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Abstract 
 

All solutions of the equations of General Relativity concerning the movement of single massive 

bodies relative to each other and which are tested experimentally, were obtained by us within the 

framework of LIGT in the previous article. It is obvious that if we want to fully confirm the 

equivalence of General Relativity to LIGT, it seems necessary to obtain the corresponding 

cosmological solution in framework of LIGT. The present article is dedicated to this subject. 
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1.0 Introduction 

All solutions of the equations of General Relativity concerning the movement of single massive 

bodies relative to each other (planets, stars, etc.) and which are tested experimentally, were obtained 

by us within the framework of LIGT in the previous article. 

 

Moreover, there are solutions that are interpreted as cosmological, that is, related to the entire 

universe. At the moment, as a tested solution is also considered the solution, obtained by means of 

the postulates of the homogeneity and anisotropy of Universe, jointly with the results of general 

relativity and thermodynamics. 

 

The question of the legality of such description of the Universe that contains, along with an almost 

infinite number of stars, planets and smaller bodies also an almost infinite number of other objects 

(microwave cosmic background, gases, dust, supernovae, neutron and many other types of stars, 

different types of galaxies and so forth.), will be left outside the limits of this article. Also, we will 

not consider the contribution of electromagnetic field (in particular, its lower state - physical vacuum) 

and elementary particles, although their presence in the universe is primary. Thus, according to the  

Hans Alfven theory (Alfven, 1942; Alfven and Arrhenius, 1976) (for which he received the Nobel 

Prize), electric and magnetic fields play a crucial role in the formation of the solar and other star 

systems. 

 

Let us only note that direct experimental proofs of correctness of cosmological postulates and 

solutions do not exist (Baryshev, 1995). However, under the current cosmological paradigm are 

accepted interpretations of observational data, which was recognized as confirmation of 

abovementioned solutions. At the same time, there are numerous alternative explanations for these 
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observational data, which, as was repeatedly noted by Alfven (Alfven, 1984).) and other scientists, 

are not taken into account (which means that they can not be published in official publications): 

«Perhaps never in the history of science has so much quality evidence accumulated against a 

model so widely accepted within a field. Even the most basic elements of the theory, the 

expansion of the universe and the fireball remnant radiation, remain interpretations with credible 

alternative explanations. One must wonder why, in this circumstance, that four good alternative 

models are not even being comparatively discussed by most astronomers» (Flandern, 2002). 

 

2.0. Formulation of the problem 

It is obvious that if we want to fully confirm the equivalence of general relativity and LIGT, it seems 

necessary to obtain the corresponding cosmological solution in framework of LIGT. The present 

article will be dedicated to this subject. At the same time, our paper bears a feature which the 

previous article also bore.  We have practically no need to present this solution since it has long been 

known, and is even taken into consideration at the pedagogical level. 

 

Basic cosmological solutions of general relativity (for three types of curvature of space-time 

Universe) were obtained by Friedman (1922). Their derivation is reported in numerous textbooks, 

lectures and monographs; See, for example.  (Bogorodsky, 1971; Dullemond et al. 2011, Ch. 4.). 

 

The basis upon which the solution of Friedman is built (Dullemond et al . 2011, Ch. 4) are the two 

postulates mentioned above about the state of the universe. Besides that, it was proven by Robertson 

and Walker that the only one choice of metric exists, that satisfies these postulates. 

   

Let us consider this metric (Dullemond et al . 2011, Ch. 4): 

 

2.1 Robertson-Walker geometry of space 

“The Universe is homogeneous and isotropic. Isotropy means that the metric must be diagonal. 

Because, as we shall see, space is allowed to be curved, it will turn out to be useful to use spherical 

coordinates (  ,,r ) for describing the metric. The center of the spherical coordinate system is us 

(the observers) as we look out into the cosmos. Let us focus on the spatial part of the metric. For flat 

space the metric is given by the following line element: 

       222222 sin  ddrdrds  ,     (2.1) 

where   is now measured from the north pole and is   at the south pole. It is useful to abbreviate 

the term between brackets as 

        2222 sin  ddd  ,    (2.2) 

because it is a measure of angle on the sky of the observer. Because the universe is isotropic the 

angle between two galaxies as we see it is in fact the true angle fromour vantage point: The 

expansion of the universe does not change this angle. Therefore we can use d  for the remainder of 

this lecture. So, for flat space we have 

 
2222 drdrds  ,    (2.3) 

It was proven by Robertson and Walker that the only alternative metric that obeys both isotropy and 

homogeneity is: 
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           2222 drfdrds K ,    (2.4) 

where the function  rfK is the curvature function given by 
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The constant K is the curvature constant. We can also define a “radius of curvature” 

    21 KRcurv ,   (2.6) 

which, for our 2-D example of the Earth’s surface, is the radius of the Earth. In our 3- D Universe it 

is the radius of a hypothetical (!) 3-D “surface” sphere of a 4-D“sphere”  in 4-D space. 

 

Note that the metric given in Eq. (2.4) can be written in another way if we define an alternative 

radius r  as  rfr K . The metric is then: 

    
22

2

2
2

1
dr

Kr

dr
ds 


  ,    (2.7) 

Note that this metric is different only in the way we choose our coordinate r ; it is not in any physical 

way different from Eq. (2.4)”. 

 

The Robertson-Walker metric allows to build a solution Friedman. The Friedmann Equations are two 

simple first order ordinary differential equations. Solutions to these equations yield the cosmological 

model we are interested in (Dullemond et al. 2011, Ch. 4). 

 

2.2. The Robertson-Walker Universe metric in framework of LIGT 

As we have shown (Kyriakos, 2015), the square of the interval, which in SRT and GRT is considered 

as a geometry object, in the physics of elementary particles and within LIGT is a mathematical 

notation of the Lorentz-invariant energy-momentum conservation law. 

 

That is why the Lorentz transformation can be found formally as a group of transformations 

preserving invariant the squared interval. 

 

In the presence of a gravitational field this quadratic form contains a metric tensor, in which the 

amendment of changing the scale of coordinates derived due to the effects of the Lorentz 

transformation, is taken into account. As we have shown, this tensor is identical to the one obtained 

from the solution of equations of general relativity. Thus there is no need to interpret this interval as 

belonging to a Riemann space. It may be written in any (including rectangular) coordinate system.  

 

Thus, all above arguments in section 2.1 may be repeated in LIGT as well as the further calculations 

of Friedman. Since Newton's equation is a first approximation of the equations of gravitation LIGT, 

you can expect that the results of Friedman's (at least to a first approximation) can be derived from 

Newton's theory of gravitation. 
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Such solutions were indeed found in 1934 (Milne, 1934;  McCrea and Milne, 1934) (see the original 

solution in brief in Annex 1) and refined later (Leizer, 1954; ets). Moreover, it appears that these 

solutions are the same as the solutions of Fridman. 

 

A modern formulation of this solution in Russian can be found, for example, in the presentation of 

the expert in the field of general relativity, academician Ya.B.Zeldovich; see Appendix I to the book 

(Weinberg, 2000), p. 190, titled “The classical non-relativistic cosmology” , who note here: 

“All the calculations could have been made not only in the nineteenth century, but also in the 

eighteenth century”. 

 

In English, lecture 2 from the modern cosmology course ((Dullemond et al. 2011, Ch. 2) is dedicated 

to this subject. 

 

Closing notes 

This concludes our presentation of LIGT itself. It would be interesting to analyze the question of 

whether the Hilbert-Einstein's general relativity has some advantages over non-geometrical approach 

except for the gaudy mathematical interpretation that goes beyond the usual physics. Some thoughts 

on this matter will be set out in other articles. 

 

Annex 1 

A Newtonian Expanding Universe* 

By E. A. Milne (Oxford) 

[Received 7 March 1934] 

Quart. J. Math. Oxford 5, 64 (1934) 

 

1. The phenomenon of the expansion of the universe has usually been discussed by students of 

relativity by means of the concept of ‘expanding space’. This concept, though mathematically 

significant, has by itself no physical content; it is merely the choice of a particular mathematical 

apparatus for describing and analysing phenomena. An alternative procedure is to choose a static 

space, as in ordinary physics, and analyse the expansion-phenomenon as actual motions in this space. 

Moving particles in a static space will give the same observable phenomena as stationary particles in 

‘expanding’ space. In each case the space is a construct built up by the mathematician out of 

observations that could in principle be made; it is built up around the matter in motion according to 

certain rules. The formulation of the relevant laws of nature depends on the rules adopted, and the 

laws will be quite different if different rules are adopted, as I have elsewhere† explained.  

 

The alternative procedures have been tersely described in a recent paper by S. R. Milner.‡ He 

explained that we can either modify our geometry in order to retain  ∫ ds = 0 as the paths of free 

particles, or retain Euclidean geometry and Minkowski space-time and modify the variational 

principle by weighting the elements of path ds with appropriate invariant weighting factors.  

 
*Paper reprinted with persmission of the Oxford University Press. 
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† Zeits. f¨ur Astrophys. 6 (1933), 29. 

‡ Proc. Roy. Soc. A, 139 (1933), 349 (§2). 

 

In this paper I show how the same locally observable results can be obtained from elementary 

Newtonian theory (using flat, static space, Newtonian time, and the Newtonian dynamics and law of 

gravitation) as are given by Einstein and de Sitter’s well-known relativistic model† of a universe in 

flat, expanding space and the relativistic theory of gravitation. It will be shown that the latter model 

corresponds to a Newtonian universe in which every particle has the parabolic velocity of escape 

from the matter ‘inside it’ as judged by any arbitrary observer situated on any particle of the system... 

The identity is exact — no approximation is involved, nor is any neglect made of inverse powers of 

the velocity of light. These results will be extended to a general class of relativistic universes and the 

corresponding Newtonian universes in a joint paper by the author and Dr. W. H. McCrea. 

 

In the Newtonian cases the symbol t occuring in the differential equations and their integrals denotes 

Newtonian time. In the relativistic cases it denotes ‘cosmic time’, i.e. the time kept by a clock 

moving with the particle concerned. In the Newtonian case such a clock keeps the same time as the 

observer’s clock, assuming the usual definition of simultaneity by means of light-signals; in the 

relativistic cases, it can be shown that the ‘cosmic time’ of an event does not coincide with the epoch 

assigned to it by a distant observer, using the same definition of simultaneity. Thus the two identical 

sets of differential equations have different interpretations in the two cases…  Apart from this 

question of interpretation, the relativistic and Newtonian theories as regards models of the universe 

are indistinguishable in their predictions of local phenomena… 

 
† Proc. Nat. Acad. Sci. 18 (1932), 213. 

 

2. It seems to have escaped previous notice that whereas the theory of the expanding universe is 

generally held to be one of the fruits of the theory of relativity, actually all the at-present-observable 

phenomena could have been predicted by the founders of mathematical hydrodynamics in the 

eighteenth century, or even by Newton himself. The velocity of light, c, does not enter into the 

formula determining the law of expansion or the relation between the rate of expansion and the local 

mean-density. This point is obscured in treatments which take the velocity of light as unity; actually c 

cancels out, and a knowledge of the numerical value of c is not required. All that is necessary is the 

Newtonian theory of dynamics and gravitation, combined with the hydrodynamical equation of 

continuity…  

 

3. Velocity- and density-laws. Let us adopt Euclidian space and Newtonian time for all observers, 

and the Newtonian formulation of dynamics and gravitation. Consider a swarm or cloud of freely 

moving particles in this space; in the system we shall construct collisions do not occur. The problem 

is to find a cloud of particles, possibly in motion (i.e. to determine its motion and density behaviour) 

such that it is described in the same way as viewed from any particle of the system as place of 

observation. Einstein showed long ago‡ that a static universe of this kind led to contradictions within 

the walls of Newtonian theory. 

 
*To be distinguished from Einstein’s principle of relativity. 

† Phil. Mag. (7) 14 (1932), 386. 

‡ Sitz. d. Preussischen Akad. (1917), 150. [full name of the journal: Sitzungsberichte der K¨oniglich-Preussischen 

Akademie der Wissenschaften zu Berlin—Editor]. 
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We therefore investigate the possibility of constructing a homogeneous universe in which the density 

 at any point changes with the time. Since here there is an absolute simultaneity, there is no 

difficulty in defining homogeneity, and we therefore have   =  (t), a function of time t only. Of the 

possible motions, a particular case will be that in which the direction of motion is strictly radial as 

seen by an assigned observer. (We exclude the possibility of rotation.) We now investigate the form 

of the function  (t) and the law of dependence of velocity on position and epoch.  

 

Let   be the outward velocity of a particle at time t, at distance r from the observer, relative to the 

particle on which the observer* is situated. Let M(r) be the mass contained in the sphere of radius r. 

Consider the particular case† in which the distant particle has the parabolic velocity of escape from 

the mass contained in the sphere of radius r. The observer considers the material outside this sphere 

as having no influence on the motions inside it, in accordance with Newtonian gravitational theory; 

the observer, in fact, supposes that conditions ‘at infinity’ are compatible with this assumption. Then 

he writes down 

   

Since the mass M(r) remains constant ‘following the motion’, the particle will always possess the 

velocity given by (1) if it once possesses it. In writing down (1) we are not using the notion of a 

gravitational potential, here inapplicable, but are employing (1) simply as an integral of the equation 

of motion with a particular value of the constant of integration. Equation (1) gives 

  

The motion must be such that the hydrodynamical equation of continuity‡ is satisfied. This, in polar 

coordinates, runs in Eulerian notation 

                                                     

where   is a function of r and t given by (2). Inserting this, we have 

 
*A typo in the original: “observers” instead of “observer is” [Editor]. † This will be generalized later, in the joint paper 

which follows, but the particular case offers a better introduction and in any case requires separate treatment in the 

resulting integrations. 

‡ Circa 1750. 

                                         

Integrating, we have 

                                           

or, choosing a suitable origin of t, 

                                           

This gives 
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Equation (2) then gives* 

              

We now verify that this is a solution of the problem. The acceleration of the particle is 

     
and this is precisely the Newtonian acceleration, since 

      
Lastly (5) satisfies the Newtonian principle of relativity and Einstein’s cosmological principle. If we 

transform our origin to another of the moving particles, at distance R, where the velocity V is (2/3)R/ 

t, the Newtonian formulae of transformation are 

                                               r′ = r − R,   v′ = v − V, 

 
*The minus sign is also permissible, giving   = −(2/ 3) r/ t. 

 

whence 

                 
The acceleration also obeys the Newtonian transformation law. 

 

4. Discussion. Equations (4) and (5) provide a solution to our problem. By (5),   obeys a velocity-

distance proportionality at any one epoch, and so this Newtonian universe obeys Hubble’s law of 

nebular velocities. If we put this law in the form r  , where α is observed, then  = 2/3t, and by 

(4) 

                           
The data from the nebular velocities and distances then give for t a value of about 

91031   years, 

and a density r of about 5 × 10
−238

 gram cm
−3

 These are of the usual orders of magnitude given by the 

‘expanding space’ theories, as well as by the kinematic theory. In the kinematic theory, as I have 

shown,*   ~ 1/(4/ 3)  Gt
2
 and  = r/ t, so that here  ~

2 /(4/ 3) G. Thus the local value of the 

‘age’ of the universe is on the Newtonian theory two-thirds that on the kinematic theory, and the 

density about one-half that on the kinematic theory. Present estimates of the actual mean local 

density of the universe cannot discriminate between the two. 

 

5. Comparison with the Einstein–de Sitter universe.  

We have seen that the Newtonian universe constructed above is defined by the equations 

        
where 

                              
Equations (9) contain within themselves the equation of continuity, for on differentiating the first of 

(9) and using the second we have at once 
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*M.N.R.A.S. 94 (1933), 7. 

 

                                                        
Put 

                                                          
where  f  is a constant particularizing the particle considered and R is a universal function of t only. 

Actually, integration of 

                                                       
gives at once r = f t

2/ 3
, so that R(t) = t

2/ 3
, but we do not need this. Then   = fdR/dt,  D /Dt = f 

d
2
R/dt

2
. Introducing these in (9) and using (10) we see that  f  divides out and we get 

                              

                           
Introduce Einstein’s constant k defined by  

                                                              , 

and write 

                                                                 . 

Then (12) and (13) become 

                                                             

                                                        
But these are identical with the relativistic equations for an expanding universe of zero curvature 

with pressure p = 0 and cosmical constant   = 0, as given* by Einstein and de Sitter. Conversely, 

from the relativistic equations (14) and (15) we can infer equations identical in form with the 

Newtonian equations. The equations (14) and (15) are derived from a metric 

                                                  
In this space a particle is assigned fixed ‘coordinates’ x, y, z, and the ‘distance’ r of such a particle is 

given by  

                                                                   r = f R,  

where f   is constant for the particle, depending on the particle chosen. Then . 

                                                             
Introducing these in (14) and (15) and returning to t, we see that c cancels out, and we are left with 

                                                        

                                                   
Define m(r) by 
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Then 

                                        
 
* Einstein and de Sitter, loc. cit., give (14); (15) is given by de Sitter, Univ. of California Pub. Math. 2 (1933), 161. 

                                                     

which by (17) is zero. Hence m(r) is constant following the motion, and (16) and (17) may then be 

written 

                                                        
which are the Newtonian equations. It follows that the two equations defining the behaviour of R and 

ρ in the Einstein–de Sitter universe are equivalent to an equation of motion and an equation of 

continuity. Since they were originally obtained from Einstein’s field equations via the Riemann–

Christoffel tensor, we have an interesting example of the correspondence of Einstein’s field 

equations with Newtonian dynamics and gravitation. The density ρ in the Einstein–de Sitter universe 

now comes out,* as in the Newtonian case, as  =1/6 Gt
2
, and the ‘velocity-law’ as  (2/3)r/t.   

 

Since the time t or t in the relativistic case coincides locally with the Newtonian time t kept by the 

clock moving with the particle considered, it follows that the locally observable properties of the 

Einstein–de Sitter universe are identical with the properties predicted for the Newtonian universe. It 

can be shown that just as in the Newtonian case a particle endowed with the parabolic velocity 

steadily decreases in velocity, ultimately to zero, so in the Einstein–de Sitter universe the red-shift l′/ 

l, calculated as the Doppler effect, for any given particle of the system steadily decreases as the epoch 

of observation of this Doppler effect advances. Thus in the Einstein–de Sitter universe, as in the 

Newtonian universe, each particle may be described as undergoing deceleration. This accounts for 

the shorter time-scale as compared with the kinematic theory, where the deceleration is zero. 

 

In practice, ‘local phenomena’, or phenomena ‘close to the observer’ means phenomena within say 

150–200 million light years’ distance; they include all phenomena as yet accessible to observation. 

An analyst of Newton’s period who had no data on nebular velocities would be unable to estimate 

the ‘age’ t or present mean density r, but he would have been led to predict a non-static universe 

(with either expansion or contraction), to predict a velocity-distance proportionality at any one epoch, 

and to obtain the formula  

                                                                             
connecting density and rate of expansion. Thus he would have secured all the results yet capable of 

observational test. 

 

6. On obtaining the above results I communicated them to Dr. McCrea. It 

 
*De Sitter, loc. cit. p. 180, equation (58), on cancelling c. 

 

occurred to both of us, independently, to generalize the results so as to give the elliptic and 

hyperbolic cases, as well as the parabolic, on Newtonian mechanics. Actually Dr. McCrea sent me 

his results first. The paper which follows contains features due to both of us. 
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