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Abstract

In this article, I explore a more explicit realization of twistorialization as lifting of the preferred
extremal X4 of Kähler action to corresponding 6-D twistor space X6 identified as surface in the 12-D
product of twistor spaces of M4 and CP2. Contrary to original expectations, the twistorial approach
is not mere reformulation but leads to identification of cosmological constant and perhaps also of
gravitational constant based on a first principle and to a modification of the dynamics of Kähler
action but preserving the known extremals and basic properties of Kähler action and allowing to
interpret induced Kähler form in terms of preferred imaginary unit defining twistor structure. Another
new aspect is the fusion of twistorial approach with the vision that diagrams are representations for
computations. Also, quantum criticality demands that the diagrams should allow huge symmetries
transforming them to braided generalizations of tree-diagrams. Several guiding principles are involved
and what is new is the observation that they indeed seem to form a coherent whole.

1 Introduction

The generalization of twistor diagrams to TGD framework has been very inspiring and allowed to gain
deep insights about what TGD diagrams could be mathematically. Of course, I cannot provide explicit
formulas but the general structure for the construction of twistorial amplitudes in N = 4 SUSY suggests
an analogous construction in TGD thanks to huge symmetries of TGD and unique twistorial properties
of M4 × CP2. The twistor program in TGD framework has been summarized in [6].

Contrary to the original expectations, the twistorial approach is not a mere reformulation but leads
to a first principle identification of cosmological constant and perhaps also of gravitational constant and
to a modification of the dynamics of Kähler action however preserving the known extremals and basic
properties of Kähler action and allowing to interpret induced Kähler form in terms of preferred imaginary
unit defining twistor structure.

There are some new results forcing a profound modification of the recent view about TGD but con-
sistent with the general picture. A more explicit realization of twistorialization as lifting of the preferred
extremal X4 of Kähler action to corresponding 6-D twistor space X6 identified as surface in the 12-
D product of twistor spaces of M4 and CP2 allowing Kähler structure suggests itself. The fiber F of
Minkowskian twistor space must be identified with sphere S2 with signature (−1,−1) and would be a
variant of the complex space with complex coordinates associated with S2 and transversal space E2 in
the decomposition M4 = M2 × E2 and one hyper-complex coordinate associated with M2.

The action principle in 6-D context is also Kähler action, which dimensionally reduces to Kähler
action plus cosmological term. This brings in the radii of spheres S2(M4) and S2(CP2) associated with
the twistors space of M4 and CP2. For S(CP2) the radius is of order CP2 radius R. R(S2(M4)) could
be of the order of Planck length lP , which would thus become purely classical parameter contrary the
expectations. An alternative option is R(S2(M4)) = R The radius of S2 associated with space-time
surface is determined by the induced metric and is emergent length scale. The normalization of 6-D
Kähler action by a scale factor 1/L2 with dimension, which is inverse length squared brings in a further
length scale closely related to cosmological constant which is also dynamical and has correct sign to explain
accelerated expansion of the Universe. The order of magnitude for L must be radius of the S2(X4) and
therefore small. This could mean a gigantic cosmological constant. Just as in GRT based cosmology!
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This issue can be solved by using the observation that thanks to the decomposition H = M4 × CP2

6-D Kähler action is a sum of two independent terms. The first term corresponds to the 6-D lift of the
ordinary Kähler action and for it the contribution from S2(CP2) fiber is assumed to be absent: this could
be due to the imbedding of S2(X4) reducing to identification S2(M4) and is not true generally. Second
term in action is assumed to come from the S2(M4) fiber of twistor space T (M4). The independency
implies that couplings strengths are independent for them.

The analog for Kähler coupling strength (analogous to critical temperature) associated with S2(M4)
must be extremely large - so large that one has αK(M4) × R(M4)2 ∼ L2, L size scale of the recent
Universe. This makes possible the small value of cosmological constant assignable to the volume term
given by this part of the dimensionally reduced action. Both Kähler coupling strengths are assumed
to have a spectrum determined by quantum criticality and the spectrum of αK(M4) comes essentially
as p-adic primes satisfying p-adic length scale hypothesis p ' 2k, k prime. In fact, it turns that one
can assumed that the entire 6-D Kähler action contributes if one assumes that the winding numbers
(w1, w2) for the map S2(X4)→ S2(M4)× S2(CP2) satisfy (w1, w2) = (n, 0) in cosmological scales. The
identification of w1 as heff/h = n is highly suggestive.

The dimensionally reduced dynamics is a highly non-trivial modification of the dynamics of Kähler
action however preserving the known extremals and basic properties of Kähler action and allowing to
interpret induced Kähler form in terms of preferred imaginary unit defining twistor structure. Strong
constraints come also from the condition that induced spinor structure coming from that for twistor space
T (H) is essentially that coming from that of H.

Second new element is the fusion of the twistorial approach with the vision that diagrams are repre-
sentations for computations. This as also quantum criticality demands that the diagrams should allow
huge symmetries allowing to transform them to braided generalizations of tree-diagrams. Several guiding
principles are involved and what is new is the observation that they indeed seem to form a coherent whole.

In the sequel I will discuss the recent understanding of twistorizalization, which is considerably im-
proved from that in the earlier formulation. I formulate the dimensional reduction of 6-D Kähler action
and consider the physical interpretation. There are considerable uncertainties at the level of details I dare
believe that basically the situation is understood. After that I proceed to discuss the basic principles
behind the recent view about scattering amplitudes as generalized Feynman diagrams.

2 Twistorial lift of Kähler action

First I will try to clarify the mathematical details related to the twistor spaces and how they emerge in
the recent context. I do not regard myself as a mathematician in technical sense and I can only hope that
the representation based on physical intuition does not contain serious mistakes.

2.1 Imbedding space is twistorially unique

It took roughly 36 years to learn that M4 and CP2 are twistorially unique. Space-times are surfaces in
H = M4×CP2. M4 and CP2 are unique 4-manifolds in the sense that both allow twistor space with Kähler
structure: Kähler structure is the crucial concept. Strictly speaking, it is E4 and S4 allow twistor space
with Kähler structure: in the case of M4 signature could cause problems. The standard identification
for the twistor space of M4 would be Minkowskian variant PT = P3 = SU(2, 2)/SU(2, 1)× U(1) of 6-D
twistor space PT = CP3 = SU(4)/SU(3) × U(1) of E4. The twistor space of CP2 is 6-D T (CP2) =
SU(3)/U(1)× U(1), the space for the choices of quantization axes of color hypercharge and isospin.

The case of M4 is however problematic. It is often stated that the twistor space is PT = CP3 =
SU(4)/SU(3)× U(1). The metric of twistor space does not appear in the construction of twistor ampli-
tudes. Already the basic structure of PT suggests that this identification cannot be correct.

As if the situation were not complicated enough, there are two notions of twistor space: the twistor
space identified as P3 and as a trivial sphere bundle M4 × CP1 having Kähler structure - what Kähler
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structure actually means in case of M4 is hower not quite clear.
These considerations lead to a proposal - just a proposal - for the formulation of TGD in which space-

time surfaces X4 in H are lifted to twistor spaces X6, which are sphere bundles over X4 and such that
they are surfaces in 12-D product space T (M4) × T (CP2) such the twistor structure of X4 are in some
sense induced from that of T (M4)×T (CP2). In the following T (M4) therefore denotes the trivial sphere
bundle M4 × CP1 over M4 and twistorialization of scattering amplitudes would involve the projection
from T (M4) to P3. What is nice in this formulation is that one couldn use all the machinery of algebraic
geometry so powerful in superstring theory (Calabi-Yau manifolds).

2.2 Some basic definitions

What twistor structure in Minkowskian signature does really mean geometrically has remained a confusing
question for me. The problems associated with the Minkowskian signature of the metric are encountered
also in twistor Grassmann approach to the scattering amplitudes but are circumvented by performing Wick
rotation that is using E4 or S4 instead of M4 and applying algebraic continuation. Also complexification
of Minkowksi space for momenta is used. These tricks do not apply now.

To make this more concrete, let us sum up the basic definitions.

1. Bi-spinors in representations (1/2,0) and (0,1/2) of Lorentz group are the building bricks of twistors.
Bi-spinors va and their conjugates va

′
have the following inner products:

〈vw〉 = εabv
awb , [vw] = εa′b′v

a′wb
′
,

εab = (0, 1;−1, 0) , εa′b′ = (0, 1;−1, 0) .
(2.1)

Unprimed spinor and its primed variant of the spinor are related by complex conjugation. Index
raising is by the inverse εab of εab.

2. Twistors are identified as pairs of 2-spinor and its conjugate

Zα = (λa, µ
a′) , Zα = (µa, λa′) (2.2)

The norm for Zα is defined as

ZαZ
α

= 〈λµ〉+
[
λµ
]
. (2.3)

One can write the metric explicitly as direct sum of terms of form dudv (metric of M2) and each of
the can be taken to diagonal form (1,-1). Hence the metric can be written as diag(1, 1, 1, 1,−1,−1,−1,−1).

3. This norm allows to decompose PT to 3 parts PT+,PT− and PN in a projectively invariant manner
depending on whether the sign of the norm is negative, positive, or whether it vanishes. PT+ and
PT− serve as loci for the twistorial lifts of positive and negative energy modes of massless fields.
PN corresponds to the 5-D boundary of the lightcone of M(2, 4). By projective identification along
light-like radial coordinate it reduces to what is known as conformal compactification of M4, whose
metric is defined only apart from a conformal factor. The natural metric of PT = P3 does not
seem to play any role in the construction of the amplitudes relying on projective invariants. The
signature of M4 metric however makes itself visible in the structure of PT : for the Euclidian variant
of twistor space one would not have this decomposition to three parts.

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.



Prespacetime Journal | March 2016 | Volume 7 | Issue 4 | pp. 662-686 665

Pitkänen, M., From Principles to Diagrams in TGD Framework

Another definition of twistor space - to be used in the geometrization of twistor approach to be
proposed - is as a trivial S2 bundle M4 × CP1 over M4. Since the twistor spheres associated with the
points of M4 with light-like separation intersect, these two definitions cannot be equivalent. In fact,
the proper definition of twistor space relies on double fibration involving both views about twistor space
discussed in [2] (see http://arxiv.org/pdf/1308.2820.pdf).

1. The twistor bundle denoted as PS is the product M4 ×CP1 with CP1 realized as projective space
and having coordinates (xaa

′
, λa), {xaa′} ↔ xµσµ, where the spinor λa is projective 2-spinor in

(1/2, 0) representation.

2. The twistors defined in this manner have a trivial projection q to M4 and non-trivial projection
p to P3 with local projective coordinates (λa, µ

a′). The projection p is defined by the projectively
invariant incidence relation

µa
′

= ixaa
′
λa

If yaa
′

and aaa
′

differ by light-like vector there exists spinor λ annihilated by the the difference
vector and there exists twistor (λa, µ

a′) to which both (x, λ) and (y, λ) are mapped by the incidence
relation. Thus the images of twistor spheres associated for points with light-like separation intersect
so that one does not have a proper CP1 bundle structure.

3. The trivial twistor bundle T (M4) = M4 × CP1 would define the twistor space of M4 in geometric
sense. For this space the metric matters and the radius of CP1 turns out to allow identification in
terms of Planck length. Gravitational interaction would bring in Planck length as a basic scale in
this manner. PT in turn would define the twistor space in which the twistorial lifts of imbedding
space-spinor fields are defined. For this space the metric, which is degenerate and seems to be only
projectively defined should not be relevant as the construction of twistorial amplitudes suggests.
Note however that the identification as the Minkowskian variant of P3 allows also the introduction
of metric.

This picture has an important immediate implication for the construction of quantum TGD. Positive
and negative energy parts of zero energy states are defined at light-like boundaries of CD × CP2, where
CD is the intersection of future and past directed light-cones. The twistorial lifts of the amplitudes
from δCD × CP2 must be single valued. The strongest condition guaranteing this is that they do not
depend on the radial light-like coordinate at δCD. Super-symplectic symmetry implying the analog of
conformal gauge symmetry for the radial light-like coordinate could guarantee this. There is however a
hierarchy of conformal gauge symmetry breakings corresponding to the inclusion hierarchy of isomorphic
sub-algebras so that this condition is too strong. A weaker condition is that the amplitude F (m,λ) in
T (M4) is constant along the light-like ray for the λ associated with the m along this ray. An even stronger
condition is that F (m,λ) vanishes along the ray. Particle would not propagate along δCD and would
avoid remaining at the boundary of CD, a condition which is perfectly sensible physically.

2.3 What does twistor structure in Minkowskian signature really mean?

The following considerations relate to T (M4) identified as trivial bundle M4 × CP1 with natural coor-
dinates (maa′ , λa), where λa is projective spinor. The challenge is to generalize the complex structure
of twistor space of E4 to that for M4. It turns out that the assumption that twistor space has ordinary
complex structure fails. The first guess was that the fiber of twistor space is hyperbolic sphere with metric
signature (1,−1) having infinite area so that the 6-D Kähler action would be infinite. This makes no sense.
The only alternative, which comes in mind is a hypercomplex generalization of the Kähler structure for
M4 lifted to twistor space, which locally means only adding of S2 fiber with metric signature (−1,−1).
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1. To proceed one must make an explicit the definition of twistor space. The 2-D fiber S2 consists
of antisymmetric tensors of X4 which can be taken to be self-dual or anti-self-dual by taking any
antisymmetric form and by adding to its plus/minus its dual. Each tensor of this kind defines
a direction - point of S2. These points can be also regarded as quaternionic imaginary units.
One has a natural metric in S2 defined by the X4 inner product for antisymmetric tensors: this
inner product depends on space-time metric. Kähler action density is example of a norm defined
by this inner product in the special case that the antisymmetric tensor is induced Kähler form.
Induced Kähler form defines a preferred imaginary unit and is needed to define the imaginary part
ω(X,Y ) = ig(X,−JY ) of hermitian form h = h+ iω.

2. To define the analog of Kähler structure for M4, one must start from a decomposition of M4 =
M2 × E2 (M2 is generated by light-like vector and its dual) and E2 is orthogonal to it. M2

allows hypercomplex structure, which light-like coordinates (u = t− z, v = t + z) and E2 complex
structure and the metric has form ds2 = dudv + dzdz. Hypercomplex numbers can be represented
as h = t + iez, i2 = −1, e2 = −1 i2 = −1, e2 = −1. Hyper-complex numbers do not define
number field since for light-like hypercomplex numbers t + iez, t = ±z do not have finite inverse.
Hypercomplex numbers allow a generalization of analytic functions used routinely in physics. Kähler
form representing hypercomplex imaginary unit would be replaced with eJ . One would consider sub-
spaces of complexified quaternions spanned by real unit and units eIk, k = 1, 2, 3 as representation
of the tangent space of space-time surfaces in Minkowskian regions. This is familiar already from
M8 duality [8].

M4 = M2×E2 decomposition can depend on point of M4 (polarization plane and light-like momen-
tum direction depend on point of M4. The condition that this structure allows global coordinates
analogous to (u, v, z, z) requires that the distributions for M2 and E2 are integrable and thus define
2-D surfaces. I have christened this structure Hamilton-Jacobi structure. It emerges naturally in
the construction of extremals of Kähler action that I have christened massless extremals (MEs,[3])
and also in the proposal for the generalization of complex structure to Minkowskian signature [9].

One can define the analog of Kähler form by taking sum of induced Kähler form J and its dual ∗J
defined in terms of permutation tensor. The normalization condition is that this form integrates to
the negative of metric (J ± ∗J)2 = −g. This condition is possible to satisfy.

3. How to lift the Hamilton Jacobi structure of M4 to Kähler structure of its twistor space? The basic
definition of twistors assumes that their exists a field of time-like directions, and that one considers
projections of 4-D antisymmetric tensors to the 3-space orthogonal to the time-like direction at
given point. One can say that the projection yields magnetic part of the antisymmetric tensor (say
induced Kähler form J) with positive norm with respect to natural metric induced to the twistor
fiber from the inner product between two-forms. This unique time direction would be defined the
light-like vector defining M2 and its dual. Therefore the signature of the metric of S2 would be
(−1,−1). In quaternionic picture this direction corresponds to real quaternionic unit.

4. To sum up, the metric of the Minkowskian twistor space has signature (−1,−1, 1,−1,−1,−1).
The Minkowskian variant of the twistor space would give 2 complex coordinates and one hyper-
complex coordinate. Cosmological term would be finite and the sign of the cosmological term in
the dimensionally reduced action would be positive as required. Also metric determinant would be
imaginary as required. At this moment I cannot invent any killer objection against this option.

It must be made clear that the proposed definition of twistor space of M4 does not seem to be
equivalent with the twistor space assignable to conformally compactified M4. One has trivial S2 bundle
and Hamilton-Jacobi structure, which is hybrid of complex and hyper-complex structure.
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2.4 What does the induction of the twistor structure to space-time surface
really mean?

Consider now what the induction of the twistor structure to space-time surface X4 could mean.

1. The induction procedure for Kähler structure of 12-D twistor space T requires that the induced
metric and Kähler form of the base space X4 of X6 obtained from T is the same as that obtained
by inducing from H = M4 × CP2. Since the Kähler structure and metric of T is lift from H this
seems obvious. Projection would compensate the lift.

2. This is not yet enough. The Kähler structure and metric of S2 projected from T must be same as
those lifted from X4. The connection between metric and ω implies that this condition for Kähler
form is enough. The antisymmetric Kähler forms in fiber obtained in these two manners co-incide.
Since Kähler form has only one component in 2-D case, one obtains single constraint condition
giving a commutative diagram stating that the direct projection to S2 equals with the projection to
the base followed by a lift to fiber. The resulting induced Kähler form is not covariantly constant
but in fiber S2 one has J2 = −g.

As a matter of fact, this condition might be trivially satisfied as a consequence of the bundle
structure of twistor space. The Kähler form from S2 × S2 can be projected to S2 associated with
X4 and by bundle projection to a two-form in X4. The intuitive guess - which might be of course
wrong - is that this 2-form must be same as that obtained by projecting the Kähler form of CP2 to
X4. If so then the bundle structure would be essential but what does it really mean?

3. Intuitively it seems clear that X6 must decompose locally to a product X4×S2 in some sense. This
is true if the metric and Kähler form reduce to direct sums of contributions from the tangent spaces
of X4 and S2. This guarantees that 6-D Kähler action decomposes to a sum of 4-D Kähler action
and Kähler action for S2.

This could be however too strong a condition. Dimensional reduction occurs in Kaluza-Klein theories
and in this case the metric can have also components between tangent spaces of the fiber and base
being interpreted as gauge potentials. This suggests that one should formulate the condition in
terms of the matrix T ↔ gαµgβν − gανgβµ defining the norm of the induced Kähler form giving rise
to Kähler action. T maps Kähler form J ↔ Jαβ to a contravariant tensor Jc ↔ Jαβ and should
have the property that Jc(X

4) (Jc(S
2)) does not depend on J(S2) (J(X4)).

One should take into account also the self-duality of the form defining the imaginary unit. In X4

the form S = J ± ∗J is self-dual/anti-self dual and would define twistorial imaginary unit since
its square equals to −g representing the negative of the real unit. This would suggest that 4-D
Kähler action is effectively replaced with (J ±∗J)∧ (J ±∗J) = J∗J ±J ∧J , where ∗J is the Hodge
dual defined in terms of 4-D permutation tensor ε. The second term is topological term (Abelian
instanton term) and does not contribute to field equations. This in turn would mean that it is the
tensor T ± ε for which one can demand that Sc(X

4) (Sc(S
2)) does not depend on S(S2) (S(X4)).

4. The preferred quaternionic imaginary unit should be represented as a projection of Kähler form
of 12-D twistor space T (H). The preferred imaginary unit defining twistor structure as sum of
projections of both T (CP2) and T (M4) Kähler forms would guarantee that vacuum extremals like
canonically imbedded M4 for which T (CP2) Kähler form contributes nothing have well-defined
twistor structure. T (M4) or T (CP2) are treated completely symmetrically but the maps of S2(X4)
to S2(M4) and S2(CP2) characterized by winding numbers induce symmetry breaking.

For Kähler action M4 − CP2 symmetry does not make sense. 4-D Kähler action to which 6-D
Kähler action dimensionally reduces can depend on CP2 Kähler form only. I have also considered
the possibility of covariantly constant self-dual M4 term in Kähler action but given it up because
of problems with Lorentz invariance. One should couple the gauge potential of M4 Kähler form to
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induced spinors. This would mean the existence of vacuum gauge fields coupling to sigma matrices
of M4 so that the gauge grop would be non-compact SO(3, 1) leading to a breakdown of unitarity.

There is still one difficulty to be solved.

1. The normalization of 6-D Kähler action by a scale factor 1/L2 with dimension, which is inverse
length squared, brings in a further length scale. The first guess is that 1/L2 is closely related
to cosmological constant, which is also dynamical and 1/L2 has indeed correct sign to explain
accelerated expansion of the Universe. Unfortunately, if 1/L2 is of order cosmological constant, the
value of the ordinary Kähler coupling strength αK would be enormous. As a matter of fact, the
order of magnitude for L2 must be equal to the area of S2(X4) and in good approximation equal to
L2 = 4πR2(S2(M4)) and therefore in the same range as Planck length lP and CP2 radius R. This
would imply a gigantic value of cosmological constant. Just as in GRT based cosmology!

2. This issue can be solved by using the observation that thanks to the decomposition H = M4×CP2,
6-D Kähler action is sum of two independent terms. The first term corresponds to the 6-D lift of
the ordinary Kähler action. For it the contribution from S2(CP2) fiber is absent if the imbedding of
S2(X4) to S2(M4)× S2(CP2) reduces to identification with S2(M4) so that S2(CP2) is effectively
absent: this is nottrue generally. Second term in the action is assumed to come from the S2(M4)
fiber of twistor space T (M4), which can indeed contribute without breaking of Lorentz symmetry.
In fact, one can assume that also the Kähler form of M4 contributes as will be found.

3. The independency implies that Kähler couplings strengths are independent for them. If one wants
that cosmological constant has a reasonable order of magnitude, L ∼ R(S2(M4)) must hold true and
the analog αK(S2(M4)) of the ordinary Kähler coupling strength (analogous to critical temperature)
must be extremely large - so large that one has

αK(M4)× 4πR(M4)2 ∼ L2 ,

where L is the size scale of the recent Universe.

This makes possible the small value of cosmological constant assignable to the volume term given
by this part of dimensionally reduced action. Both Kähler coupling strengths are assumed to have
a spectrum determined by quantum criticality and the spectrum of αK(M4) would be essentially
as p-adic primes satisfying p-adic length scale hypothesis p ' 2k, k prime. One can criticize this
identification of 6-D Kähler action as artificial but it seems to be the only option that works.
Interestingly also the contribution from M4 Kähler form can be allowed since it is also extremely
small. For canonically imbedded M4 this contribution vanishes by self-duality of M4 Kähler form
and is extremely small for the vacuum extremals of Kähler action.

4. For general winding numbers of the map S2(X4)→ S2(M4)× S2(CP2) also S2(CP2) Kähler form
contributes and cosmological constant is gigantic. It would seem that only the winding numbers
(w1, w2) = (n, 0) are consistent with the observed value of cosmological constant. Hence it seems
that there is no need to pose any additional conditions to the Kähler action if one uses the fact that
T (M4) and T (CP2) parts are independent!

It is good to list the possible open issues related to the precise definition of the twistor structure and
of M4 Kähler action.

1. The proposed definition of M4 twistor space a Cartesian product of M4 and S2(M4) parts involv-
ing Hamilton-Jacobi structure does not seem to be equivalent with the twistor identification as
SU(2, 2)/SU(2, 1)×U(1) having conformally compactified M4 as base space. There exists an entire
moduli space of Hamilton-Jacobi structures. If the M4 part of Kähler form participates in dynam-
ics, one must include the specification of the Hamilton-Jacobi structure to the definition of CD and
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integrate over Hamilton Jacobi-structures as part of integral over WCW in order to gain Lorentz
invariance. Note that Hamilton-Jacobi structure enters to dynamics also through the construction
of massless extremals [3].

2. The presence of M4 part of Kähler form in action implies breaking of Lorentz invariance for ex-
tremals of lifted Kähler action. The same happens at the level of induced spinors if this Kähler form
couples to imbedding space spinors. If T (M4) is trivial bundle, one can include only the T (S2(M4))
part of Kähler form to Kähler action and couple only this to the spinors of T (H). The integration
over Hamilton-Jacobi structures becomes un-necessary.

3. If one includes M4 part of Kähler form to 6-D Kähler action, one has several options. One can have
sum of the Kähler actions for T (M4) and T (CP2) or Kähler action defined by the sum J(T (M4)/gK
and J(T (CP2)/αK with αK(M4) = g2K(M4)/4π~ and αK = g2K/4π~ with a proper normalization
to guarantee that the squares of induced Kähler forms give sum of Kähler actions as in the first
option. In this case one obtains interference term proportional to Tr(J(M4)J(CP2). For the
proposed value of αK also the interference term is extremely small as compared to Kähler action in
recent cosmology.

2.5 Could M4 Kähler form introduce new gravitational physics?

The introduction of M4 Kähler form could bring in new gravitational physics.

1. As found, the twistorial formulation of TGD assigns to M4 a self dual Kähler form whose square
gives Minkowski metric. It can (but need not if M4 twistor space is trivial as bundle) contribute to
the 6-D twistor counterpart of Kähler action inducing M4 term to 4-D Kähler action vanishing for
canonically imbedded M4.

2. Self-dual Kähler form in empty Minkowski space satisfies automatically Maxwell equations and has
by Minkowskian signature and self-duality a vanishing action density. Energy momentum tensor
is proportional to the metric so that Einstein Maxwell equations are satisfied for a non-vanishing
cosmological constant! M4 indeed allows a large number of self dual Kähler fields (I have christened
them as Hamilton-Jacobi structures). These are probably the simplest solutions of Einstein-Maxwell
equations that one can imagine!

3. There however exist quite a many Hamilton-Jacobi structures. However, if this structure is to be
assigned with a causal diamond (CD) it must satisfy additional conditions, say SO(3) symmetry
and invariance under time translations assignable to CD. Alternatively, covariant constancy and
SO(2) ⊂ SO(3) symmetry might be required.

This raises several questions. Could M4 Kähler form replace CP2 Kähler form in the picture for how
gravitational interaction is mediated at quantal level? Could one speak of flux tubes of the magnetic
part of this Kähler form? Or should one consider the Kähler field as a sum of the two Kähler forms
weighted by the inverses 1/gK of corresponding Kähler couplings. If so then M4 contribution would be
negligible except for canonically imbedded M4 in the recent cosmology. Note that αK and αK(M4) have
interpretation as analogs of quantum critical temperatures but can depend on the p-adic lengths scale
defining the cosmology.

1. The natural expectation is that Kähler form characterizes CD having preferred time direction sug-
gested strongly by number theoretical considerations involving quaternionic structure with preferred
direction of time axis assignable to real unit quaternion.

Self-duality gives rise to Kähler magnetic and electric fields in the same spatial direction identifiable
as a local quantization axis for spin assignable to CD assignable to observer. CD indeed serves as
a correlate for conscious entity in TGD inspired theory of consciousness. Flux tube would connect
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mass M to mass m assignable to observer and flux tube direction would define spin quantization
axes for the CD of the observer. Spin quantization axis would be naturally in the direction of
magnetic field, which is direction of the flux tube.

2. The self-dual Kähler form could be spherically symmetric for CDs and represent self dual magnetic
monopole field (dyon) with monopole charge at the line connecting the tips of CD and have non-
vanishing components J tr = εtrθφJθφ, Jθφ = sin(θ). One would have genuine monopole, which
is somewhat questionable feature. Only the entire radial flux would be quantized. CD could be
associated with the mass M of the central object. The gauge potential associated with J could be
chosen to be Aµ ↔ (1/r, 0, 0, cos(θ). I have considered this kind of possibility earlier in context of
TGD inspired model of anyons but gave up the idea.

The moduli space for CDs with second tip fixed would be hyperbolic space H3 = SO(3, 1)/SO(3)
or a space obtained by identifying points at the orbits of some discrete subgroup of SO(3, 1) as
suggested by number theoretic considerations. This induced Kähler field could make the blackholes
with center at this line to behave like M4 magnetic monopoles if the M4 part of Kähler form is
induced into the 6-D lift of Kähler action with extremely small coefficients of order of magnitude
of cosmological constant. Cosmological constant and the possibility of CD monopoles would thus
relate to each other.

3. The self-dual M4 Kähler form could be also covariantly constant (Jtz = Jxy = 1) and represent
electric and magnetic fluxes in a fixed direction identifiable as a quantization axes for spin and
characterizing CD. In this case the CD would be associated with the mass m of observer. The
moduli space of CDs would be now SO(3, 1)/SO(1, 1) × SO(2) which is completely analogous to
the twistor space SU(3)/U(1)× U(1).

4. Boundary conditions (allowing no boundaries!) demand that the flux tubes have closed cross section
- say sphere S2 - rather than disk: stability is guaranteed if the S2 cross section is mapped to
homologically non-trivial surface of CP2 or is projection of it. This would give monopole flux also
for CP2 Kähler form so that the original hypothesis would be correct.

5. Radial flux tubes are possible both spherically symmetric and covariantly constant Kähler form
possibly mediating gravitational interaction but the flux is not quantized unless preferred extremal
property implies this: in any case M4 flux would be very small unless one has large value of
gravitational Planck constant implying n-sheeted covering of M4 and flux is scale up by n since
every sheet gives a contribution. For spherically symmetric M4 Kähler form the flux tubes would
have naturally conical structure spanning a constant solid angle. For covariantly constant Kähler
form the flux tubes would be cylindrical.

There are further interpretational problems.

1. The classical coupling of M4 Kähler gauge potential to induced spinors is not small. Can one really
tolerate this kind of coupling equivalent to a coupling to a self dual monopole field carrying electric
and magnetic charges? One could of course consider the condition that the string world sheets
carrying spinor modes are such that the induced M4 Kähler form vanishes and gauge potential
become pure gauge. M4 projection would be 2-D Lagrange manifold whereas CP2 projection would
carry vanishing induce W and possibly also Z0 field in order that em charge is well defined for the
modes. These conditions would fix the string world sheets to a very high degree in terms of maps
between this kind of 2-D sub-manifolds of M4 and CP2. Spinor dynamics would be determined by
the avoidance of interaction!

Recall that one could interpret the localization of spinor modes to 2-surfaces in the sense of strong
form of holography: one can continued induced spinor fields to the space-time interior as indeed
assumed but the continuation is completely determined by the data at 2-D string world sheets.
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It must be emphasized that the imbedding space spinor modes characterizing the ground states
of super-symplectic representations would not couple to the monopole field so that at this level
Poincare invariance is not broken. The coupling would be only at the space-time level and force
spinor modes to Lagrangian sub-manifolds.

2. At the static limit of GRT and for gij ' δij implying SO(3) symmetry there is very close analogy
with Maxwell’s equations and one can speak of gravi-electricity and gravi-magnetism with 4-D vector
potential given by the components of gtα. The genuine U(1) gauge potential does not however relate
to the gravimagnetism in GRT sense. Situation would be analogous to that for CP2, where one
must add to the spinor connection U(1) term to obtain respectable spinor structure. Now the U(1)
term would be added to trivial spinor connection of flat M4: its presence would be justified by
twistor space Kähler structure. If the induced M4 Kähler form is present as a classical physical
field it means genuinely new contribution to U(1) electroweak of standard model. If string world
sheets carry vanishing M4 Kähler form, this contribution vanishes classically.

2.6 A connection with the hierarchy of Planck constants?

A connection with the hierarchy of Planck constants is highly suggestive. Since also a connection with
the p-adic length scale hierarchy suggests itself for the hierarchy of p-adic length scales it seems that both
length scale hierarchies might find first principle explanation in terms of twistorial lift of Kähler action.

1. Cosmological considerations encourage to think that R1 ' lP and R2 ' R hold true. One would
have in early cosmology (w1, w2) = (1, 0) and later (w1, w2) = (0, 1) guaranteeing RD grows from
lP to R during cosmological evolution. These situations would correspond the solutions (w1 = n, 0)
and (0, w2 = n) one has A = n4πR2

1 and A = n × 4πR2
2 and both Kähler coupling strengths are

scaled down to αK/n. For ~eff/h = n exactly the same thing happens!

There are further intriguing similarities. heff/h = n is assumed to correspond multi-sheeted (to be
distinguished from many-sheeted!) covering space structure for space-time surface. Now one has
covering space defined by the lift S2(X4) → S2(M4) × S2(CP2). These lifts define also lifts of
space-time surfaces.

Could the hierarchy of Planck constants correspond to the twistorial surfaces for which S2(M4)
is n-fold covering of S2(X4)? The assumption has been that the n-fold multi-sheeted coverings of
space-time surface for heff/h = n are singular at the ends of space-time surfaces at upper and lower
boundaries if causal diamond (CD). Could one consider a more precise definition of twistor space in
such a manner that CD replaces M4 and the covering becomes singular at the light-like boundaries
of CD - the branches of space-time surface would collapse to single one.

Does this collapse have a clear geometric meaning? Are the projections of various branches of the S2

lift automatically identical so that one would have the original picture in which one has n identical
copies of the same space-time surface? Or can one require identical projections only at the light-like
boundaries of CD?

2. w1 = w2 = w is essentially the first proposal for conditions associated with the lifting of twistor
space structure. w1 = w2 = n gives ds2 = (R2

1 + R2
2)(dθ2 + w2dφ2) and A = n × 4π(R2

1 + R2
2).

Also now Kähler coupling strength is scaled down to α/n. Again a connection with the hierarchy
of Planck constants suggests itself.

3. One can consider also the option R1 = R2 option giving ds2 = R2
1(2dθ2 + (w2

1 + w2
2)dφ2. If the

integers wi define Pythagorean square one has w2
1 +w2

2 = n2 and one has R1 = R2 option that one
has A = n × 4πR2. Also now the connection with the hierarchy of Planck constants might make
sense.
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2.7 Twistorial variant for the imbedding space spinor structure

The induction of the spinor structure of imbedding space is in key role in quantum TGD. The question
arises whether one should lift also spinor structure to the level of twistor space. If so one must understand
how spinors for T (M4) and T (CP2) are defined and how the induced spinor structure is induced.

1. In the case of CP2 the definition of spinor structure is rather delicate and one must add to the
ordinary spinor connection U(1) part, which corresponds physically to the addition of classical U(1)
gauge potential and indeed produces correct electroweak couplings to quarks and leptons. It is
assumed that the situation does not change in any essential manner: that is the projections of
gauge potentials of spinor connection to the space-time surface give those induced from M4 ×CP2

spinor connection plus possible other parts coming as a projection from the fiber S2(M2)×S2(CP2).
As a matter of fact, these other parts should vanish if dimensional reduction is what it is meant to
be.

2. The key question is whether the complications due to the fact that the geometries of twistor spaces
T (M4) and T (CP2) are not quite Cartesian products (in the sense that metric could be reduced to
a direct sum of metrics for the base and fiber) can be neglected so that one can treat the sphere
bundles approximately as Cartesian products M4 × S2 and CP2 × S2. This will be assumed in the
following but should be carefully proven.

3. Locally the spinors of the twistorspace T (H) are tensor products of imbedding spinors and those
for of S2(M4) × S2(CP2) expressible also as tensor products of spinors for S2(M4) and S2(CP2).
Obviously, the number of spinor components increases by factor 2 × 2 = 4 unless one poses some
additional conditions taking care that one has dimensional reduction without the emergence of any
new spin like degrees of freedom for which there is no physical evidence. The only possible manner
to achieve this is to pose covariant constancy conditions already at the level of twistor spaces T (M4)
and T (CP2) leaving only single spin state in these degrees of freedom.

4. In CP2 covariant constancy is possible for right-handed neutrino so that CP2 spinor structure can
be taken as a model. In the case of CP2 spinors covariant constancy is possible for right-handed
neutrino and is essentially due to the presence of U(1) part in spinor connection forced by the
fact that the spinor structure does not exist otherwise. Ordinary S2 spinor connection defined by
vielbein exists always. One can however add a coupling to a suitable multiple of Kähler potential
satisfying the quantization of magnetic charge (the magnetic flux defined by U(1) connection is
multiple of 2π so that its imaginary exponential is unity).

S2 spinor connections must must have besides ordinary vielbein part determined by S2 metric
also U(1) part defined by Kähler form coupled with correct coupling so that the curvature form
annihilates the second spin state for both S2(M4) and S2(CP2). U(1) part of the spinor curvature
is proportional to Kähler form J ∝ sin(theta)dθdφ so that this is possible. The vielbein and U(1)
parts of the spinor curvature ear proportional Pauli spin matrix σz = (1, 0; 0,−1)/2 and unit matrix
(1, 0; 0, 1) respectively so that the covariant constancy is possible to satisfy and fixes the spin state
uniquely.

5. The covariant derivative for the induced spinors is defined by the sum of projections of spinor gauge
potentials for T (M4) and T (CP2). With above assumptions the contributions gauge potentials
from T (M4) and T (CP2) separately annihilate single spinor component. As a consequence there
are no constraints on the winding numbers wi, i = 1, 2 of the maps S2(X4) → S2(M4) and
S2(X4)→ S2(CP2). Winding number wi corresponds to the imbedding map (Θi = θ,Φi = wiφ).

6. If the square of the Kähler form in fiber degrees of freedom gives metric to that its square is metric,
one obtains just the area of S2 from the fiber part of action. This is given by the area A =
4π
√

2(w2
1R

2
1 + w2

2R
2
2) since the induced metric is given by ds2 = (R2

1 +R2
2)dθ2 +(w2

1R
2
1 +w2

2R
2
2)dφ2

for (Θ1 = θ,Φ = n1φ,Φ2 = n2φ).
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2.8 Twistor googly problem transforms from a curse to blessing in TGD
framework

There was a nice story with title ”Michael Atiyahs Imaginative State of Mind” about mathematician
Michael Atyiah in Quanta Magazine (see http://tinyurl.com/jta2va8). The works of Atyiah have
affected profoundly the development of theoretical physics. What was pleasant to hear that Atyiah
belongs to those scientists who do not care what others think. As he tells, he can afford this since he has
got all possible prices. This is consoling and encouraging even for those who have not cared what others
think and for this reason have not earned any prizes. Nor even a single coin from what they have been
busily doing their whole lifetime!

In the beginning of the story ”twistor googly problem” was mentioned. I had to refresh my under-
standing about googly problem. In twistorial description the modes of massless fields (rather than entire
massless fields) in space-time are lifted to the modes in its 6-D twistor-space and dynamics reduces to
holomorphy. The analog of this takes place also in string models by conformal invariance and in TGD by
its extension.

One however encounters what is known as googly problem: one can have twistorial description for
circular polarizations with well-defined helicity +1/-1 but not for general polarization states - say linear
polarizations, which are superposition of circular polarizations. This reflects itself in the construction of
twistorial amplitudes in twistor Grassmann program for gauge fields but rather implicitly: the amplitudes
are constructed only for fixed helicity states of scattered particles. For gravitons the situation gets really
bad because of non-linearity.

Mathematically the most elegant solution would be to have only +1 or -1 helicity but not their
superpositions implying very strong parity breaking and chirality selection. Parity parity breaking occurs
in physics but is very small and linear polarizations are certainly possible! The discusion of Penrose
with Atyiah has inspired a possible solution to the problem known as ”palatial twistor theory” (see
http://tinyurl.com/hr7hmh2). Unfortunately, the article is behind paywall too high for me so that I
cannot say anything about it.

What happens to the googly problem in TGD framework? There is twistorialization at space-time
level and imbedding space level.

1. One replaces space-time with 4-surface in H = M4 ×CP2 and lifts this 4-surface to its 6-D twistor
space represented as a 6-surface in 12-D twistor space T (H) = T (M4)×T (CP2). The twistor space
has Kähler structure only for M4 and CP2 so that TGD is unique. This Kähler structure is needed
to lift the dynamics of Kähler action to twistor context and the lift leads to the a dramatic increase
in the understanding of TGD: in particular, Planck length and cosmological constant with correct
sign emerge automatically as dimensional constants besides CP2 size.

2. Twistorialization at imbedding space level means that spinor modes in H representing ground states
of super-symplectic representations are lifted to spinor modes in T(H). M4 chirality is in TGD
framework replaced with H-chirality, and the two chiralities correspond to quarks and leptons. But
one cannot superpose quarks and leptons! ”Googly problem” is just what the superselection rule
preventing superposition of quarks and leptons requires in TGD!

One can look this in more detail.

1. Chiral invariance makes possible for the modes of massless fields to have definite chirality: these
modes correspond to holomorphic or antiholomorphic amplitudes in twistor space and holomorphy
(antiholomorphy is holomorphy with respect to conjugates of complex coordinates) does not allow
their superposition so that massless bosons should have well-defined helicities in conflict with exper-
imental facts. Second basic problem of conformally invariant field theories and of twistor approach
relates to the fact that physical particles are massive in 4-D sense. Masslessness in 4-D sense also
implies infrared divergences for the scattering amplitudes. Physically natural cutoff is required but
would break conformal symmetry.
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2. The solution of problems is masslessness in 8-D sense allowing particles to be massive in 4-D sense.
Fermions have a well-defined 8-D chirality - they are either quarks or leptons depending on the
sign of chirality. 8-D spinors are constructible as superpositions of tensor products of M4 spinors
and of CP2 spinors with both having well-defined chirality so that tensor product has chiralities
(ε1, ε2), εi = ±1, i = 1, 2. H-chirality equals to ε = ε1ε2. For quarks one has ε = 1 (a convention)
and for leptons ε = −1. For quark states massless in M4 sense one has either (ε1, ε2) = (1, 1)
or (ε1, ε2) = (−1,−1) and for massive states superposition of these. For leptons one has either
(ε1, ε2) = (1,−1) or (ε1, ε2) = (−1, 1) in massless case and superposition of these in massive case.

3. The twistorial lift to T (M4) × T (CP2) of the ground states of super-symplectic representations
represented in terms of tensor products formed from H-spinor modes involves only quark and lepton
type spinor modes with well-defined H-chirality. Superpositions of amplitudes in which different M4

helicities appear but M4 chirality is always paired with completely correlating CP2 chirality to give
either ε = 1 or ε = −1. One has never a superposition of of different chiralities in either M4

or CP2 tensor factor. I see no reason forbidding this kind of mixing of holomorphicities and this
is enough to avoid googly problem. Linear polarizations and massive states represent states with
entanglement between M4 and CP2 degrees of freedom. For massless and circularly polarized states
the entanglement is absent.

4. This has interesting implications for the massivation. Higgs field cannot be scalar in 8-D sense
since this would make particles massive in 8-D sense and separate conservation of B and L would
be lost. Theory would also contain a dimensional coupling. TGD counterpart of Higgs boson is
actually CP2 vector, and one can say that gauge bosons and Higgs combine to form 8-D vector.
This correctly predicts the quantum numbers of Higgs. Ordinary massivation by constant vacuum
expectation value of vector Higgs is not an attractive idea since no covariantly constant CP2 vector
field exists so that Higgsy massivation is not promising except at QFT limit of TGD formulated
in M4. p-Adic thermodynamics gives rise to 4-D massivation but keeps particles massless in 8-D
sense. It also leads to powerful and correct predictions in terms of p-adic length scale hypothesis.

Anonymous reader gave me a link to the paper of Penrose about palatial twistor theory and this
inspired further more detailed considerations of googly problem.

1. After the first reading I must say that I could not understand how the proposed elimination of
conjugate twistor by quantization of twistors solves the googly problem, which means that both
helicities are present (twistor Z and its conjugate) in linearly polarized classical modes so that
holomorphy is broken classically.

2. I am also very skeptic about quantizing of either space-time coordinates or twistor space coordinates.
To me quantization is natural only for linear objects like spinors. For bosonic objects one must go to
higher abstraction level and replace superpositions in space-time with superpositions in field space.
Construction of ”World of Classical Worlds” (WCW) in TGD means just this.

3. One could however think that circular polarizations are fundamental and quantal linear combination
of the states carrying circularly polarized modes give rise to linear and elliptic polarizations. Linear
combination would be possible only at the level of field space (WCW in TGD), not for classical
fields in space-time. If so, then the elimination of conjugate of Z by quantization suggested by
Penrose would work.

4. Unfortunately, Maxwell’s equations allow classically linear polarisations! In order to achieve classical-
quantum consistency, one should modify classical Maxwell’s equations somehow so that linear po-
larizations are not possible. Googly problem is still there!

What about TGD?
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1. Massless extremals representing massless modes are very ”quantal”: they cannot be superposed
classically unless both momentum and polarisation directions for them (they can depend space-
time point) are exactly parallel. Optimist would guess that the classical local classical polarisations
are circular. No, they are linear! Superposition of classical linear polarizations at the level of WCW
can give rise to local linear but not local circular polarization! Something more is needed.

2. The only sensible conclusion is that only gauge boson quanta (not classical modes) represented as
pairs of fundamental fermion and antifermion in TGD framework can have circular polarization!
And indeed, massless bosons - in fact, all elementary particles- are constructed from fundamental
fermions and they allow only two M4, CP2 and M4×CP2 helicities/-chiralities analogous to circular
polarisations. B and L conservation would transform googly problem to a superselection rule as
already described.

To sum up, both the extreme non-linearity of Kähler action, the representability of all elementary par-
ticles in terms of fundamental fermions and antifermions, and the generalization of conserved M4 chirality
to conservation of H-chirality would be essential for solving the googly problem in TGD framework.

3 Surprise: twistorial dynamics does not reduce to a trivial re-
formulation of the dynamics of Kähler action

I have thought that twistorialization classically means only an alternative formulation of TGD. This is
definitely not the case as the explicit study demonstrated. Twistor formulation of TGD is in terms of
of 6-D twistor spaces T (X4) of space-time surfaces X4 ⊂ M4 × CP2 in 12-dimensional product T =
T (M4)× T (CP2) of 6-D twistor spaces of T (M4) of M4 and T (CP2) of CP2. The induced Kähler form
in X4 defines the quaternionic imaginary unit defining twistor structure: how stupid that I realized it
only now! I experienced during single night many other ”How stupid I have been” experiences.

Classical dynamics is determined by 6-D variant of Kähler action with coefficient 1/L2 having dimen-
sions of inverse length squared. Since twistor space is bundle, a dimensional reduction of 6-D Kähler
action to 4-D Kähler action plus a term analogous to cosmological term - space-time volume - takes place
so that dynamics reduces to 4-D dynamics also now. Here one must be careful: this happens provided
the radius of S2 associated with X4 does not depend on point of X4. The emergence of cosmological
term was however completely unexpected: again ”How stupid I have been” experience. The scales of the
spheres and the condition that the 6-D action is dimensionless bring in 3 fundamental length scales!

3.1 New scales emerge

The twistorial dynamics gives to several new scales with rather obvious interpretation. The new funda-
mental constants that emerge are the radii of the spheres associated with T (M4) and T (CP2). The radius
of the sphere associated with X4 is not a fundamental constant but determined by the induced metric.
By above argument the fiber is sphere for both Euclidian signature and Minkowskian signatures.

1. For CP2 twistor space the radius of S2(CP2) must be apart from numerical constant equal to CP2

radius R. For S2(M4) one an consider two options. The first option is that also now the radius for
S2(M4) equals to R(M4) = R so that Planck length would not emerge from fundamental theory
classically as assumed hitherto. Second imaginable option is that it does and one has R(M4) = lP .

2. If the signature of S2(M4) is (−1,−1) both Minkowskian and Euclidian regions have S2(X4) with
the same signature (−1,−1). The radius RD of S2(X4) is dynamically determined.

Recall first how the cosmological constant emerges from TGD framework. The key point is that the
6-D Kähler action contains two terms.
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1. The first term is essentially the ordinary Kähler action multiplied by the area of S2(X4) which is
compensated by the length scale, which can be taken to be the area 4πR2(M4) of S2(M4). This
makes sense for winding numbers (w1, w2) = (1, 0) meaning that S2(CP2) is effectively absent but
S2(M4) is present.

2. Second term is the analog of Kähler action assignable assignable to the projection of S2(M4)
Kähler form. The corresponding Kähler coupling strength αK(M4) is huge - so huge that one has
αK(M4)4πR2(M4) ≡ L2, where 1/L2 is of the order of cosmological constant and thus of the order
of the size of the recent Universe. αK(M4) is also analogous to critical temperature and the earlier
hypothesis that the values of L correspond to p-adic length scales implies that the values of come
as αK(M4) ∝ p ' 2k, p prime, k prime.

3. One can get an estimate for the relative magnitude of the Kähler action S(CP2) = π/8αK assignable
to CP2 type vacuum extremal and the corresponding cosmological term. The magnitude of the
volume term is of order 1/4παK(M4) with αK(M4) given by αK(M4) = L2/4πR2(M4). The
sequel the magnitude of L is estimated to be L = (23/2πlP /RD)×RU , where RU is the recent size
of the Universe. This estimate follows from the identification of the volume term as cosmological
constant term.

For RD = RM = lP this gives αK(M4) = 2π(RU/lP )2 ∼ 2× 1018. For αK ' 1/137 the ratio of the
two terms is of order 10−20. The cosmological terms is completely negligible in elementary particle
scales. For vacuum extremals the situation changes and the overall effect is presumably the trans-
formation of 4-D spin glass degeneracy so that the potentials wells in the analog spin glass energy
landscape do not correspond to vacuum extremal anymore and perturbation theory around them is
in principle possible. The huge value of αK(M4) implies that the system corresponds mathemati-
cally to an extremely strongly interacting system so that perturbation theory fails to converge. The
geometry of ”World of Classical Worlds” (WCW) provides the needed non-perturbative approach
and leads to to strong form of holography.

4. One could argue that the Kähler form assignable to M4 cannot contribute to the action since it does
not contribute to spinor connection of M4 - an assumption that can be challenged. For canonically
imbedded M4 self-duality implies that this contribution to action vanishes. For vacuum extremals
of ordinary Kähler action the contribution to the action density is proportional to the CP2 part of
induced metric and to 1/αK(M4), and therefore extremely small.

The breaking of Lorentz invariance can be seen as a possible problem for the induced spinor fields
coupling to the self-dual Kähler potential. This corresponds to coupling to constant magnetic field
and constant electric field, which are duals of each other. This would give rise to the analogs of
cyclotron energy states in transversal directions and to the analogs of states in constant electric field
in longitudinal directions. Could this extremely small effect serve as a seed for the generation of
Kähler magnetic flux tubes carrying longitudinal electric fields in various scales? Note also that the
value of αK(M4) is predicted to decrease as p-adic length scale so that the effect would be larger
in early cosmology and in short length scales.

Hence one can consider the possibility that the action is just the sum of full 6-D Kähler actions
assignable to T (M4) and T (CP2) but with different values of αK if one has (w1, w2) = (n, 0). Also other
w2 6= 0 is possible but corresponds to gigantic cosmological constant.

Given the parameter L2 as it is defined above, one can deduce an expression for cosmological constant
Λ and show that it is positive.

1. 6-D Kähler action has dimensions of length squared and one must scale it by a dimensional constant:
call it 1/L2. L is a fundamental scale and in dimensional reduction it gives rise to cosmological
constant. Cosmological constant Λ is defined in terms of vacuum energy density as Λ = 8πGρvac
can have two interpretations. Λ can correspond to a modification of Einstein-Hilbert action or - as
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now - to an additional term in the action for matter. In the latter case positive Λ means negative
pressure explaining the observed accelerating expansion. It is actually easy to deduce the sign of Λ.

1/L2 multiplies both Kähler action - F ijFij (∝ E2 − B2 in Minkowskian signature). The energy
density is positive. For Kähler action the sign of the multiplier must be positive so that 1/L2 is
positive. The volume term is fiber space part of action having same form as Kähler action. It gives
a positive contribution to the energy density and negative contribution to the pressure.

In Λ = 8πGρvac one would have ρvac = π/L2R2
D as integral of the −F ijFij over S2 given the π/R2

D

(no guarantee about correctness of numerical constants). This gives Λ = 8π2G/L2R2
D. Λ is positive

and the sign is same as as required by accelerated cosmic expansion. Note that super string models
predict wrong sign for Λ. Λ is also dynamical since it depends on RD, which is dynamical. One has
1/L2 = kΛ, k = 8π2G/R2

D apart from numerical factors.

The value of L of deduced from Euclidian and Minkowskian regions in this formal manner need not
be same. Since the GRT limit of TGD describes space-time sheets with Minkowskian signature, the
formula seems to be applicable only in Minkowskian regions. Again one can argue that one cannot
exclude Euclidian space-time sheets of even macroscopic size and blackholes and even ordinary
concept matter would represent this kind of structures.

2. L is not a size scale of any fundamental geometric object. This suggests that L is analogous to αK
and has value spectrum dictated by p-adic length scale hypothesis. In fact, one can introduce the
ratio of ε = R2/L2 as a dimensionless parameter analogous to coupling strength what it indeed is
in field equations. If so, L could have different values in Minkowskian and Euclidian regions.

3. I have earlier proposed that RU ≡ 1/
√

1/Λ is essentially the p-adic length scale Lp ∝
√
p = 2k/2,

p ' 2k, k prime, characterizing the cosmology at given time and satisfies RU ∝ a meaning that
vacuum energy density is piecewise constant but on the average decreases as 1/a2, a cosmic time
defined by light-cone proper time. A more natural hypothesis is that L satisfies this condition and
in turn implies similar behavior or RU . p-Adic length scales would be the critical values of L so that
also p-adic length scale hypothesis would emerge from quantum critical dynamics! This conforms
with the hypothesis about the value spectrum of αK labelled in the same manner [11].

4. At GRT limit the magnetic energy of the flux tubes gives rise to an average contribution to energy
momentum tensor, which effectively corresponds to negative pressure for which the expansion of the
Universe accelerates. It would seem that both contributions could explain accelerating expansion.
If the dynamics for Kähler action and volume term are coupled, one would expect same orders of
magnitude for negative pressure and energy density - kind of equipartition of energy.

Consider first the basic scales emerging also from GRT picture. RU ∼
√

1/Λ ∼ 1026 m = 10 Gly is not
far from the recent size of the Universe defined as c×t ∼ 13.8 Gly. The derived size scale L1 ≡ (RU×lP )1/2

is of the order of L1 = .5× 10−4 meters, the size of neuron. Perhaps this is not an accident. To make life
of the reader easier I have collected the basic numbers to the following table.

m(CP2) ' 5.7× 1014 GeV , mP = 2.435× 1018 GeV , R(CP2)
lP

' 4.1× 103 ,

RU = 10 Gy , t = 13.8 Gy , L1 =
√
lPRU = .5× 10−4 m .

(3.1)

Let us consider now some quantitative estimates. R(X4) depends on homotopy equivalence classes of
the maps from S2(X4)→ S2(M4) and S2(X4)→ S2(CP2) - that is winding numbers wi, i = 1, 2 for these
maps. The simplest situations correspond to the winding numbers (w1, w2) = (1, 0) and (w1, w2) = (0, 1).
For (w1, w2) = (1, 0) M4 contribution to the metric of S2(X4) dominates and one has R(X4) ' R(M4).
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For R(M4) = lP so Planck length would define a fundamental length and Planck mass and Newton’s
constant would be quantal parameters. For (w1, w2) = (0, 1) the radius of sphere would satisfy RD ' R
(CP2 size): now also Planck length would be quantal parameter.

Consider next additional scales emerging from TGD picture.

1. One has L = (23/2πlP /RD) × RU . In Minkowskian regions with RD = lP this would give L =
8.9 × RU : there is no obvious interpretation for this number in recent cosmology. For (RD = R)
one obtains the estimate L = 29 Mly. The size scale of large voids varies from about 36 Mly to 450
Mly (see https://en.wikipedia.org/wiki/Void_(astronomy)).

2. Consider next the derived size scale L2 = (L× lP )1/2 =
√
L/RU × L1 =

√
23/2πlP /RD × L1. For

RD = lP one has L2 ' 3L1. For RD = R making sense in Euclidian regions, this is of the order of
size of neutrino Compton length: 3 µm, the size of cellular nucleus and rather near to the p-adic
length scale L(167) = 2.6 m, corresponds to the largest miracle Gaussian Mersennes associated with
k = 151, 157, 163, 167 defining length scales in the range between cell membrane thickness and the
size of cellular nucleus. Perhaps these are co-incidences are not accidental. Biology is something so
fundamental that fundamental length scale of biology should appear in the fundamental physics.

The formulas and predictions for different options are summarized by the following table.

Option L = 23/2πlP
RD

×RU L2 =
√
LlP =

√
23/2πlP
RD

× L1

RD = R , 29 Mly , ' 3 µm ,

RD = lP , 8.9RU , ' 3L1 = 1.5× 10−4 m ,

(3.2)

In the case of M4 the radius of S2 cannot be fixed it remains unclear whether Planck length scale is
fundamental constant or whether it emerges.

3.2 Estimate for the cosmic evolution of RD

One can actually get estimate for the evolution of RD as function of cosmic time if one accepts Friedman
cosmology as an approximation of TGD cosmology.

1. Assume critical mass density so that one has

ρcr =
3H2

8πG
.

2. Assume that the contribution of cosmological constant term to the mass mass density dominates.
This gives ρ ' ρvac = Λ/8πG. From ρcr = ρvac one obtains

Λ = 3H2 .

3. From Friedman equations one has H2 = ((da/dt)/a)2, where a corresponds to light-cone proper time
and t to cosmic time defined as proper time along geodesic lines of space-time surface approximated
as Friedmann cosmology. One has

Λ =
3

gaaa2

in Robertson-Walker cosmology with ds2 = gaada
2 − a2dσ2

3 .
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4. Combining this equations with the TGD based equation

Λ =
8π2G

L2R2
D

one obtains

8π2G

L2R2
D

=
3

gaaa2
. (3.3)

5. Assume that quantum criticality applies so that L has spectrum given by p-adic length scale hy-
pothesis so that one discrete p-adic length scale evolution for the values of L. There are two options
to consider depending on whether p-adic length scales are assigned with light-cone proper time a
or with cosmic time t

T = a (Option I) , T = t (Option II) (3.4)

Both options give the same general formula for the p-adic evolution of L(k) but with different
interpretation of T (k).

L(k)
Lnow

= T (k)
Tnow

, T (k) = L(k) = 2(k−151)/2 × L(151) , L(151) ' 10 nm . (3.5)

Here T (k) is assumed to correspond to primary p-adic length scale. An alternative - less plausible
- option is that T (k) corresponds to secondary p-adic length scale L2(k) = 2k/2L(k) so that T (k)
would correspond to the size scale of causal diamond. In any case one has L ∝ L(k). One has a
discretized version of smooth evolution

L(a) = Lnow ×
T

Tnow
. (3.6)

6. Feeding into this to Eq. 3.3 one obtains an expression for RD(a)

RD
lP

= (
8

3
)1/2π × a

L(a)
× g1/2aa . (3.7)

Unless the dependences on cosmic time compensate each other, RD is dynamical and becomes very
small at very early times since gaa becomes very small. R(M4) = lP however poses a lower boundary
since either of the maps S2(X4) → S2(M4) and S2(X4) → S2(CP2) must be homotopically non-
trivial. For R(M4) = lP one would obtain RD/lP = 1 at this limit giving also lower bound for gaa.
For T = t option a/L(a) becomes large and gaa small.

As a matter of fact, in very early cosmic string dominated cosmology gaa would be extremely small
constant [5]. In late cosmology gaa → 1 holds true and one obtains at this limit

RD(now)

lP
= (

8

3
)1/2π × anow

Lnow
× lP ' 4.4

anow
Lnow

. (3.8)
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7. For T = t option RD/lP remains constant during both matter dominated cosmology, radiation
dominated cosmology, and string dominated cosmology since one has a ∝ tn with n = 1/2 during
radiation dominated era, n = 2/3 during matter dominated era, and n = 1 during string dominated
era [5]. This gives

RD
lP

= (
8

3
)1/2π × a

t

√
gaa

t(end)

L(end)
= (

8

3
)1/2

π

n

t(end)

L(end)
.

Here ”end” refers the end of the string or radiation dominated period or to the recent time in the
case of matter dominated era. The value of n would have evolved as RD/lP ∝ (1/n)(tend/Lend),
n ∈ {1, 3/2, 2}. During radiation dominated cosmology RD ∝ a1/2 holds true. The value of RD
would be very nearly equal to R(M4) and R(M4) would be of the same order of magnitude as
Planck length. In matter dominated cosmology would would have RD ' 2.2(t(now)/L(now))× lP .

8. For RD(now) = lP one would have

Lnow
anow

= (
8

3
)1/2π ' 4.4 .

In matter dominated cosmology gaa = 1 gives tnow = (2/3)×anow so that predictions differ only by
this factor for options I and II. The winding number for the map S2(X4)→ S2(CP2) must clearly
vanish since otherwise the radius would be of order R.

9. For RD(now) = R one would obtain

anow
Lnow

= (
8

3
)1/2 × R

lP
' 2.1× 104 .

One has Lnow = 106 ly: this is roughly the average distance scale between galaxies. The size of
Milky Way is in the range 1− 1.8× 105 ly and of an order of magnitude smaller.

10. An interesting possibility is that RD(a) evolves from RD ∼ R(M4) ∼ lP to RD ∼ R. This could
happen if the winding number pair (w1, w2) = (1, 0) transforms to (w1, w2) = (0, 1) during transition
to from radiation (string) dominance to matter (radiation) dominance. RD/lP radiation dominated
cosmology would be related by a factor

RD(rad)

RD(mat
= (3/4)

t(rad, end)

L(rad, end)
× L(now)

t(now)

to that in matter dominated cosmology. Similar factor would relate the values of RD/lP in string
dominated and radiation dominated cosmologies. The condition RD(rad)/RD(mat) = lP /R ex-
pressing the transformation of winding numbers would give

L(now)

L(rad, end)
=

4

3

lP
R

t(now)

t(rad, end)
.

One has t(now)/t(rad, end) ' .5 × 106 and lP /R = 2.5 × 10−4 giving L(now)/L(rad, end) ' 125,
which happens to be near fine structure constant.

11. For the twistorial lifts of space-time surfaces for which cosmological constant has a reasonable value
, the winding numbers are equal to (w1, w2) = (n, 0) so that RD =

√
nR(S2(M4)) holds true in

good approximation. This conforms with the observed constancy of RD during various cosmological

eras, and would suggest that the ratio t(end)
L(end) characterizing these periods is same for all periods.

This determines the evolution for the values of αK(M4).
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R(M4) ∼ lP seems rather plausible option so that Planck length would be fundamental classical
length scale emerging naturally in twistor approach. Cosmological constant would be coupling constant
like parameter with a spectrum of critical values given by p-adic length scales.

3.3 What about extremals of the dimensionally reduced 6-D Kähler action?

It seems that the basic wisdom about extremals of Kähler action remains unaffected and the motivations
for WCW are not lost. What is new is that the removal of vacuum degeneracy is forced by twistorial
action.

1. All extremals, which are minimal surfaces remain extremals. In fact, all the known extremals except
vacuum extremals. For minimal surfaces the dynamics of the volume term and 4-D Kähler action
separate and field equations for them are separately satisfied. The vacuum degeneracy motivating
the introduction of WCW is preserved. The induced Kähler form vanishes for vacuum extremals
and the imaginary unit of twistor space is ill-defined. Hence vacuum extremals cannot belong to
WCW. This correspond to the vanishing of WCW metric for vacuum extremals.

2. For non-minimal surfaces Kähler coupling strength does not disappear from the field equations and
appears as a genuine coupling very much like in classical field theories. Minimal surface equations
are a generalization of wave equation and Kähler action would define analogs of source terms. Field
equations would state that the total isometry currents are conserved. It is not clear whether other
than minimal surfaces are possible, I have even conjectured that all preferred extremals are always
minimal surfaces having the property that being holomorphic they are almost universal extremals
for general coordinate invariant actions.

3. Thermodynamical analogy might help in the attempts to interpret. Quantum TGD in zero energy
ontology (ZEO) corresponds formally to a complex square root of thermodynamics. Kähler action
can be identified as a complexified analog of free energy. Complexification follows both from the
fact that

√
g is real/imaginary in Euclidian/Minkowskian space-time regions. Complex values are

also implied by the proposed identification of the values of Kähler coupling strength in terms of
zeros and pole of Riemann zeta in turn identifiable as poles of the so called fermionic zeta defining
number theoretic partition function for fermions [8, 11, 12]. The thermodynamical for Kähler action
with volume term is Gibbs free energy G = F − TS = E − TS + PV playing key role in chemistry.

4. The boundary conditions at the ends of space-time surfaces at boundaries of CD generalize appro-
priately and symmetries of WCW remain as such. At light-like boundaries between Minkowskian
and Euclidian regions boundary conditions must be generalized. In Minkowkian regions volume can
be very large but only the Euclidian regions contribute to Kähler function so that vacuum functional
can be non-vanishing for arbitrarily large space-time surfaces since exponent of Minkowskian Kähler
action is a phase factor.

5. One can worry about almost topological QFT property. Although Kähler action from Minkowskian
regions at least would reduce to Chern-Simons terms with rather general assumptions about pre-
ferred extremals, the extremely small cosmological term does not. Could one say that cosmological
constant term is responsible for ”almost”?

It is interesting that the volume of manifold serves in algebraic geometry as topological invariant
for hyperbolic manifolds, which look locally like hyperbolic spaces Hn = SO(n, 1)/SO(n) [1, 7]. See
also the article ”Volumes of hyperbolic manifolds and mixed Tate motives” (see http://arxiv.

org/abs/alg-geom/9601021). Now one would have n = 4. It is probably too much to hope that
space-time surfaces would be hyperbolic manifolds. In any case, by the extreme uniqueness of
the preferred extremal property expressed by strong form of holography the volume of space-time
surface could also now serve as topological invariant in some sense as I have earlier proposed. What
is intriguing is that AdSn appearing in AdS/CFT correspondence is Lorentzian analogue Hn.
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6. α(M4) is extremely large so that there is no hope of quantum perturbation theory around canonically
imbedded M4 although the propagator for CP2 coordinate exists. In the new framework WCW can
be seen as a solution to how to construct non-perturbative quantum TGD.

To sum up, I have the feeling that the final formulation of TGD has now emerged and it is clear that
TGD is indeed a quantum theory of gravitation allowing to understand standard model symmetries. The
existence of twistorial formulation is all that is needed to fix the theory completely. It makes possible
gravitation and predicts standard model symmetries. This cannot be said about any competitor of TGD.

4 Basic principles behind construction of amplitudes

Basic principles of the construction summarized in this section could be seen as axioms trying to abstract
the essentials. The explicit construction of amplitudes is too heavy challenge at this stage and at least
for me.

4.1 Imbedding space is twistorially unique

It took roughly 36 years to learn that M4 and CP2 are twistorially unique.

1. As already explained, M4 and CP2 are unique 4-manifolds in the sense that both allow twistor space
with Kähler structure: Kähler structure is the crucial concept as one might guess from the fact that
the projection of Kähler form naturally defines the preferred quaternionic imaginary unit defining
the twistor structure for space-time surface. Both M4 and its Euclidian variant E4 allow twistor
space and the twistor space of M4 is Minkowskian variant T (M4) = SU(2, 2)/SU(2, 1) × U(1) of
6-D twistor space CP3 = SU(4)/SU(3) × U(1) of E4. The twistor space of CP2 is 6-D T (CP2) =
SU(3)/U(1)×U(1), the space for the choices of quantization axes of color hypercharge and isospin.

2. This leads to a proposal for the formulation of TGD in which space-time surfaces X4 in H are lifted
to twistor spaces X6, which are sphere bundles over X4 and such that they are surfaces in 12-D
product space T (M4) × T (CP2) such the twistor structure of X4 are in some sense induced from
that of T (M4) × T (CP2). What is nice in this formulation is that one can use all the machinery
of algebraic geometry so powerful in superstring theory (Calabi-Yau manifolds). It has been al-
ready described how this approach leads to a profound understanding of the relationship between
TGD and GRT. Planck length emerges whereas fundamental constant as also cosmological constant
emerges dynamically from the length scale parameter appearing in 6-D Kähler action. One can say,
that twistor extension is absolutely essential for really understanding the gravitational interactions
although the modification of Kähler action is extremely small due to the huge value of length scale
defined by cosmological constant.

3. Masslessness (masslessness in complex sense for virtual particles in twistorialization) is essential
condition for twistorialization. In TGD massless is masslessness in 8-D sense for the representations
of superconformal algebras. This suggests that 8-D variant of twistors makes sense. 8-dimensionality
indeed allows octonionic structure in the tangent space of imbedding space. One can also define
octonionic gamma matrices and this allows a possible generalization of 4-D twistors to 8-D ones using
generalization of sigma matrices representing quaternionic units to to octonionic sigma ”matrices”
essential for the notion of twistors. These octonion units do not of course allow matrix representation
unless one restricts to units in some quaternionic subspace of octonions. Space-time surfaces would
be associative and thus have quaternionic tangent space at each point satisfying some additional
conditions.
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4.2 Strong form of holography

Strong form of holography (SH) following from general coordinate invariance (GCI) for space-times as
surfaces states that the data assignable to string world sheets and partonic 2-surfaces allows to code for
scattering amplitudes. The boundaries of string world sheets at the space-like 3-surfaces defining the
ends of space-time surfaces at boundaries of causal diamonds (CDs) and the fermionic lines along light-
like orbits of partonic 2-surfaces representing lines of generalized Feynman diagrams become the basic
elements in the generalization of twistor diagrams (I will not use the attribute ”Feynman” in precise
sense, one could replace it with ”twistor” or even drop away). One can assign fermionic lines massless in
8-D sense to flux tubes, which can also be braided. One obtains a fractal hierarchy of braids with strands,
which are braids themselves. At the lowest level one has braids for which fermionic lines are braided.
This fractal hierarchy is unavoidable and means generalization of the ordinary Feynman diagram. I have
considered some implications of this hierarchy in [13].

4.3 The existence of WCW demands maximal symmetries

Quantum TGD reduces to the construction of Kähler geometry of infinite-D WCW, of associated spinor
structure, and of modes of WCW spinor fields which are purely classical entities and quantum jump
remains the only genuinely quantal element of quantum TGD. Quantization without quantization, would
Wheeler say.

By its infinite-dimensionality, the mere mathematical existence of the Kähler geometry of WCW
requires maximal isometries. Physics is completely fixed by the mere condition that its mathematical
description exists. Super-symplectic and other symmetries of WCW are in decisive role. These symmetry
algebras have conformal structure and generalize and extend the conformal symmetries of string models
(Kac-Moody algebras in particular). These symmetries give also rise to the hierarchy of Planck constants.
The super-symplectic symmetries extend to a Yangian algebra, whose generators are polylocal in the sense
that they involve products of generators associated with different partonic surfaces. These symmetries
leave scattering amplitudes invariant. This is an immensely powerful constraint, which remains to be
understood.

4.4 Quantum criticality

Quantum criticality (QC) of TGD Universe is a further principle. QC implies that Kähler coupling
strength is mathematically analogous to critical temperature and has a discrete spectrum. Coupling
constant evolution is replaced with a discrete evolution as function of p-adic length scale: sequence of
jumps from criticality to a more refined criticality or vice versa (in spin glass energy landscape you at
bottom of well containing smaller wells and you go to the bottom of smaller well). This implies that either
all radiative corrections (loops) sum up to zero (QFT limit) or that diagrams containing loops correspond
to the same scattering amplitude as tree diagrams so that loops can eliminated by transforming them to
arbitrary small ones and snipping away moving the end points of internal lines along the lines of diagram
(fundamental description).

Quantum criticality at the level of super-conformal symmetries leads to the hierarchy of Planck con-
stants heff = n×h labelling a hierarchy of sub-algebras of super-symplectic and other conformal algebras
isomorphic to the full algebra. Physical interpretation is in terms of dark matter hierarchy. One has con-
formal symmetry breaking without conformal symmetry breaking as Wheeler would put it.

4.5 Physics as generalized number theory, number theoretical universality

Physics as generalized number theory vision has important implications. Adelic physics is one of them.
Adelic physics implied by number theoretic universality (NTU) requires that physics in real and various
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p-adic numbers fields and their extensions can be obtained from the physics in their intersection cor-
responding to an extension of rationals. This is also enormously powerful condition and the success of
p-adic length scale hypothesis and p-adic mass calculations can be understood in the adelic context.

In TGD inspired theory of consciousness various p-adic physics serve as correlates of cognition and p-
adic space-time sheets can be seen as cognitive representations, ”thought bubbles”. NTU is closely related
to SH. String world sheets and partonic 2-surfaces with parameters (WCW coordinates) characterizing
them in the intersection of rationals can be continued to space-time surfaces by preferred extremal property
but not always. In p-adic context the fact that p-adic integration constants depend on finite number of
pinary digits makes the continuation easy but in real context this need not be possible always. It is always
possible to imagine something but not always actualize it!

4.6 Scattering diagrams as computations

Quantum criticality as possibility to eliminate loops has a number theoretic interpretation. Generalized
Feynman diagram can be interpreted as a representation of a computation connecting given set X of
algebraic objects to second set Y of them (initial and final states in scattering) (trivial example: X =
{3, 4} → 3× 4 = 12→ 2× 6→ {2, 6} = Y . The 3-vertices (a× b = c) and their time-reversals represent
algebraic product and co-product.

There is a huge symmetry: all diagrams representing computation connecting given X and Y must
produce the same amplitude and there must exist minimal computation. The task of finding this com-
putation is like finding the simplest representation for the formula X=Y and the noble purpose of math
teachers is that we should learn to find it during our school days. This generalizes the duality symmetry
of old fashioned string models: one can transform any diagram to a tree diagram without loops. This cor-
responds to quantum criticality in TGD: coupling constants do not evolve. The evolution is actually there
but discrete and corresponds to infinite number critical values for Kahler coupling strength analogous to
temperature.

4.7 Reduction of diagrams with loops to braided tree-diagrams

1. In TGD pointlike particles are replaced with 3-surfaces and by SH by partonic 2-surfaces. The
important implication of 3-dimensionality is braiding. The fermionic lines inside light-like orbits of
partonic 2-surfaces can be knotted and linked - that is braided (this is dynamical braiding analogous
to dance). Also the fermionic strings connecting partonic 2-surfaces at space-like 3-surfaces at
boundaries of causal diamonds (CDs) are braided (space-like braiding).

Therefore ordinary Feynman diagrams are not enough and one must allow braiding for tree diagrams.
One can also imagine of starting from braids and allowing 3-vertices for their strands (product and
co-product above). It is difficult to imagine what this braiding could mean. It is better to imagine
braid and allow the strands to fuse and split (annihilation and pair creation vertices).

2. This braiding gives rise in the planar projection representation of braids to a generalization of non-
planar Feynman diagrams. Non-planar diagrams are the basic unsolved problem of twistor approach
and have prevented its development to a full theory allowing to construct exact expressions for the
full scattering amplitudes (I remember however that Nima Arkani-Hamed et al have conjectured that
non-planar amplitudes could be constructed by some procedure: they notice the role of permutation
group and talk also about braidings (describable using covering groups of permutation groups)). In
TGD framework the non-planar Feynman diagrams correspond to non-trivial braids for which the
projection of braid to plane has crossing lines, say a and b, and one must decide whether the line a
goes over b or vice versa.

3. An interesting open question is whether one must sum over all braidings or whether one can choose
only single braiding. Choice of single braiding might be possible and reflect the failure of string
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determinism for Kähler action and it would be favored by TGD as almost topological quantum field
theory (TQFT) vision in which Kähler action for preferred extremal is topological invariant.

4.8 Scattering amplitudes as generalized braid invariants

The last big idea is the reduction of quantum TGD to generalized knot/braid theory (I have talked also
about TGD as almost TQFT). The scattering amplitude can be identified as a generalized braid invariant
and could be constructed by the generalization of the recursive procedure transforming in a step-by-
step manner given braided tree diagram to a non-braided tree diagram: essentially what Alexander the
Great did for Gordian knot but tying the pieces together after cutting. At each step one must express
amplitude as superposition of amplitudes associated with the different outcomes of splitting followed by
reconnection. This procedure transforms braided tree diagram to a non-braided tree diagrams and the
outcome is the scattering amplitude!
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