorentz transformations follows the velocity transformation, showing that no body can 

overcome the speed of light. From the Lorentz speed transformations follow the time dilation and 

length contraction in a moving frame of reference, as well as the transformation of energy and 

momentum. The use of invariance properties of the wave phase with respect to the Lorentz 

transformations, allows to obtain the relativistic formula of Doppler effect, aberration, reflection from 

a moving mirror, Wien's displacement law, etc. 

1.1. The transition from Newtonian mechanics to the Lorentz-invariant mechanics  

Let us try (Беккер, 2013)   to alter the Newtonian equations so that they satisfy the Lorentz 

transformations. We begin by considering the motion of a particle in a given force field (e.g., 

electromagnetic or gravitational). Newtonian equations of motion read as follows: 

 LF
dt

d
m

r
r

=
u

,    (1.1)   

where 
LF
r

 is, e.g., the Lorentz force :  

 H
c

q
EqFL

rrrr
´-= u ,   (1.2) 
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Now we will try to give this equation the Lorentz-invariant form. Obviously, the Lorentz-

invariant version of the equation (1.1) instead of the classical time t  must contain the proper time t
~

: 

 LF
d

d
m

r
r

=
t
u

,    (1.1')   

In order to find this version of the equation, we replace in (1.1') its proper time in line with the 

ratio for the Lorentz time dilation 21
~ b-= dttd  on 21 b-dt : 

 H
c

q
Eq

dt

d
m

rrr
r

´-=
-

u
b

u
2

0

1
,    (1.3) 

As is known, the equation (1.3) is the Lorentz-invariant equation of motion of a charged particle 

in an EM field. 

Below we will consistently apply this method to obtain the relativistic equations of gravitation in 

the form of Hamilton-Jacobi equations.  

2.0. Solution of the Kepler problem in the framework of LIGT 

Two of the most important effects from the point of view of mechanics that arise due to the 

Lorentz transformations, are the Lorentzian time dilation and contraction of lengths:  

 21
~ b-= dttd ,   

21

~

b-
=

dr
rd ,    (2.1) 

where, as shown previously, rrS=2b , and  Sr  is the Schwarzschild radius. 

 

The free particle motion is described by the Hamilton-Jacobi equation Landau and Lifshitz, 

1971): 

  ( ) 222
2

2  

 1
cmS

t

S

c
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ø

ö
ç
è

æ ¶ r

¶
,    (2.2) 

In a spherical coordinate system (taking into account both relativistic effects) it takes the form: 
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where t
~

  and r~   are measured in a fixed coordinate system associated with a stationary spherical 

mass M .  

We will start with the account of the first effect 

2.1. The equation of motion of a particle in a gravitational field, taking into 
account the relativistic effect of time dilation 

Taking into account that the motion of a particle around the source occurs in the plane, we define 

this plane by condition 2pq = . In this case, the equation (2.3) takes the form: 

   22
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Taking into account only the transformation of time 21
~ b-= dttd  (see (2.1)), equation (2.4) can 

be rewritten as follows: 

   42
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Substituting  rrs-=- 11 2b , we obtain: 
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Let us simplify this equation, taking into account the expansion ( ) nxxxx ++++=- ...111 2   for  

1<<x . Since for the actual sizes of the planets and Sun and the distances between them, value 

1<<rrs , we can be limited by first two terms of the expansion. At the same time 

rr
rr
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1
, and the equation (2.4) takes the form: 
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We will show that L-invariant time dilation leads to the appearance of Newton's gravitational 

field. 

2.1.1 Newton’s  approximation 

Let us present  this equation to the nonrelativistic mind, using the transformation tmcSS 2'-= : 
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Substituting this in (7), we find 

42

2

2

2

2422

2
1''

2
'

1 cm
S

rr

S
ccm

t

S
mc

t

S

r

rs =÷÷
ø

ö
çç
è

æ
¶
¶

-÷
ø

ö
ç
è

æ
¶
¶

-
ú
ú
û

ù

ê
ê
ë

é
+

¶
¶

-÷
ø

ö
ç
è

æ
¶
¶

÷
ø

ö
ç
è

æ
+

j
.  

Expanding the brackets, we obtain: 
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Dividing this equation by 
22mc , we find: 
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Taking into account that 
2

2

c

M
rs

g
= , we obtain Um

r

mM
mc

r

r
N

s -=== j
g2

2

1
, where U  is the 

energy of the gravitational field in the Newtonian theory. In the nonrelativistic case we put ¥®c . 

Furthermore, for real distances r  of the body movement around source with Schwarzschild radius 

sr , we have  1<<
r

rs  and  
t

S

t

S

r

rs

¶
¶

<<
¶
¶ ''

, and then   we can ignore the term 
t

S

r

rs

¶
¶ '

 . 

   

В пределе при ¥®c  уравнение (2.8)  переходит в известное классическое уравнение 

Гамильтона-Якоби для гравитационного поля Ньютона: 

In the limit as ¥®c , equation (2.8) goes over into the classical Hamilton-Jacobi equation for 

Newton gravitation field 
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,     (2.9) 

As is known, the solution of this problem leads to a closed elliptical (not preccesing) satellite orbit 

around the spherical central body. 

From this it follows that the inclusion only of Lorentz time dilation into the free Hamilton-Jacobi 

equation leads  to the Kepler problem in non-relativistic theory of gravitation.  

Note also that equation (2.9) is a consequence of  the L-invariant HJE with the Newton potential 

field:  
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Thus, the equations (2.6), (2.9) and (2.10) are equivalent from point of view of their results. 

2.2. The equation of motion of a particle in a gravitational field with the Lorentz 
time dilation and length contraction 

Now in order to take into account the length contraction effect along with the effect of time 

dilation, we will use the Hamilton-Jacobi equation (2.3) in form: 

 22

2

2

2

2

22

2

2

sin

1
~~ cm

SS

r

c

r

S
c

t

S
=

ú
ú
û

ù

ê
ê
ë

é
÷÷
ø

ö
çç
è

æ
¶
¶

+÷
ø

ö
ç
è

æ
¶
¶

-÷
ø

ö
ç
è

æ
¶
¶

-÷
ø

ö
ç
è

æ
¶
¶

jqq
,    (2.11) 

Substituting in (2.11)  not only  21
~ b-= dttd , but also 21~ b-= drrd , we  obtain: 
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Taking into account that in our theory rrs-=- 11 2b , we obtain from (2.12) the well-known 

Hamilton-Jacobi equation for general relativity in the case of the Schwarzschild-Droste metric 

(Schwarzschild, 1916; Droste, 1917): 
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As is well known (Landau and Lifshitz, 1971), the solutions of this equation are three well-known 

effects of general relativity, well confirmed by experiment: the precession of Mercury's orbit, the 

curvature of the trajectory of a ray of light in the gravitational field of a centrally symmetric source 

and the gravitational frequency shift of EM waves. 

As we noted, in the Kepler problem solution, based on this equation, there is an additional term in 

the energy, which is missing in Newton's theory: 

 ( )
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-+-= ,    (2.14) 

which is responsible for the precession of the orbit of a body, rotating around a spherically symmetric 

stationary center. From the above analysis it follows that the appearance of this term is provided by 

Lorentz effect of the length contraction. 

We found above that the term 

2
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containing the Lorentz time dilation effect in the 

classical approximation leads to the equation of Newton gravitation with Newton's gravitational 

energy. From this it follows that the precession of the orbit ensure the introduction of an additional 

term 
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2.3.  Gravitational deflection of light ray trajectory 

The path of a light ray (Landau and Lifshitz, 1971, p. 308-309) in a centrally symmetric 

gravitational field is determined by the eikonal equation which differ from Hamilton-Jacobi equation 

only in having 0=m , at the same time, in place of the energy tSp ¶¶-=e   of the particle we must 

write the frequency of the light t¶Y¶-=lw . 

 0=
¶

Y¶

¶

Y¶
ki

ik

xx
g ,    (2.15) 

The solution show that under the influence of the field of attraction the light ray is bent: its 

trajectory is a curve, which is concave toward the center (the ray is ‘attracted’ toward the center), so 

that the angle between its two asymptotes differs from  p  by 

 
r

g
r

dj
2

42

c

Mr SNs == ,    (2.16) 

In other words, the ray of light, passing at a distance r  from the center of the field, is deflected 

through an angle dj . 

2.4. Gravitational time dilation and red shift of the frequency 

Within the framework of general relativity, these gravitational effects are took into consideration 

on the basis of the Schwarzschild-Droste metric. In the framework of LIGT, this solution is based on 

the account of effects resulting from the Lorentz transformations, and has no relation to the metric. 

Nevertheless, the indicated effects are easily solved here. 
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We are able to prove a general statement regarding the influence of a gravitational field on clocks 

(Pauli, 1981). Let us take a reference system K which rotates relative to the Galilean system K0 with 

angular velocity w . A clock at rest in K will then be slowed down the more, the farther away from 

the axis of rotation the clock is situated, because of the transverse Doppler effect. This can be seen 

immediately by considering the process as observed in system K0. The time dilatation is given by 

 

2
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2

11
c

r

c

t
w

t
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t

-

=

-

= ,    (2.17) 

The observer rotating with K will not interpret this shortening of the time as a transverse Doppler 

effect, since after all the clock is at rest relative to him. But in K a gravitational field (field of the 

centrifugal force) exists with potential 22

2
1 rwj -= . 

Thus the observer hi K will come to the conclusion that the clocks will be slowed down the more, 

the smaller the gravitational potential at the particular spot. In particular, taking into account that 
2222 2 crrc s jbu === ,  the time dilatation tD   is given, to a first approximation, by 
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,    (2.18) 

Einstein
293

 applied an analogous argument to the case of uniformly accelerated system. We thus 

see that the transverse Doppler effect and the time dilatation produced by gravitation appear as two 

different modes of expressing the same fact, namely that a clock will always indicate the proper time 

ò= ds
ic

1
t . 

Relation (2.18) has an important consequence which can be checked by experiment. The transport 

of clocks can also be effected by means of a light ray, if one regards the vibration process of light as a 

clock. 

If, therefore, a spectral line produced in the sun is observed on the earth, its frequency will, 

according to (2.18), be shifted towards the red compared with the corresponding terrestrial 

frequency. The amount of this shift will be 

  
2c

SE jj
n
n -

-=
D

,    (2.19) 

where Ej  is the value of the gravitational potential on the earth, Sj  that on the surface of the sun. 

The numerical calculation gives 
61012,2 -×=

D
n
n

 ,  corresponding to a Doppler effect of 0,63 

km/sec. 

Einstein (Einstein, 1911)   applied an analogous argument to the case of uniformly accelerated 

system. 

 

Let us assume (Sivukhin, 2005) that the clock A relatively to the system S is moving with constant 

acceleration a . We will count the time t  from the moment when the velocity was zero. Then 

ax2=u , where x is the distance that the clock A covered during the time t . Therefore: 
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 2

0 21 caxdtdt -= ,    (2.20) 

Now let us introduce an accelerated reference frame S0, which moves together with the clock A. In 

this system the clock A is immobile, but there are inertial forces. If all the phenomena will be 

described, taking S0 as a reference frame, then as the cause of time dilation 0t  the inertial forces 

should be considered. The inertial force per unit mass of the moving body is a- . But, according to 

the principle of equivalence, the inertial forces are indistinguishable from the gravitational field, the 

intensity of which in our case is ag
rr

-= . Then the gravitational potential is gx-=j  and the 

formula (2.20) becomes: 

 ( )2

0

2

0 121 cdtcdtdt jj -»-=  ,   (2.21) 

or 

 
2
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0

cdt

dtdt j
-=

-
,     (2.22) 

As zero gravitational potential, the potential of point is considered, at which the moving and 

stationary clocks run equally fast. Therefore, in formulas (2.21) and (2.22), the time interval dt  can 

be counted not by the clock of the inertial system S, but by the clock that is in rest in system S0, 

which is located at the point B with zero potential. In general, we can set the initiation of count of 

gravitational potential at any point, if the formula (2.22) has the form:  

 
2

0

00

cdt

dtdt AB

A

BA jj -
-=

-
,    (2.23) 

where the time intervals Adt0  and Bdt0  are counted by two clocks, which are in rest in an accelerated 

reference frame S0 at points A and B with gravitational potentials Aj  and Bj .  
 

Conclusion 

Thus, we can say that, in the case of centrally symmetric gravitational field, within the framework 

of LIGT we get the same results as in the framework of general relativity. It is noteworthy that in 

order to obtain these results minor adjustments in equation of motion are required, which are ensured 

by two effects following from the Lorentz transformations. 

 

 

 

 

 

 

 

 

 

 

 

 

 


