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Lorentz-Invariant Gravitation Theory 

Chapter 7. The mathematical apparatus of LIGT 

 

1.0. Introduction.  

Using the results of chapter 2 in this chapter, we will list the quantum equations and relationships 

which correspond to our goal - the construction of the LIGT. Then we consider the transition from 

quantum mechanical equations of motion to the motion equations of classical mechanics. 

These mathematical tools will be the base for the solution of specific problems in the theory of 

gravity, expounded in the following chapters. 

1.1. The Bases for selection of  LIGT equations 

From the equivalence of inertial and gravitational masses follows that the field of gravity is 

generated simultaneously with inertial mass. This means that the equations of massive elementary 

particles describe also the gravitational field equations. 

Electron is the simplest stable massive particle. Since, according to axioms of the LIGT, the 

gravitational field is a small part of the electric field, it can be assumed that the simplest candidate for 

the gravitational equation must be a modification of the nonlinear equation of the electron. In this 

case, the mass of this equation is the gravitational mass, i.e., the source of the gravitational field. 

On the other hand we have the equation of the neutral "massive photon", which we can also -  and 

with a significant reason - consider as a gravitation source equation. The following facts are the 

arguments in favor of this choice:  

1) "massive photon" is the primary massive particle;  

2) it is an electrically neutral particle;   

3) fermions are not the interaction carriers in the microworld, but bosons are;  

4) the "massive photon" equation and the lepton equation are related through operations of 

decomposition of first equation and squaring of second equation. From this it follows that the first or 

the second choice of the equations of gravitation is a matter of convenience.  

Hence, the "massive photon" equation may be an advantageous variant of the gravitation source 

equation. Nevertheless, the close relationship of theories of "massive photon", and electron, implies 

the possibility of the use of the Dirac equation, as the basis of our approach. 

There is another indirect argument. As noted by Richard Feynman, a direct transition from the 

quantum to the classical form of the fermion equation is difficult. In the case of bosons, such a 

transition is quite simple: we can say that it is the same equation (Feynman, 1964, 21-4. The meaning 

of  the wave function). 

“…In the situation in which we can have very many particles in exactly the same state, there is 

possible a new physical interpretation of the wave functions. The charge density and the electric 

current can be calculated directly from the wave functions and the wave functions take on a physical 

meaning which extends into classical, macroscopic situations” (see also Chapter 6). 

2.0. The photon equation  

The classical EM wave equation of motion has the form: 
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wherein c  is light velocity,  F  is a matrix, which contains the components of the wave function of 

an electromagnetic field HE
rr

, : ( )zxzx ii H-H-EE=F+  

This wave is a superposition of two waves with plane polarization:                                    
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2 , which also satisfy (2.1). In this sense, the wave with the flat 

polarization, and not cyclic polarization, can be regarded as the primary particle of EM field. 

3.0. The current and mass of massive particles  

Equation (2.1) can be represented as a system of two equations for massless electron and positron: 

 ( ) 0' ˆ ˆˆˆ =+ yaea pco

rr
,    (3.1) 

 ( ) 0ˆ ˆˆˆ' =-+ pco

rr
aeay ,       (3.1’)  

where the wave function of these equations we  denoted  as 'y . 

Self-interaction of the photon fields leads to the appearance in the photon of two displacement 

currents of different directions (chapter 2 or (Kyriakos, 2009)).   In the mathematical description of 

this process, in the equations (3.1) an additional term arises.  

The emerging particle, which we conditionally call "massive photon", is unstable and breaks into 

massive particle-antiparticle, particularly, electron and positron (this fact allows us to consider a 

"massive photon" as an intermediate boson). 

 ( ) 0 ˆˆ ˆˆˆ 2 =++ ybaea cmpc eo

rr
,    (3.2) 

 ( ) 0 ˆˆ ˆˆˆ 2 =--+ cmpc eo baeay
rr

,       (3.2’)  

4.0.  The equation of “massive photon” 

At a time when the system of equations (3.1) obtains current (mass) terms, the photon ceases to 

move at the speed of light and becomes massive :  
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Since the currents have a different direction, the photon remains a neutral vector boson. 

The equation of neutral "massive photon” (4.1) can be rewritten in the view: 

 ( ) ( ) F=Fúû
ù

êë
é - 42

2
22 ˆˆˆˆ cmpc pho

rr
aea ,     (4.1') 

or 

 ( ) ,0ˆˆ 42222 =F-- cmpc ph

r
e      (4.2) 

From equation (4.1) follows the conservation equation for the elementary particles: 

 ,042222 =-- cmpc ph

r
e      (4.3)  
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Note that this equation is valid both in quantum mechanics and in classical mechanics for all 

particles. 

In connection with general relativity, the different form of equation (4.1) could be interesting for 

us. The expression for the current was obtained by the rotation transformation, the radius of which 

was equal to cmr eC h= . For this reason, the current (mass) ej  contains curvature Cr1=k  through 

which the mass term 441 22242 k==
Cph rcm h  can be expressed. In other words, the equation (4.1) 

can be expressed as: 

 F=F÷÷
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è

æ
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c

t

r
,       (4.4) 

This equation is similar to the equation obtained by Schrödinger as the generalization of the Dirac 

equation on Riemannian space (see below). 

5.0. The generally covariant equation of "massive photon" 

The generally covariant equation of "massive photon" Schroedinger (Schroedinger, 1932), was 

the first to obtain by squaring of  Dirac equation, written for the curved space: 

 2

2
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4

1
m=--ÑÑ kl

kll
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gg
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,     (5.1) 

Here 
C

e

r

cm 1
==

h
m , where Cr  is the Compton wave length of electron,  R  is the invariant 

curvature. 

In the first term is easy to find a regular operator of the Klein second order equation in the 

Riemann geometry. In the third term on the left is recognized well-known term associated with the 

spin magnetic and electric moments of the electron (tensor 
klS ). 

 “To me, the second term seems to be of considerable theoretical interest. To be sure, it is much 

too small by many powers of ten in order to replace, say, the term on the r.h.s. For m  is the 

reciprocal Compton length, about 
11110 -cm . Yet it appears important that in the generalised theory 

a term is encountered at all which is equivalent to the enigmatic mass term.”   

 

This term can be associated with the free term of the equation of Dirac’s electron m . According 

to Gauss, on a curved surface  21 kk ×=R , where 21   , kk  are the normal curvature of the surface. If, 

'21 kkk ==   then  2'k=R . Assuming by Schrodinger that 24 m=R , we obtain that 

hh

cmcm phe ===
2

2' mk  

6.0. Quantum equations of particles’ motion in the external field 

For a  complete accordance with the electromagnetic theory of matter (EMTM),  the energy exe  

and momentum exp
r

 in the equation (3.3) must be expressed as the EM values. We can include the 

electromagnetic potentials ( )tr ,
r

j  and ( )trA ,
rr

,  using the fact that j  and ( )Ac
r

1  have the same 
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Lorentz-transformation properties as e  and p
r

 (here j  is scalar potential, A
r

 is the vector potential 

of the EM field, and the dimension of ( )tr ,
r

j  is energy per unit charge, and the dimension of ( )Ac
r

1  

is equal to the momentum per unit charge). 

  As is known, the total momentum and the total energy of a charged particle in an 

electromagnetic field is determined by the following expressions: 

 A
c

q
pp ful

rrr
+= ,   jee qful += ,      (6.1) 

where q  is charge, 
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=  are  the momentum and energy of a free 

particle, u
r

 is particle velocity, exex A
c

q
p

rr
=  and  exex qje =  are the potential momentum and energy 

of some external source (charged particles), obtained in the EM field. 

Hence, (4.1) can be rewritten as the Dirac equation with an external EM field 
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The corresponding differential equations for the "massive photon" will be: 

 ( ) ( )[ ] 042222 =F-+-+ cmppc exex

rr
ee ,     (6.3) 
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 (here and from now on we omit the subscript “ph” in mass of  “massive photon”) 

  

From this we can obtain the equations of energy-momentum conservation of a particle in an EM 

field: 

 ( ) ( ) 042222 =-+-+ cmppc exex

rr
ee ,     (6.4) 

 ( ) 042

2

22 =-÷
ø

ö
ç
è

æ +-+ cmA
c

q
pcq exex

rr
je ,     (6.4’) 

From the above it follows that the values exA
c

q r
 and exqj  completely characterize the external 

field source. Below we will find the expression for the force, with the source acts on the particle. 

7.0. The transition from quantum mechanical equations of motion to 
the motion equations of classical mechanics 

There are three main methods of transition from the quantum mechanical equations of motion to 

the classical equations (Schiff, 1955; Levich, Myamlin and Vdovin, 1973, Landsman, 2005; 

Anthony, 2014).  

a) theorem of Ehrenfest, 

b) on the basis of Hamilton's canonical equations, using Poisson brackets, 

c) the transition from the wave equation to the Hamilton-Jacobi equation. 
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We shall illustrate this transition based on the methods a) and b). 

7.1. Ehrenfest’s theorem in the case of the Lorentz-invariant quantum theory 

Let us use the Lorentz-invariant quantum wave equation of “massive photon”  in external  EM 

field (6.3), obtained in the above section: 

In this case (Anthony, 2014)  the wave function has the form 

 ( ) ú
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ù
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ø
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 exp0 jeyy

rrr

h
,      (7.1) 

Now we want to see whether that equation gives us a description of Reality that conforms to the 

classical theory. To that aim we will calculate the expectation value of the rate at which a particle’s 

linear momentum changes with the elapse of time. 

Using the relativistic formula for the probability density, we have 
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In that equation the operators extract the argument of the wave function and differentiate it, so we 

have 
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The vector variables r
r

 and p
r

 do not represent fields, but rather represent points in phase space 

that the particle occupies as time elapses, so we take the spatial derivatives of those variables as equal 

to zero. Further, if we do not want to have the complications with radiation fields, then with respect 

to the source of the potential fields we must take 0=dtdj  and 0=dtAd
r

.  

Carrying out the differentiations thus gives us: 
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Substituting that result and its complex conjugate into Equation 18 then gives us: 

 ( ) U
t

A
Aqp

dt

d
Ñ-+Ñ-

¶
¶

-´Ñ´=
rr

r
rrrr

ju ,      (7.5) 

which describes the Lorentz electromagnetic force  plus the force due to any other static potentials of 

the particle interaction. Thus we gain strong evidence that the relativistic quantum theory, like its 

non-relativistic version, has the classical limit. 

7.2. Derivation of  generally covariant classical equation of motion on the base of 
Ehrenfest  theorem 

An interesting application of the theory (see chapter 4) is to establish an analogue of Ehrenfest's 

theorem for the Dirac equation, generalized to the Riemann geometry (Sokolov and Ivanenko, 1952; 

pp. 650-651). In addition to the results obtained above, by squaring of the Dirac equation, for the 
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center of gravity of the wave packet (provided 0®h ), we obtain the equation of relativistic 

mechanics of point: 

 ( ) ra
r

a
s
ara gg F

c

e
pp

dx

d
+G=4

4
,     (7.6) 

where 4g  is the fourth Dirac matrix, rg  corresponds to the particle velocity in fraction of the speed 

of light c , s
arG  is the Christoffel brackets { } ÷

÷
ø

ö
ç
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è

æ

¶

¶
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¶

¶
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¶

¶
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ns

n

mss
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x

g

x

g

x

g

2

1
, , raF is the 

electromagnetic field tensor. The first term on the right of equation is the force of gravity, and the 

second term is the Lorentz force. 

7.3. Derivation of classical Hamilton-Jacobi equation of motion on the base of  
quantum wave equation 

The Hamilton-Jacobi equation (HJE) in the classic mechanics is usually obtained by postulating 

the action in the form of:  

  extfree SSSS ++= int ,      (7.7) 

where freeS  is the action of a free particle in the absence of other particles; intS is the action of the 

interaction between the free particle and other particles; extS  is the action of other particles in the 

absence of the  first particle. 

In quantum physics HJE can be obtained, if we postulate that the action is equal to phase of the de 

Broglie wave (as Schrödinger did for the derivation of the Schrödinger equation (Schroedinger, 

1932). 

The particle wave function, in general, has the form: 

 qyy iexp0= ,    (7.8) 

where q  is the phase of the wave function. In the case of a free particle the wave function has the 

form:  

 ( )00 exp jeyy +-= rpt
i rr

h
,      (7.9) 

Substituting this function in the equation (4.1), we obtain the law of conservation of energy and 

momentum for a free particle (5.3): 

 42222 cmpc =-
r

e ,     (4.3) 

In the case of a particle in an external field with the energy and momentum exex p
r

,e  the wave 

function has the form: 

 ( ) ( )[ ]00 exp jeeyy ++--= trpp
i

exex

rrr

h
,      (7.10) 

Substituting these functions in the equation (6.3), we obtain the conservation law for a particle in 

an external field (6.4): 

 ( ) ( ) 42222
cmppc exex =---

rr
ee ,     (6.4) 

According to Schrödinger in case of a free particle we take: 
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 0 jeq +-== rptS
rr

h  ,     (7.11) 

and in case of a particle in external field: 

 ( ) ( )[ ]0jee ++--= trppS exex

rrr
 ,     (7.12) 

Hence we have in the first case for the energy and momentum e=
¶
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, p

r

S r
r =
¶
¶
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second case  ex
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S rr
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¶
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.  

Substituting partial derivatives of first type in the conservation law of energy-momentum without 

an external field, we obtain the relativistic HJE without an external field: 
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Substituting second partial derivatives of second type in the conservation law of energy-

momentum with an external field, we obtain the relativistic HJE with the external field:  
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In the case of the electromagnetic field we have:  
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The action for the interaction can be obtained as an instantaneous change of action: 
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i.e., ( ) dtLdtpdS intint =-= ue
rr

;  in the case when the external field is organized by electrical 

charged particles, we have:  dtA
c

q
qdS ÷

ø

ö
ç
è

æ -=
r

jint .  

Here  

 ( ) ujue
rrrr

A
c

q
qpL -=-=int ,    (7.17) 

is the interaction Lagrangian (the so-called, minimal connection). As is known, by variation of this 

action gives the expression for the Lorentz force. 

8.0. The interaction law of gravitation field in framework of LIGT 

In the case of electrodynamics it is necessary to use not the classical potential energy, but the 

generalized (and depending on the speed) potential energy (energy of interaction) 

 dxdydzAj
c

A
c

q
qU ò ÷

ø

ö
ç
è

æ ×-=×-=
rrrr 1

rjuj ,    (8.1) 

This interaction energy corresponds to the above interaction Lagrangian (7.17). 
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From this Lagrangian follows the equation for the Lorentz force. In terms of EM vectors it has the 

form: 

 H
c

q
EqF

rrrr
´-= u ,   (8.2) 

Lorentz force in terms of potentials:  

( ) ( ) ( )[ ]AA
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q
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q
qA

c

q
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q
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rrrrrr
r

rrrr
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¶
¶

-Ñ=´Ñ´+
¶
¶

-Ñ= uujuj ,  (8.3) 

 

9.0. Conclusion 

Thus, we have shown that the Lorentz force occurs at the transition from quantum mechanics of 

massive particle to classical mechanics of this particle, as a reflection of the unique relation of the 

inertial mass with internal and external fields of the particle. According to our axioms, we must 

conclude that the Lorentz force law or its modifications should be responsible for the description of 

the gravitational force or energy. 

In addition, the connection of inertial mass with gravitational charge becomes clear, as well as the 

relationship between the electric charge and gravity charge (mass), which allow us to proceed from 

Coulomb equation to the Newton equation of gravitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


