The (t / z) Considerations of Plane Wave Solutions of GaugeInvariant Generalizations of Field Theories

S. W. Bhaware*
Department of Mathematics, Shri R.L.T.College of Science Akola- 444001, India

Abstract

In the present paper, we have considered the gauge-invariant generalization of Einstein field equations in our chosen metric for (t / z)-type waves. The results obtained are written in the form of theorems which resemble to those obtained by Katore and Rane (2008).

Keywords: General relativity, generalization, gauge-invariant, plane gravitational waves.

1. Introduction

Gauge Invariant Generalization of Field Theories is an important class of an asymmetric field theories introduced by Buchdahl (1957)[1], by combining two nonsymmetric geometries of Weyl (1919)[9] and that of Einstein (1951)[10] and is based upon an asymmetric covariant tensor $g_{i j}$ and a covariant vector K_{i} relating those to an asymmetric linear connection $\Gamma_{j k}^{i}$ in such a way that the geometry could be regarded equivalently as 'Gauge Invariant generalization of Einstein's theory' propounded by Weyl. Lal and Srivastava (1972) [5] obtained the plane wave solutions of these theories for asymmetric fundamental tensor in Bondi (1959) [14] space-time. S. D. Katore and R.S. Rane (2008)[7] have generalized these solutions in the plane symmetry. In the present paper we have considered the Gauge invariant generalization of Einstein field equations in our chosen metric for (t / z)-type waves. The results obtained are written in the form of theorems which resemble to those obtained by Katore and Rane (2008).

2. The Line element and field equations

The metric chosen for the investigation is

$$
\begin{equation*}
d s^{2}=-A d x^{2}-2 D d x d y-B d y^{2}-C Z^{2} d z^{2}+C d t^{2}, \tag{2.1}
\end{equation*}
$$

[^0]which was obtained by Lal, Ali (1969)[2] by using certain transformations in Bondi space-time. Here A, B, C, D are all the functions of $Z(=t / z)$ and the solutions correspond to the (t / z) type waves. Buchdahl's Gauge Invariant generalization of field theories are based upon an asymmetric tensor $g_{i j}=h_{i j}+f_{i j}$, a covariant vector K_{i} and a linear connection $L_{j s}^{i}$ defined by
\[

$$
\begin{align*}
& \Gamma_{i s}^{m} g_{m j}+\Gamma_{s j}^{m} g_{i m}=g_{i j, s} \tag{2.2}\\
& \gamma_{i s}^{m} g_{m j}+\gamma_{s j}^{m} g_{i m}=g_{i j} K_{s} \tag{2.3}\\
& L_{j s}^{i}=\Gamma_{j s}^{i}-\gamma_{j s}^{i} \tag{2.4}
\end{align*}
$$
\]

Here $h_{i j}$, the symmetric part of $g_{i j}$ coincides with the fundamental tensor of space-time which is minkowskian and $f_{i j}$ is the skew-symmetric part of $g_{i j}$ satisfying the electromagnetic field. $\Gamma_{j k}^{i}$ is the linear connection of usual asymmetric theory of Einstein. Buchdahl provided an asymmetric fundamental tensor $g_{i j}$, a linear connection $L_{j s}^{i}$ and a covariant vector K_{i}, defined in such a way that $L_{j s}^{i}$ and all the basic tensors derived from the $g_{i j}, K_{i}, L_{j s}^{i}$ and their derivatives possess the property of Gauge invariance. The indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$ take values $1,2,3,4$ and a comma (,) before an index s denotes its partial derivative w.r.to x^{s}.

Buchdahl defined the following simplest field equations as

$$
\begin{gather*}
L_{i}=L_{[i s]}^{s}=0 \tag{2.5}\\
G_{i j}=P_{i j}+\gamma_{i j ; s}^{0}-\left(K_{i, j}+K_{j, i}\right)+\gamma_{i m}^{s} \gamma_{s j}^{m}-2 \gamma_{i j}^{s} K_{s}=0 \tag{2.6}
\end{gather*}
$$

where $P_{i j}$ is defined by

$$
\begin{equation*}
P_{i j}=-\Gamma_{i j, s}^{s}+\frac{1}{2}\left[\Gamma_{(i s), j}^{s}+\Gamma_{(s j), i}^{s}\right]+\Gamma_{i m}^{s} \Gamma_{s j}^{m}-\Gamma_{i j}^{s} \Gamma_{s m}^{m} \tag{2.7}
\end{equation*}
$$

Here $G_{i j}$ is the Gauge invariant Hermitian Einstein tensor and $P_{i j}$ is the usual tensor of Einstein asymmetric theory. A semicolon (;) represent a covariant differentiation anda sign (+), (-) or (o) below the index fixes the position of covariant index k in connections as $\Gamma_{. k}, \Gamma_{k .}, \Gamma_{(. k)}$ and a pair of parenthesis () and [] including two indices represents the symmetry and skew symmetry between them.

3. Calculations of nonsymmetric tensors

Following the method of Takeno (1961)[8] and Lal and Shrivastav (1972) [5] the nonsymmetric tensors $g_{i j}$ as used by S.W.Bhaware, D.D.Pawar and A.G. Deshmukh(2012) [11]
are obtained as follows. On the lines of V.B.Johari(1966) [6]the components of electromagnetic field tensors $F_{i j}$ for the (t / z) -type line element (2.1) are:

$$
\left(F_{i j}\right)=\left[\begin{array}{cccc}
0 & 0 & \frac{-\sigma_{1}}{z} & \frac{\sigma_{1}}{t} \tag{3.1}\\
0 & 0 & \frac{\rho_{1}}{z} & \frac{-\rho_{1}}{t} \\
\frac{\sigma_{1}}{z} & \frac{-\rho_{1}}{z} & 0 & 0 \\
\frac{-\sigma_{1}}{t} & \frac{\rho_{1}}{t} & 0 & 0
\end{array}\right]
$$

where σ_{1}, ρ_{1} are arbitrary functions of $Z(=t / z)$.
The components of $h_{i j}$, the symmetric part of $g_{i j}$ are

$$
\left(g_{(i j)}\right)=\left(h_{i j}\right)=\left[\begin{array}{cccc}
-A & -D & 0 & 0 \tag{3.2}\\
-D & -B & 0 & 0 \\
0 & 0 & -C Z^{2} & 0 \\
0 & 0 & 0 & C
\end{array}\right]
$$

Using the Ikeda (1954)[13] relations

$$
\begin{equation*}
F_{i j}=\frac{1}{2} \varepsilon_{i j k l} \sqrt{-g} g^{k l} \tag{3.3}
\end{equation*}
$$

where $\varepsilon_{i j k l}=+1$ or -1 according as i, j, k, l have even or odd permutations, we find the fundamental metric tensor $\left(g_{i j}\right)$ for the metric (2.1) as

$$
\begin{align*}
& \left(g_{i j}\right)=\left[\begin{array}{cccc}
-A & -D & \frac{\rho}{z} & \frac{-\rho}{t} \\
-D & -B & \frac{\sigma}{z} & \frac{-\sigma}{t} \\
\frac{-\rho}{z} & \frac{-\sigma}{z} & -C Z^{2} & 0 \\
\frac{\rho}{t} & \frac{\sigma}{t} & 0 & C
\end{array}\right] \tag{3.4}\\
& g=-\left(A B-D^{2}\right) C^{2} Z^{2}=-m C^{2} Z^{2} \tag{3.5}
\end{align*}
$$

where

$$
\begin{equation*}
m=\left(A B-D^{2}\right), \rho=\frac{\left(A \rho_{1}+D \sigma_{1}\right)}{\sqrt{m}} \text { and } \sigma=\frac{\left(D \rho_{1}+B \sigma_{1}\right)}{\sqrt{m}} \tag{3.6}
\end{equation*}
$$

The conjugate metric tensors are

$$
\left(g^{i j}\right)=\left[\begin{array}{cccc}
-\frac{B}{m} & \frac{D}{m} & U & Z U \tag{3.7}\\
\frac{D}{m} & \frac{-A}{m} & V & Z V \\
-U & -V & \left(-\frac{1}{C Z^{2}}+W\right) & Z W \\
-Z U & -Z V & Z W & \left(\frac{1}{C}+Z^{2} W\right)
\end{array}\right]
$$

where

$$
\begin{equation*}
U=\frac{B \rho-D \sigma}{z Z^{2} m C}, \quad V=\frac{A \sigma-D \rho}{z Z^{2} m C}, W=\frac{A \sigma^{2}-2 D \rho \sigma+B \rho^{2}}{z^{2} Z^{4} m C^{2}} \tag{3.8}
\end{equation*}
$$

According to Hlavaty (1957)[4] $f_{i j}$ belongs to the class III if $K=k=0$, where

$$
\begin{equation*}
K=\frac{1}{4} f_{i j} f^{i j} \quad \text { and } \quad k=\frac{f}{h}=\frac{\operatorname{det} \cdot\left(f_{i j}\right)}{\operatorname{det} \cdot\left(h_{i j}\right)} \tag{3.9}
\end{equation*}
$$

Here we note that, the magnetic components of $g_{i j}$ coincide with electromagnetic field tensor $f^{i j}$ given by

$$
\begin{equation*}
f^{i j}=h^{i \alpha} h^{j \beta} f_{\alpha \beta} \tag{3.10}
\end{equation*}
$$

4. Solutions of field equations (2.3) and (2.4)

We use the Hlavaty,s method to solve equation (2.3). Mishra (1963)[12] has proved that $\gamma_{i j}^{s}$ can be put in the form

$$
\begin{equation*}
\gamma_{i j}^{s}=H_{i j}^{s}+S_{i j}^{s}+U_{i j}^{s} \tag{4.1}
\end{equation*}
$$

Where

$$
\begin{gather*}
U_{i j}^{s}=2 h^{s n} S_{n[i}^{m} f_{j] m} \tag{4.2}\\
H_{i j}^{s}=\frac{1}{2} h^{s m}\left(K_{i} h_{j m}+K_{j} h_{i m}-K_{m} h_{i j}\right) \tag{4.3}\\
S_{i j}^{s}=\gamma_{[i j]}^{s}=h^{s m}\left(K_{i j m}^{\prime}+2 U_{m[i f j n}^{n}\right) \tag{4.4}\\
K_{i j s}^{\prime}=K_{i j s}+2 f_{l[i} H_{j] s}^{l} \tag{4.5a}
\end{gather*}
$$

$$
\begin{equation*}
K_{i j s}=\frac{1}{2}\left(K_{j} f_{i s}+K_{s} f_{i j}-K_{i} f_{j s}\right) \tag{4.5b}
\end{equation*}
$$

As $f_{i j}$ given by (3.1) belongs to the third class in the sense of Hlavaty (1957) we have solution of (4.4)

$$
\begin{equation*}
S_{i j}^{s}=h^{s m}\left(K_{i j m}^{\prime}-2 f_{[j}^{n} K_{i] n l}^{\prime} f_{n}^{l}\right) . \tag{4.6}
\end{equation*}
$$

Using above equations the components of $H_{i j}^{s}\left(=H_{j i}^{s}\right)$ and those of $K_{i j s}\left(=-K_{j i s}\right)$ are obtained as follows:

$$
\begin{gather*}
H_{11}^{s}=\left[\frac{K_{1}}{2}+\frac{\psi D}{2 m}, \frac{-\psi A}{2 m}, \frac{-K_{3} A}{2 C Z^{2}}, \frac{K_{4} A}{2 C}\right] \\
H_{22}^{s}=\left[\frac{B \mu}{2 m}, \frac{K_{2}}{2}-\frac{\mu D}{2 m}, \frac{-K_{3} B}{2 C Z^{2}}, \frac{K_{4} B}{2 C}\right] \\
H_{33}^{s}=\left[\frac{Z^{2} C \mu}{2 m}, \frac{-Z^{2} C \psi}{2 m}, \frac{K_{3}}{2}, \frac{Z^{2} K_{4}}{2}\right] \\
H_{44}^{s}=\left[\frac{-C \mu}{2 m}, \frac{C \psi}{2 m}, \frac{K_{3}}{2 Z^{2}}, \frac{K_{4}}{2}\right] \\
H_{12}^{s}=\left[\frac{B \psi}{2 m}, \frac{-A \mu}{2 m}, \frac{-K_{3} D}{2 C Z^{2}}, \frac{K_{4} D}{2 C}\right] \\
H_{13}^{s}=\left[\frac{K_{3}}{2}, 0, \frac{K_{1}}{2}, 0\right] \\
H_{14}^{s}=\left[\frac{K_{4}}{2}, 0,0, \frac{K_{1}}{2}\right] \\
H_{23}^{s}=\left[0, \frac{K_{3}}{2}, \frac{K_{2}}{2}, 0\right] \\
H_{24}^{s}=\left[0, \frac{K_{4}}{2}, 0, \frac{K_{2}}{2}\right] \\
H_{34}^{s}=\left[0,0, \frac{K_{4}}{2}, \frac{K_{3}}{2}\right] \tag{4.7}\\
K_{12 s}=\left[0,0, \frac{1}{2 z}\left(K_{2} \rho-K_{1} \sigma\right), \frac{1}{2 t}\left(-K_{2} \rho+K_{1} \sigma\right)\right] \\
K_{13 s}=\left[\frac{1}{z}\left(K_{1} \rho\right), \frac{1}{2 z}\left(K_{2} \rho+K_{1} \sigma\right), \frac{1}{z}\left(K_{3} \rho\right), \frac{\rho}{2}\left(\frac{K_{4}}{z}-\frac{K_{3}}{t}\right)\right] \\
K_{14 s}=\left[-\frac{K_{1} \rho}{t}, \frac{-1}{2 t}\left(K_{2} \rho+K_{1} \sigma\right), \frac{\rho}{2}\left(\frac{K_{4}}{z}-\frac{K_{3}}{t}\right), \frac{-K_{4} \rho}{t}\right]
\end{gather*}
$$

$$
\begin{gather*}
K_{23 s}=\left[\frac{1}{2 z}\left(K_{1} \sigma+K_{2} \rho\right), \frac{K_{2} \sigma}{z}, \frac{K_{3} \sigma}{z}, \frac{\sigma}{2}\left(\frac{K_{4}}{z}-\frac{K_{3}}{t}\right)\right] \\
K_{24 s}=\left[-\frac{1}{2 t}\left(K_{1} \sigma+K_{2} \rho\right),-\frac{K_{2} \sigma}{t}, \frac{\sigma}{2}\left(\frac{K_{4}}{z}-\frac{K_{3}}{t}\right),-\frac{K_{4} \sigma}{t}\right] \\
K_{34 s}=\left[-\frac{\rho}{2}\left(\frac{K_{4}}{z}+\frac{K_{3}}{t}\right),-\frac{\sigma}{2}\left(\frac{K_{4}}{z}+\frac{K_{3}}{t}\right), 0,0\right] \tag{4.8}
\end{gather*}
$$

and $\mathrm{K}_{i j s}=0$ for $\mathrm{i}=\mathrm{j}$.
Using (3.4),(4.7),(4.8) in (4.5 a) we find the values of $K_{i j s}^{\prime}\left(=-K_{j i s}{ }_{j i s}\right)$ as follows

$$
\begin{gather*}
{K_{12 s}^{\prime}}_{\prime}^{\prime}=\left[\frac{1}{2 C t^{2}}\left(z K_{3}+t K_{4}\right) \lambda, \frac{1}{2 C t^{2}}\left(z K_{3}+t K_{4}\right) v, 0,0\right] \\
K_{13 s}^{\prime}=\left[-\frac{\psi \lambda}{2 z m},-\frac{\psi v}{2 z m}, \frac{K_{4} \rho t}{2 z^{2}},-\frac{K_{4} \rho}{2 z}\right] \\
K_{14 s}^{\prime}=\left[\frac{\psi \lambda}{2 m t}, \frac{\psi v}{2 m t}, \frac{K_{3} \rho}{2 t},-\frac{K_{3} \rho z}{2 t^{2}}\right] \\
K_{23 s}^{\prime}=\left[-\frac{\mu \lambda}{2 z m},-\frac{v \mu}{2 z m}, \frac{K_{4} \sigma t}{2 z^{2}}, \frac{K_{4} \sigma}{2 z}\right] \\
K_{24 s}^{\prime}=\left[\frac{\mu \lambda}{2 m t}, \frac{\nu \mu}{2 m t}, \frac{\sigma K_{3}}{2 t},-\frac{K_{3} \sigma z}{2 t^{2}}\right] \\
K_{34 s}^{\prime}=\left[0,0, \frac{C Z}{2 z m}(\rho \mu-\sigma v),-\frac{C}{2 z}(\rho \mu-\sigma v)\right] \tag{4.9}
\end{gather*}
$$

where

$$
\begin{align*}
\psi & =\left(K_{2} A-K_{1} D\right) \\
\mu & =\left(K_{2} D-K_{1} B\right) \\
\lambda & =(\rho D-\sigma A) \\
v & =(\rho B-\sigma D) \tag{4.9a}
\end{align*}
$$

Substituting from equations (3.1) and (4.9) in equation (4.6) we see that the last term on RHS is identically zero and consequently equation(4.6) reduces to

$$
\begin{equation*}
S_{i j}^{s}=h^{s m} K_{i j m}^{\prime} \tag{4.10}
\end{equation*}
$$

Using (3.2) and (4.9) in equation (4.10) we find the components of $S_{i j}^{s}\left(=-S_{j i}^{s}\right)$ as follows:

$$
\begin{gathered}
S_{12}^{s}=\left[\frac{\sigma}{2 C t^{2}}\left(z K_{3}+t K_{4}\right),-\frac{\rho}{2 C t^{2}}\left(z K_{3}+t K_{4}\right), 0,0\right] \\
S_{13}^{s}=\left[-\frac{\sigma \psi}{2 z m}, \frac{\rho \psi}{2 z m},-\frac{\rho K_{4}}{2 C t},-\frac{\rho K_{4}}{2 C z}\right]
\end{gathered}
$$

$$
\begin{gather*}
S_{14}^{s}=\left[\frac{\sigma \psi}{2 m t},-\frac{\rho \psi}{2 m t},-\frac{\rho K_{3}}{2 C Z^{2} t},-\frac{\rho K_{3}}{2 C Z^{2} z}\right] \\
S_{23}^{s}=\left[-\frac{\sigma \mu}{2 z m}, \frac{\rho \mu}{2 z m},-\frac{\sigma K_{4}}{2 C t},-\frac{\rho K_{4}}{2 C z}\right] \\
S_{24}^{s}=\left[\frac{\sigma \mu}{2 m t},-\frac{\rho \mu}{2 m t},-\frac{\sigma K_{3}}{2 C Z^{2} t},-\frac{\sigma K_{3}}{2 C Z^{2} z}\right] \\
S_{34}^{s}=\left[0,0,-\frac{(\rho \mu-\sigma \psi)}{2 t m},-\frac{(\rho \mu-\sigma \psi)}{2 z m}\right] \tag{4.11}
\end{gather*}
$$

$S_{i j}^{k}=-S_{j i}^{k}$ and $S_{i j}^{k}=0$ for $\mathrm{i}=\mathrm{j}$ (i.e., $S_{i j}^{k}$ is antisymmetric in i and j).

Using equation (3.1) and (4.11), the equation (4.2) reduces to

$$
\begin{equation*}
U_{11}^{s}=0 \tag{4.12}
\end{equation*}
$$

Then by using equations (4.7), (4.11) and (4.12) in equation (4.1) the components of $\gamma^{s}{ }_{i j}$ are obtained as follows:

$$
\begin{gather*}
\gamma_{11}^{s}=\left[\frac{K_{1}}{2}+\frac{\psi D}{2 m},-\frac{\psi A}{2 m},-\frac{K_{3} A}{2 C Z^{2}},-\frac{K_{4} A}{2 C}\right]=H_{11}^{s} \quad\left(\because \gamma_{i j}^{k}=H_{i j}^{k}+S_{i j}^{k} \quad \text { and } S_{i i}^{k}=0\right) \\
\gamma_{22}^{s}=\left[\frac{B \mu}{2 m}, \frac{K_{2}}{2}+\frac{-\mu D}{2 m},-\frac{K_{3} B}{2 C Z^{2}}, \frac{K_{4} B}{2 C}\right]=H_{22}^{s} \\
\gamma_{33}^{s}=\left[\frac{Z^{2} C \mu}{2 m},-\frac{C Z^{2} \psi}{2 m}, \frac{K_{3}}{2}, \frac{Z^{2} K_{4}}{2}\right]=H_{33}^{s} \\
\gamma_{44}^{s}=\left[-\frac{C \mu}{2 m},-\frac{C \psi}{2 m}, \frac{K_{3}}{2 Z^{2}}, \frac{K_{4}}{2}\right]=H_{44}^{s} \\
\gamma_{12}^{s}=\left[\frac{B \psi}{2 m} \pm \frac{\sigma}{2 C t^{2}}\left(z K_{3}+t K_{4}\right), \frac{-A \mu}{2 m} \pm \frac{\rho}{2 C t^{2}}\left(z K_{3}+t K_{4}\right),-\frac{K_{3} D}{2 C Z^{2}}, \frac{K_{4} D}{2 C}\right] \\
\gamma_{31}^{s}=\left[\frac{K_{3}}{2} \pm \frac{-\sigma \psi}{2 z m}, \pm \frac{\rho \psi}{2 z m}, \frac{K_{1}}{2} \mp \frac{\rho K_{4}}{2 C t}, \mp \frac{\rho K_{4}}{2 C z}\right] \\
\gamma_{41}^{s}=\left[\frac{K_{4}}{2} \pm \frac{\sigma \psi}{2 m t}, \mp \frac{\rho \psi}{2 m t}, \mp \frac{\rho K_{3}}{2 C Z^{2} t}, \frac{K_{1}}{2} \mp \frac{\rho K_{3}}{2 C Z t}\right] \\
\gamma_{32}^{s}=\left[\mp \frac{\sigma \mu}{2 z m}, \frac{K_{3}}{2} \pm \frac{\rho \mu}{2 z m}, \frac{K_{2}}{2} \mp \frac{\sigma K_{4}}{2 C t}, \mp \frac{\sigma K_{4}}{2 C z}\right] \\
\gamma_{24}^{s}=\left[\pm \frac{\sigma \mu}{2 m t}, \frac{K_{4}}{2} \mp \frac{\rho \mu}{2 m t}, \mp \frac{\sigma K_{3}}{2 C Z^{2} t}, \frac{K_{2}}{2} \mp \frac{\sigma K_{3}}{2 C Z t}\right] \\
\gamma_{42}^{s}=\left[0,0, \frac{K_{4}}{2} \mp \frac{(\rho \mu-\sigma \psi)}{2 m t}, \frac{K_{3}}{2} \mp \frac{(\rho \mu-\sigma \psi)}{2 m t}\right] \tag{4.13}
\end{gather*}
$$

Next we find the affine connections $\Gamma_{i j}^{k}$ by using the relations

$$
\begin{gather*}
\Gamma_{i j}^{k}=\Gamma_{i j}^{k}+\Gamma_{i j}^{k}=p_{i j}^{k}+q_{i j}^{k} \tag{4.14}\\
p_{i j}^{k}=\left\{_{i j}^{k}\right\}+h^{k l}\left(q_{l i}^{m} f_{j m}+q_{l j}^{m} f_{i m}\right) \tag{4.15}
\end{gather*}
$$

The values of $\Gamma_{i j}^{k}$ already obtained in ([11],(3.15)) are

$$
\begin{gather*}
\Gamma_{11}^{k}=\left[0,0, \frac{\bar{A}}{2 C t}, \frac{\bar{A}}{2 C z}\right] \\
\Gamma_{12}^{k}=\left[0,0, \frac{\bar{D}}{2 C t}, \frac{\bar{D}}{2 C z}\right]=\Gamma_{21}^{k} \\
\Gamma_{13}^{k}=[a Z, b Z, \alpha, \alpha Z] \\
\Gamma_{14}^{k}=\left[-a,-b,-\frac{\alpha}{Z},-\alpha\right] \\
\Gamma_{22}^{k}=\left[0,0, \frac{B}{2 C t}, \frac{\bar{B}}{2 C z}\right] \\
\Gamma_{23}^{k}=[d Z, e Z, \beta, Z \beta] \\
\Gamma_{24}^{k}=\left[-d,-e,-\frac{\beta}{Z},-\beta\right] \\
\Gamma_{24}^{k}=\left[-d,-e,-\frac{\beta}{Z},-\beta\right] \\
\Gamma_{31}^{k}=[a Z, b Z,-\alpha,-\alpha Z] \\
\Gamma_{32}^{k}=[d Z, e Z,-\beta,-Z \beta] \\
{\left[0,0,-\left(\frac{1}{z}+\frac{\bar{C} Z}{2 C z}\right),\left(\frac{Z}{z}+\frac{\bar{C} Z^{2}}{2 C z}\right)\right]} \\
\Gamma_{34}^{k}=\left[0,0,\left(\frac{1}{t}+\frac{\bar{C}}{2 C z}\right),-\frac{\bar{C} Z}{2 C z}\right]=\Gamma_{43}^{k} \\
\Gamma_{41}^{k}=\left[-a,-b, \frac{\alpha}{Z}, \alpha\right] \\
\Gamma_{42}^{k}=\left[-d,-e, \frac{\beta}{Z}, \beta\right] \\
\Gamma_{44}^{k}=\left[0,0,-\frac{\bar{C}}{2 C t},-\frac{\bar{C}}{2 C z}\right] \tag{4.16}
\end{gather*}
$$

where

$$
a=\frac{1}{2 m z}(\bar{D} D-\bar{A} B)
$$

$$
\begin{gathered}
b=\frac{1}{2 m z}(D \bar{A}-A \bar{D}) \\
d=\frac{1}{2 m z}(D \bar{B}-B \bar{D}) \\
e=\frac{1}{2 m z}(D \bar{D}-A \bar{B}) \\
(a+e)=-\frac{(\bar{A} B-2 \bar{D} D+A \bar{B})}{2 m z}=\frac{-\bar{m}}{2 m z}
\end{gathered}
$$

and

$$
\begin{gather*}
\alpha=\frac{1}{C t}(\rho a+\sigma b)-\frac{\rho}{c t^{2}}+\frac{1}{C^{2} t z}(\bar{\rho} C-\rho \bar{C})=\frac{1}{C t}\left[(\rho a+\sigma b)-\frac{\rho}{t}+\frac{1}{C z}(\bar{\rho} C-\rho \bar{C})\right] \\
\beta=\frac{1}{C t}(\rho d+\sigma e)-\frac{\sigma}{c t^{2}}+\frac{1}{C^{2} t z}(\bar{\sigma} C-\sigma \bar{C})=\frac{1}{C t}\left[(\rho d+\sigma e)-\frac{\sigma}{t}+\frac{1}{C z}(\bar{\sigma} C-\sigma \bar{C})\right] \tag{4.17}\\
p_{11}^{k}=\left[0,0, \frac{\bar{A}}{2 C t}, \frac{\bar{A}}{2 C z}\right] \\
p_{12}^{k}=\left[0,0, \frac{\bar{D}}{2 C t}, \frac{\bar{D}}{2 C z}\right] \\
p_{13}^{k}=[a Z, b Z, 0,0] \\
p_{14}^{k}=[-a,-b, 0,0] \\
p_{22}^{k}=\left[0,0, \frac{\bar{B}}{2 C t}, \frac{\bar{B}}{2 C z}\right] \\
p_{23}^{k}=[d Z, e Z, 0,0] \\
p_{24}^{k}=[-d,-e, 0,0] \\
p_{33}^{k}=\left[0,0,-\frac{1}{z}-\frac{\bar{C} Z}{2 C z}, \frac{Z}{z}+\frac{\bar{C} Z^{2}}{2 C z}\right] \\
p_{34}^{k}=\left[0,0, \frac{1}{t}+\frac{\bar{C}}{2 C t},-\frac{\bar{C} Z}{2 C z}\right] \\
p_{44}^{k}=\left[0,0,-\frac{\bar{C}}{2 C t}, \frac{\bar{C}}{2 C z}\right] \tag{4.18}\\
q_{14}^{k}=\left[0,0, \frac{-\alpha}{Z},-\alpha\right] \\
q_{22}^{k}=[0,0,0,0] \\
q_{23}^{k}=[0,0, \beta, \beta Z] \\
q_{24}^{k}=\left[0,0, \frac{-\beta}{Z},-\beta\right] \tag{4.19}
\end{gather*}
$$

By substituting the value of $\Gamma_{i j}^{s}$ from (4.16) and $\gamma_{i j}^{s}$ from (4.13) and using equation(2.4) we get the component of $L_{i j}^{s}$.

5. Calculations of tensors $G_{i j}$ and $P_{i j}$:-

The Gauge invariant Hermition-Einstein tensor as given by Buchdahl(1958) is

$$
\begin{equation*}
G_{i j}=P_{i j}-\left(K_{i, j}+K_{j, i}-2 K_{m} \Gamma_{i j}^{m}\right)-2 \gamma_{i j}^{m} K_{m}+\gamma_{i j, m}^{m}+\Gamma_{(m n)}^{m} \gamma_{i j}^{n}-\Gamma_{i m}^{n} \gamma_{n j}^{m}-\Gamma_{m j}^{n} \gamma_{i n}^{m}+\gamma_{i m}^{n} \gamma_{n j}^{m} \tag{5.1}
\end{equation*}
$$

and the Einstein tensor $P_{i j}$ of usual asymmetric theory with a linear connection $\Gamma_{i j}^{s}$ is given by

$$
\begin{equation*}
P_{i j}=-\Gamma_{i j, s}^{s}+\frac{1}{2}\left[\Gamma_{(i s), j}^{s}+\Gamma_{(s j), i}^{s}\right]+\Gamma_{i m}^{s} \Gamma_{s j}^{m}-\Gamma_{i j}^{s} \Gamma_{(s m)}^{m} \tag{5.2}
\end{equation*}
$$

where $\Gamma_{i j}^{s}$ and $\gamma_{i j}^{s}$ are given by (4.16) and (4.13) respectively.
The component of $P_{i j}$ are obtained by using (4.16) and the relation

$$
\begin{align*}
& \Gamma_{(i j)}^{j}=\Gamma_{2 j}^{j}=0, j=1,2 \\
& \Gamma_{13}^{3}=-\Gamma_{14}^{4}=\alpha \\
& \Gamma_{23}^{3}=-\Gamma_{24}^{4}=\beta \tag{5.3}\\
& \Gamma_{33}^{3}=-Z \Gamma_{43}^{3}=-\left(\frac{1}{z}+\frac{\bar{C} Z}{2 C z}\right)
\end{align*}
$$

These are

$$
\begin{gather*}
P_{11}=P_{12}=P_{21}=P_{22}=0 \\
P_{32}=-P_{23}=\frac{2 \beta}{z} \\
P_{44}=\left[\left(a^{2}+2 b d+e^{2}\right)+\frac{(a+e) \bar{C}}{C z}-\frac{(\bar{a}+\bar{e})}{z}\right] \\
P_{33}=Z^{2} P_{44}+\frac{(a+e) Z}{z} \\
P_{34}=P_{43}=-Z P_{44}-\frac{a+e}{2 z} \tag{5.4}
\end{gather*} .
$$

Using (5.4), (4.13) and (4.16) in (5.1) we get the components of Gauge invariant Einstein tensor $G_{i j}$ as follows:

$$
\begin{align*}
& G_{11}=\left[-2 K_{1,1}+\frac{\bar{A}}{C}\left(\frac{K_{3}}{Z}+K_{4}\right)\right]-2\left[\frac{K_{1}^{2}}{2}+\frac{-\psi^{2}}{2 m}+\frac{A}{2 C}\left\{\left(K_{4}^{2}\right)-\left(\frac{K_{3}}{Z^{2}}\right)^{2}\right\}\right] \\
& +\left[\left(a+e-\frac{1}{t}-\frac{\bar{C}}{C z}\right)\left(\frac{-A}{2 C}\right)\left(\frac{K_{3}}{Z}+K_{4}\right)\right]-\left[\left(\frac{K_{3}}{Z}+K_{4}\right)\left(\frac{\bar{A}}{2 C z}-\frac{A a}{C}-\frac{b D}{C}\right]\right. \\
& +\left[3\left(\frac{K_{1}}{2}\right)^{2}+\frac{K_{1} D \psi}{2 m}+\frac{D^{2} \psi^{2}}{4 m^{2}}-\frac{A B \psi^{2}}{2 m^{2}}+\frac{A}{2 C}\left(K_{4}^{2}-\left(\frac{K_{3}}{Z^{2}}\right)^{2}\right)+\frac{A^{2} \mu^{2}}{4 m^{2}}-\rho\left(\frac{K_{3}}{Z}+K_{4}\right)^{2}\right] \\
& G_{22}=-2 K_{2,2}+\frac{\mu^{2}}{m}+\frac{1}{4} K_{2}^{2}+\left(\frac{-K_{3} B}{2 C Z^{2}}\right)_{, 3}+\left(\frac{K_{4} B}{2 C}\right)_{, 4}+\beta\left(\frac{\sigma K_{4}}{C t}+K_{2}\right) \\
& +\frac{1}{4 m^{2}}\left(B^{2} \psi^{2}-2 A B \mu^{2}-\mu^{2} D^{2}\right)+\frac{\sigma}{2 C^{2}}\left(\frac{K_{3} K_{4}}{Z t^{2}}\right) \\
& G_{33}=\left[Z^{2}\left(a^{2}+2 b d+e^{2}-\frac{(\bar{a}+\bar{e})}{z}\right)+\frac{(a+e) Z}{z}\left(\frac{Z \bar{C}}{C}+1\right)\right]-2 K_{3,3}-2 K_{3}\left(\frac{1}{z}+\frac{\bar{C} Z}{2 C z}\right)-\frac{Z^{2} C}{2 m}\left(\mu K_{1}-\psi K_{2}\right) \\
& -\frac{1}{2} Z^{2} K_{4}^{2}+\left(\frac{1}{2} K_{3,3}+\frac{Z^{2}}{2} K_{4,4}+\frac{Z K_{4}}{z}\right)-\left(\frac{1}{z^{2}}+\frac{1}{t^{2}}\left[\frac{1}{4 m^{2}}(\sigma \psi-\rho \mu)^{2}\right]\right. \\
& G_{44}=\left[\left(a^{2}+2 b d+e^{2}+\frac{(a+e) \bar{C}}{C z}-\frac{(\bar{a}+\bar{e})}{z}\right)\right]+\frac{1}{2}\left(a+e-\frac{1}{t}-\frac{\bar{C}}{C z}\right)\left(\frac{K_{3}}{Z}+K_{4}\right) \\
& +\left[\left(\frac{1}{2 Z^{2}}\left(K_{3,3}+\frac{2 K_{3}}{z}\right)+\frac{1}{2} K_{4,4}\right]-\frac{1}{2 m^{2} t^{2}}(\rho \mu-\sigma \psi)^{2}+\left(\frac{\mu C}{2 m} K_{1}-\frac{\psi C}{2 m} K_{2}-\frac{K_{3}^{2}}{2 Z^{2}}+\frac{\bar{C}}{C z} K_{4}\right)\right. \tag{5.5}\\
& G_{12}=-\left(K_{1,2}+K_{2,1}\right)+\frac{1}{m}\left(A \mu K_{2}+B \psi K_{1}\right)+\left(\frac{-K_{3} D}{2 C Z^{2}}\right)_{, 3}+\left(\frac{K_{4} D}{2 C}\right)_{, 4} \\
& +\frac{1}{4 m^{2}}\left(2 K_{1} B \psi+B D \psi^{2}-K_{2} A \mu m+A D \mu^{2}-2 A B \mu \psi\right) \\
& +\left[\begin{array}{l}
\left(\frac{K_{3}}{2}-\frac{\rho \mu}{2 z m}\right)\left(\frac{-K_{3} D}{2 C Z^{2}}-\frac{\bar{D}}{2 C t}\right)+\left(\frac{K_{2}}{2}+\frac{\sigma K_{4}}{2 C t}\right)\left(\frac{K_{1}}{2}-\frac{\sigma K_{4}}{2 C t}-\alpha\right) \\
+\left(\frac{K_{4}}{2}+\frac{\rho \mu}{2 m t}\right)\left(\frac{K_{4} D}{2 C}-\frac{\bar{D}}{2 C z}\right)+\left(\frac{K_{2}}{2}+\frac{\sigma K_{3}}{2 C Z t}\right)\left(\frac{K_{1}}{2}-\frac{\rho K_{3}}{2 C Z t}+\alpha\right)
\end{array}\right] \tag{5.6}
\end{align*}
$$

6. Solution of Equations (2.5) and (2.6)

Equation (2.5) is $L_{i}=L_{[i j]}^{j}=0$ i.e., $L_{i}=L_{[i j]}^{j}=\Gamma_{[i j]}^{j}-\gamma_{[i j]}^{j}=q_{i j}^{j}-S_{i j}^{j}=0$
Substituting the components of $\Gamma_{i j}^{s}$ from equation (4.6) and those of $L_{i j}^{s}$ from (4.13) into the equation (2.5) we find that when $i=1$ and 2 , we get

$$
\begin{equation*}
K_{3}+Z K_{4}=0 \tag{6.1}
\end{equation*}
$$

and when $i=2$ and 3, we get

$$
\begin{equation*}
\sigma \psi-\rho \mu=0 \tag{6.2}
\end{equation*}
$$

Using the conditions (6.1) and (6.2), and the equations (5.4)we get the solutions of the field equations(2.6) as:

$$
\begin{gathered}
-2 K_{1,1}-\frac{K_{1}^{2}}{4}-\left(\frac{K_{3} A}{2 C Z^{2}}\right)_{, 3}+\left(\frac{K_{4} A}{2 C}\right)_{, 4}+\frac{K_{1} D \psi}{2 m}+\frac{D^{2} \psi^{2}}{4 m^{2}}-\frac{A B \psi^{2}}{2 m^{2}}+\frac{A^{2} \mu^{2}}{4 m^{2}}=0 \\
-2 K_{2,2}+\frac{\mu^{2}}{m}+\frac{1}{4} K_{2}^{2}+\left(\frac{-K_{3} B}{2 C Z^{2}}\right)_{, 3}+\left(\frac{K_{4} B}{2 C}\right)_{, 4}+\frac{1}{4 m^{2}}\left(B^{2} \psi^{2}-2 A B \mu^{2}-\mu^{2} D^{2}\right)+\frac{\sigma}{2 C^{2}}\left(\frac{K_{3} K_{4}}{Z t^{2}}\right)=0 \\
{\left[Z^{2}\left(a^{2}+2 b d+e^{2}-\frac{(\bar{a}+\bar{e})}{z}\right)+\frac{(a+e) Z}{z}\left(\frac{Z \bar{C}}{C}+1\right)\right]-2 K_{3,3}-2 K_{3}\left(\frac{1}{z}+\frac{\overline{C Z}}{2 C z}\right)+\left(\frac{1}{2} K_{3,3}+\frac{Z^{2}}{2} K_{4,4}+\frac{Z K_{4}}{z}\right)=0} \\
{\left[\left(a^{2}+2 b d+e^{2}+\frac{(a+e) \bar{C}}{C z}-\frac{(\bar{a}+\bar{e})}{z}\right)\right]+\left[\left(\frac{1}{2 Z^{2}}\left(K_{3,3}+\frac{2 K_{3}}{z}\right)+\frac{1}{2} K_{4,4}\right]+\left(\frac{\mu C}{2 m} K_{1}-\frac{\psi C}{2 m} K_{2}-\frac{K_{3}^{2}}{2 Z^{2}}+\frac{\bar{C}}{C z} K_{4}\right)=0\right.} \\
-\left(K_{1,2}+K_{2,1}\right)+\frac{1}{m}\left(A \mu K_{2}+B \psi K_{1}\right)+\left(\frac{-K_{3} D}{2 C Z^{2}}\right)_{, 3}+\left(\frac{K_{4} D}{2 C}\right)_{, 4} \\
+\frac{1}{4 m^{2}}\left(2 K_{1} B \psi+B D \psi^{2}-K_{2} A \mu m+A D \mu^{2}-2 A B \mu \psi\right)+\left(\frac{K_{3}}{2}-\frac{\rho \mu}{2 z m}\right)\left(\frac{-K_{3} D}{2 C Z^{2}}-\frac{\bar{D}}{2 C t}\right)+\left(\frac{K_{4}}{2}+\frac{\rho \mu}{2 m t}\right)\left(\frac{K_{4} D}{2 C}-\frac{\bar{D}}{2 C z}\right)+0
\end{gathered}
$$

Thus the equations (6.1) and (6.2) are the necessary conditions in such a way that the gauge invariant generalized second field (2.6) are satisfied in plane symmetry in the sense of Taub.

Lemma: If $K_{3}+Z K_{4}=0$ and $\sigma \psi-\rho \mu=0$,then the necessary condition for $\left(g_{i j}\right)$ given by (3.4) to be the solution of Buchdahl's field equation in Bondi space-time is that

$$
\begin{equation*}
\left[\left(a^{2}+2 b d+e^{2}\right)+\frac{(a+e) \bar{C}}{C z}-\frac{(\bar{a}+\bar{e})}{z}\right]=0 \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
Z^{2}\left[\left(a^{2}+2 b d+e^{2}\right)+\frac{(a+e) \bar{C}}{C z}-\frac{(\bar{a}+\bar{e})}{z}\right]+\frac{(a+e) Z}{z}=0 \tag{6.5}
\end{equation*}
$$

There are several possibilities under which the solution of equation (2.6) may be considered. However in this paper we consider only the case given by equations (6.1) and (6.2) and write our conclusion in the form of the above Lemma.

References

[1] H.A.Buchdahl: Gauge invariant generalization of field theories with asymmetric fundamental tensor, Quart. j. Math., Oxford, 9 (1958),257-264.
[2] K.B.Lal and N.Ali: The (t / z) -type plane wave solutions of the field equations of Einstein's non -symmetric Unified field theory in Bondi space-time., Tensor N.S.20(1969), 299-302.
[3] K.B.Lal and N.Ali: Plane wave solutions of Einstein's Unified Field equations of nonsymmetric theories in Bondi space-time. Tensor N.S. 20(1969), 131-137.
[4] V. Halavaty: Geometry of Einstein's unified field theory, Noordhoff, Groningen, (1957)
[5] K.B.Lal, R.P.Srivastava: On plane wave solutions of Gauge Invariant generalization of field theories with asymmetric fundamental tensor in Bondi space-time: Tensor N.S.Vol.25(1972).
[6] Vinod B.Johari : Plane waves in the unified field of gravitation and electromagnetism-Exact plane wave solutions in Bondi space-time,Prog. theor.Phys. 35(1966) .
[7] S.D.Katore, R.S.Rane : Plane gravitational waves of Gauge invariant generalized field equations with asymmetric fundamental tensor in plane symmetry, Journal of Mathematical Physics, 49, 083505 (2008) ,American Institute of Physics.
[8] H. Takeno: The mathematical theory of plane gravitational waves in general relativity, Sci.Rep.of the Rec.Inst.Theor..Phy.,Hiroshima Univ.1(1961).
[9] H. Weyl: Raum,Zeit, Materie, $3^{\text {rd }}$.ed., Berlin,(1919).
[10] A. Einstein: The meaning of relativity, $5^{\text {th }}$ ed. Revised, London, (1951),Appendix II.
[11] S.W.Bhaware, D.D.Pawar, A.G.Deshmukh: The (t/z) type Plane wave solutions of the field equations of Bonner and Schrodinger Non-symmetric unified field theory: Prespacetime journal, Vol.3,5 (2012) 463-473.
[12] R.S.Mishra: Solutions of Gauge Invariant generalization equations of the field theories with asymmetric fundamental tensor: Quart. j. Math., Oxford, 14 (1963), 81-85.
[13] M.Ikeda: on static solutions of Einstein's generalized theory ofgravitation , 1,Prog. Theor. Phys., 12(1954), 17-30.
[14] H. Bondi, F.A.E.Pirani, and I. Robinson: Gravitational waves in general relativity III. Exact plane waves, Proc. Roy.

[^0]: * Correspondence Author: Suresh W. Bhaware, Department of Mathematics, Shri R.L.T.College of Science Akola, 444001, India. Email: swbhaware@gmail.com

