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Abstract 
Weyl’s theory is studied under chiral approach when the electromagnetic 4-potential is 

considered as part of self-dual solutions to the Maxwell equations known as “instantons”. We 

discuss some cosmological situations within the chiral approach. 
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1. Introduction 
 

Hermann Weyl (1885–1955) investigated many of the theory’s applications in physics and 

cosmology of the Einstein’s general theory of relativity. He generalized the theory’s Riemannian 

basis for a unification of the gravitational and electromagnetic fields for normal Maxwell 

equations with 4-potential A . Weyl’s work is important because he introduced gauge invariance 

and applied it to field of quantum theory; gauge invariance is now recognized as one of the 

milestones of quantum physics. Here we will simply sketch Weyl’s derivation of his field 

equations, which result from a variation of Weyl gauge invariant in action Lagrangian. We 

present aspects of Weyl theory under chiral approach as cosmological effects. 

 

In this four dimensional theory repeated indices are summed, we denote partial derivatives as 

, /F F x F   

      , etc., and covariant differentiation is expressed by  ; . In Riemannian 

geometry the affine connection 
LC 

 is the Christoffel symbol, (Levi-Civita connection), that is, 

, , ,

1
( )

2

LC g g g g 

          ; 

while in Weyl’s geometry it is 

 
W LC A A g g A    

              , 

 

where A is a vector field that Weyl identified with the electromagnetic 4-potential [1-7]. 
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Einstein objected to the fact that the 2R  term is of fourth order in the metric tensor (see eq. (1) 

below), but we will find that this objection can be averted in the chiral approach and because it is 

important to study cosmological phenomenon of the accelerated expansion of the Universe 

which is consistent with recent observational data [8]. One new feature connected with Weyl’s 

theory are the actual gravitation theories ( )F R  proposed recently by several authors [9, 10] 

because also it is interesting to explore its properties with 2( )F R R which is an invariant action 

in Weyl geometry. 

 

 

2. The Weyl action Lagrangian and variational principle 
 

The simplest invariant action in Weyl’s geometry utilizes the square of the Ricci scalar: 

 

    
2 4( )I g R F F d x

    ,                        (1) 

 

here , ,F A A      , where A  is the 4-potential. The Weyl action is composed of the scalar 

2R and the source-free electromagnetic density F F 

 . In Weyl’s theory the covariant derivative 

of the metric tensor is not zero: ; 2g g A     , while 
;

4g g A
   . The variation of Weyl 

action with respect to g is simplified by utilizing the Palatini method [3]: 

                       
4( )W WI g G g J A d x 

      ,                  (2) 

where: 

    
;

, ; , ;

1 1
2( ) 2 ( ) 16 8

4 4

6 2 8

WG g F F F F R R g R RA A R A

g g R g g R A g g RA g g RA A

 

         

   

           

      

   

                (3) 

and: 

                       , ,

1 1
24 ( ) 4 ( )

2

W J gg RA R gF
g

  

      


  .            (4) 

Setting these quantities to zero we get: 

 

                  

;

, ; , ;

1 1
( ) ( ) 8 4

4 4

1
3 4

2

g F F F F R R g R RA A R A

g g R g g R A g g RA g g RA A

 

        

   

           

    

   
                  (5) 

and: 

                   , ,

1 1
( ) 6 ( )

2
gF gg RA R

g

 

     


 .                  (6) 
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The left side of (5) is the familiar energy tensor  of the electromagnetic field, while the Weyl-

Ricci term is reminiscent of Einstein’s gravitational field equations; both quantities are traceless. 

The remaining terms all involve the 4-potential and its covariant derivative. Eq. (6) is the most 

notable result of Weyl’s theory; it indicates that electromagnetism is an intrinsic part of the Weyl 

geometry. 

   

The ,( )gF

 term is the electromagnetic source density, and its divergence must vanish; this 

results in the condition: 

 

        , ; ,

;

1 1
( ) 6 ( )

2
gF gg RA R

g

 

   



 
    

  
                    (7) 

giving: 

, ; ; , , ,0 2 4 4g R g RA g R A g RA A   

           .             (7’) 

 

By calculating the trace Wg G

  and setting it to zero, we recover this same condition (which is 

a consequence of Noether’s theorem). We can now use (7’) to simplify (5) somewhat; 

eliminating the ;g RA

   term we get, finally: 

 

          , ,

1
( ) 8 4 2

4
T R R g R RA A R A g g R A g g RA A 

                                      (8) 

 

 

3. Weyl’s theory under chiral approach: Cosmological aspects 

 

Eq. (8) and its interpretation is open to questions. In view of this, we can ask what happens when 

the chiral Weyl vector A is set to ( ) ( )chiral cA A   (see appendix A). Under chiral approach with 

self dual instantons 0T     (see eq. (A14) of appendix A), thus we have: 

   , , ( )

1
( ) (8 4 2 ) 0

4 cA AR R g R RA A R A g g R A g g RA A
 

 

                  ,            (9) 

 

when R  is constant this expression is reduced to: 

 

     ( )

1
( ) (8 2 ) 0

4 cA AR g R A A g A A
 



          .                       (10) 

 

In this approach, ; 2 ( ) 0cg g A       and 
;

4 ( ) 0cg g A
    so refutation of Einstein is no 

longer valid ( Einstein argued that ds  can be associated with the ticking of a clock or the 
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spacings of atomic spectral lines and concluded that if it is not absolutely invariant, many basic 

physical quantities such as Compton wavelength, electron mass, etc, would vary arbitrarily with 

time and location) . 

 

Eq. (10) is traceless, Einstein’s equation 1/ 2G R g R T      is divergenceless, whereas 

Weyl’s equation is not. We note that chiral eq. (10) reproduces all of the predictions that general 

relativity makes via Einstein’s equation, and it may be important to F(R) theories, (see references 

in [10]). The Einstein field equations with 0T  is: 

 

                              
1

0
2

R g R g      ,                         (11) 

 

where   is Einstein’s cosmological constant. Contraction of this expression shows that we can 

identify the Ricci scalar with this constant via 4R   . But if we insert this result back into (11), 

we have precisely the chiral Weyl result in (10) (Eqs. 10 and 11 differ only by a traceless term)! 

We see that chiral Weyl’s field equations automatically relate the Ricci scalar to the 

cosmological constant. This justifies our earlier demand in (9) that R be a non-zero quantity. As 

i E= H , we can postulate that the cosmological constant is proportional to the square of the 

magnetic field H; further studies on this topic is under development. 

 

 

4. Conclusion  
 

All the usual tests of general relativity—gravitational red shift, radar delay, perihelion shift of 

Mercury, bending of light with the Einstein theory—also are satisfied using Weyl’s approach 

under chiral approach because we have an additional term due to the non-vanishing of the 

cosmological constant. At the other end of the cosmological spectrum is the observation that the 

expansion of the universe appears to be accelerating. This has given rise to the dark energy 

theory, which also proposes the existence of some kind of repulsive energy field permeating the 

universe that serves to speed up the expansion, a non-zero cosmological constant can be a 

solution to these problems. 

 

 

Appendix A: Self-dual electromagnetic fields (instantons) 

 

Self-dual solutions to the Maxwell equations known as “instantons,” have gained recognition 

among experts in gauge field theory and mathematical physics. Furthermore, the idea of self-

duality was found to be of much significance in many problems of algebraic geometry. It is 

instructive to consider self-dual fields in this simpler context [11-14] is likely to be relevant. We 
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will obtain a field configuration similar to that found in Ref. [12] but follow an alternative route 

based on the idea of self-duality. There are several reasons for considering self-dual fields in 

classical electrodynamics: Self-dual solutions are readily calculated and possess trivial energy-

momentum properties, and the desired free field configurations are obtainable as superposition of 

self-dual and anti-self-dual constituents so that the resulting spectral properties may be easily 

controlled. 

 

To simplify our notation as much as possible, we choose the Gaussian system of units and set the 

speed of light equal to unity. An electromagnetic field is self-dual/anti-self-dual if [15]: 

 

                                                                 i E= H  .              (A1) 

 

How it is possible to obtain equation (A1)? The answer is: if we consider free electromagnetic 

fields governed by the homogeneous Maxwell equations with the operator / c t   transformed to 

/ c t(1 T )    : 

                                                          (1 T )
c t


  


E=- H  ,              (A2) 

                                                          0 E ,              (A3) 

                                                         (1 T )
c t


  


H= E ,                       (A4) 

                                                         0 H .              (A5) 

 

Let some field configuration be self-dual. If this field obeys eqs. (A4) and (A5), it automatically 

satisfies eqs. (A2) and (A3). Because Maxwell’s equations are linear, any superposition of self-

dual and anti-self-dual solutions is a further solution. The condition that a field configuration is 

self-dual is not invariant under the parity transformation  r  →− -r  because of the opposite parity 

properties of the electric and magnetic field; the mirror-image configuration is anti-self-dual. As 

will become clear, the physically relevant configurations are represented by a sum of self-dual 

and anti-self-dual solutions, which is invariant under the parity transformation. 

 

Let us express the electric field intensity E  and the magnetic field H  in terms of scalar and 

chiral vector potentials V and 
c

A , then the self-duality condition (1) becomes: 

 

                                                       c
c

( V )
c t


    



A
A ;             (A6) 

 

If we fix the gauge V 0 , then eq. (6) reduces to: 
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                                                            c
cc t


  



A
A .             (A7) 

 

Because the self-duality condition (A7) is a linear first-order partial differential equation, it is 

simpler to solve than the second-order equations that result from Maxwell’s eqs. (A2)-(A5). A 

remarkable property of self-dual configurations is that they carry zero energy and momentum. 

This property can be verified by applying the self-duality condition (1) to the expressions for the 

energy density 2 2
(1/ 8 )( )   E +H and the Poynting vector (c / 4 )( )  S E H . 

 

Note that given an antisymmetric field F in Minkowski space, the self-duality condition can be 

expressed as: 

                                                              *F iF    ,            (A8) 

 

where the Hodge dual field *F  is defined by (1 / 2)*F F 



 . Equation (A8) is identical 

to eq. (1) because E  and H  are expressed in terms of F  as 0iEi F  and (1 / 2)Hi ijk jkF  , so 

eq. (A1) is 0 (1 / 2)i i ijk jkF F . If the Bianchi identity: 

 

                                                              * 0F


               (A9) 

 

is compared with the equations of motion for a free electromagnetic field: 

 

                                                                0F


  ,           (A10) 

 

it becomes apparent that if F  obeys eqs. (A8) and (A9), then F  automatically obeys eq. 

(A10). 

   Self-dual configurations possess trivial energy-momentum contents. The stress-energy tensor 

1 1

4 4
F F F F

 
   

  
 
 
 

, can be brought into the form   

 1
* *

4
F F F F

 
   

   . The proof is simple, to see, for example, Ref. [13], problem 

5.2.8, and thus    1
* )( *

4
F i F F i F

 
    

     ;  if  *F iF    then  
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0  . Special result is obtained with ( ) ( )chiral cA A   when 0V   and 
c c

kA = A  , /k c  

that are used in our paper. 
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