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Abstract 
This article is devoted to analysis of the relation of geometrical and physical quantities in the 

Newtonian theory of gravitation, general relativity and Lorentz-invariant gravitation theory (LIGT), 

and also to clarification of the physical meaning of the metric tensor and the space-time interval in 

the Euclidean, pseudo-Euclidean and pseudo-Riemannian spaces. The succession of the use of 

geometric concepts in these three theories is shown. It is shown that the math expression of interval is 

mutually uniquely associated with physical equations of elementary particles and LIGT. It is also 

shown that in LIGT the metric tensor has the physical meaning of the scale factor,  defined by means 

of the Lorentz-invariant transformations. Evidence are given of that the metric tensor in general 

relativity should have the same meaning. 
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1. Introduction: Geometry and Physic in the GR Equation 

The Einstein-Hilbert field equations may be written in the form:  

      TRgR 
2

1
,     (1.1)  

The practical side of the Einstein-Hilbert theory (Tonnelat, 1965/1966) is following: 

 All the predictions of general relativity follow from the field equations: 
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R  is the Ricci curvature 

tensor, 

  are the Christoffel symbols, R  is the scalar curvature, N  is Newton's gravitational 

constant, c  is the speed of light in vacuum and T  is the stress–energy tensor. 

 and g  is the metric tensor of Riemannian space, and 

2) The law of motion (geodesic equation) for a massless body (photon): 

  0ds ,   (1.3) 

or the Hamilton-Jacobi equation for a massive body (Landau and Lifshitz, 1973): 
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The equation (1.3.1) allows to determine g  and to put this value in (1.2). 

 

Since the metric tensor is contained in the square of interval of Riemannian space: 

   
 dxdxgds 

2
,     (1.5) 

it is often said that the purpose of  solution of  equation (1.1) is to find the interval (1.5). 

 

Depending on the type of energy-momentum tensor the solutions of (1.1) can be divided into several 

types. The most important of them are the vacuum solutions,  since it was possible to verify some of 

them experimentally. Such solutions can be obtained from the equation (1.1), if  the energy-

momentum tensor vanishes: 0T .  

 

These solutions describe the empty space-time around a massive compact source of the gravitational 

field, down to its surface or singularities. These include the Schwarzschild metric, the Lense-

Thirring, Kerr, Reissner - Nordstrom, Kerr - Newman and others metrics. 

 

In general relativity, a vacuum solutions are a Lorentzian manifold, i.e., they relate to asymptotically 

flat space-time. A Lorentzian manifold is an important special case of a pseudo-Riemannian 

manifold in which metric is called Lorentzian metric or  the pseudo-Euclidian metric of special 

relativity.  

  

In the vacuum equations of general relativity only the left side is used - purely geometric part  of this 

equation. At the same time, the clarification of the physical meaning of significant elements of the 

metric tensor (MT) takes place on the basis of a comparison with Newton's theory of gravitation.  

Hitherto, the question, why a purely geometrical functions produce physical results, has not clarified. 

In other words, we do not know, how  the MT is associated with physics. 

 

The basis for the introduction and use of MT is the interval (often they are identical). Then the 

question can be reformulated in a different way: how interval and  MT in this composition  relates to 

physics? 

 

It is often said that interval in SRT is a generalization of interval of Euclidean geometry on pseudo-

Euclidean geometry. In turn, the interval in general relativity is a generalization of interval of pseudo-

Euclidean geometry on pseudo-Riemannian geometry. But it is easy to make sure, that the 

introduction of interval in SRT and GTR is a postulates rather than a logical conclusion. The 

intervals in SRT and GRT are a generalization of  interval of Euclidean geometry. And the reason for 

the introduction of these new intervals is not geometry, but physics. Then what was postulated and 

on what basis did it take place in each of these cases?  
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2. Geometry and Physics of Newtonian Mechanics (Euclidean Space) 

Let us begin from the relation of the Euclidean interval with physics. To do this, we need to recall the 

meaning of the geometrical point and the material point, as well as of the geometric and physical 

trajectory, as the line of motion of a material point. 

 

The line in geometry is an independent geometric object, almost not related to physics. Not strictly 

speaking, the line is a continuum (continuous sequence) of dots, for each adjacent pair of which the 

same relationship is set. If this relationship can always be reduced to a constant number, a line is 

called Euclidean; if this relationship is a function of the position on the line, the line is called 

Riemannian. 

 

The line in geometry is defined (described) by specifying coordinates, i.e., some of the numbered 

lines, which are specified by the location of the material points (objects) of the real world. 

 

In physics, the line is a continuum of points, which a material point passes successively while 

moving by inertia or under the influence of forces. And this line is determined by the law of motion 

of a material point with respect to the others, outsider material points which allows to establish a base 

coordinate system of lines. Namely here, geometry comes in contact with physics. 

 

The interval in Euclidean geometry is a generalized description of Pythagoras theorem for an 

infinitesimal segment of line (arc): square of the length of any line segment is equal to the sum of the 

squares of the projections of the segment on the three coordinate lines. The objectives of the 

geometry, which requires the use of this law, has no connection with physics. But for the trajectory of 

a material point the theorem of Pythagoras is some condition - restrictive law, which must take place 

in any problem of the motion of material body. 

 

Conditionally speaking, the law of Pythagoras must be contained in the law of motion. Obviously, 

this one-to-one relationship should allow to restore the movement law by means of the known 

interval. Approximately in this manner the problem is set on the theory of gravitation of  Hilbert and 

Einstein. 

 

Actually, the interval at any point of the trajectory of motion of a point must be mutually uniquely 

associated with the solution of the dynamic (physical) problem. Otherwise the decision will be 

wrong, i.e., the trajectory will not be one that is dictated by the law of motion. But this bond can not 

be associated with a coordinate system, since the latter is not related to the physical problem, and it 

can be chosen in many ways. This bond must occur in any coordinate system, in which the law of 

Pythagoras acts. In this case, the introduction and the choice of the coordinate system is a agreement, 

required for a quantitative calculation of the physical problem. 

 

Let us demonstrate the correctness of our conclusion in the framework of non-relativistic and then 

relativistic (i.e., the Lorentz-invariant) mechanics. 

 

2.1. Cartesian system of coordinates 

Subject of mechanics (see (Webster, 1912)  ) is study of motion in space and time of the matter 

particle or system of particles, as solid body, under the action of forces. 
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Since the motion description of a material point involves four variables tzyx ,,, , kinematics was 

called by Larange “geometry of four dimensions”. 

 

Suppose that we have a system of n material points. If they are free to move, a single particle  

requires 3 coordinates zyx ,, , and a system of particles  require 3n coordinates: 

111 ,, zyx , 222 ,, zyx ,…, nnn zyx ,,  

 

If any particle j  at jjj zyx ,,  is displaced by a small amount, it has the coordinates 

jjjjjj dzzdyydxx  ,,  

 

If a number of particles are displaced, we must take the sums like the above for all the particles. 

 

The infinitesimal distance between two points  

 222 dzdydxds  ,    (2.1) 

is a scalar, whereas the geometrical difference in position of the two  points is known only when we 

specify not merely the length, but also the direction of the line joining them. This is usually done by 

giving its length s  and the cosines of the angles  ,,  made by the line with the three rectangular 

axes,  cos,cos,cos , which in virtue of the relation 

 1coscoscos 222   ,     (2.2)   

leaves three independent data. 

 

We may otherwise make the specification by giving the three projections of the line upon the 

coordinate axes: 

  dzsdsdysdsdxsds zyx   cos  ,cos  ,cos  ,     (2.3)  

Squaring and adding we have in virtue of relation (2.2): 

  
2222

zyx dsdsdsds   ,  (2.4) 

 

The quantities  dsdzdsdydsdx   ,  ,  are the direction cosines of the tangent to the arc ds . 

 

The vector denned by the product of the scalar quantity mass by the vector quantity acceleration 

(vector quantity), whose components are 

 
2

2

2

2

2

2

  ,  ,
dt

zd
mF

dt

yd
mF

dt

xd
mF zyx  ,     (2.5) 

is called the force acting upon the body, and is the applied force of the Newton second law. The 

second and third laws taken together accordingly give us a complete definition and mode of 

measurement of force.  

 

It is customary to characterize the product of the mass by the vector velocity as the momentum of the 

body, a vector whose components are 
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 zzyyxx m
dt

dz
mpm

dt

dy
mpm

dt

dx
mp     ,  , ,      (2.6) 

This is the momentum whose rate of change measures the force, so that equations (2.5) may be 

written 

 z
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x F

dt

dp
F

dt

dp
F

dt

dp
   ,  , ,      (2.7) 

These equations are a generalization of equation (2.5), since they may be applied in the case when 

mass m  changes, for example, in the case the engine of the rocket is running. 
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the half-sum of the products of the mass of particle by the square of its velocity, is called the kinetic 

energy of the particle T. 

 

If we have a system of n material points then: 
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The kinetic energy may be written, bearing in mind the definition of momentum, as: 
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It is easily to see: 
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whence     

 dzFdyFdxFdT zyx   

is the work done upon the particle at relocation it on infinitesimal distance. 

 

The equation  

     
1

0

01

t

t

zyxtt dzFdyFdxFTT  ,    (2.11) 

is called the equation of energy, and states that the gain of kinetic energy is equal to the work done by 

the forces during the motion. 
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In the case that the forces acting on the particles depend only on the positions of the particles, and 

that the components may be represented by the partial derivatives of a single function of the 

coordinates  zyxU ,,  so that 

 
dz

dU
F

dy

dU
F

dx

dU
F zxyx  ,, ,    (2.12) 

the equation of energy then is 

 
0101 tttt UUTT  ,     (2.13) 

The function U is called the force -function, and its negative W= —U is called the potential energy of 

the system. Inserting W in (2.13) we have 

 
0011 tttt WTWT  ,        (2.14) 

the principle of conservation of energy. 

 

Suppose that the particle instead of being free is constrained to lie on a given surface. The path 

described must then be an arc of a shortest or geodesic line of the surface. The calculus of variations  

enables us to find the differential equations of such a line. 

 

The principle of least action says that in the natural or unconstrained motion it will go from P to Q 

along the shortest path, that is, an arc of a great circle. 

 

2.2. Generalized system of coordinates 

As was shown by Beltrami (Beltrami, 1869), and worked out in detail by Hertz, that the properties of 

Laginterval's equations have to do with a quadratic form, of exactly the sort that represents the arc of 

a curve in geometry. 

 

For instance if a particle is constrained to move on the surface of a sphere of radius r , we may 

specify its position by giving its longitude   and colatitude  . These are two independent variables.  

 

The potential energy depending only on position will be expressed in terms of cp and #. The kinetic 

energy will depend upon the expression for the length of the arc of the path in terms of   and  : 

  22222  sin  ddrds   

Dividing by 
2dt  and writing dtddtd    , , we have 

  2222  sin
2

1
  ddmrT  ,    (2.15) 

The parameters   and    are coordinates of the point, since when they are known the position of the 

point is fully specified. Their time -derivatives   and   being time-rates of change of coordinates 

may be termed velocities, and when they together with   and   are known, the velocity of the 

particle may be calculated. The kinetic energy in this case involves both the coordinates   and   

and the velocities   and  . Inasmuch as the particle in any given position may have any given 
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velocity, the variables  ,  ,  ,    are to be considered in this sense as independent, although in 

any given actual motion they will all be functions of a single variable t . 

 

The form of the function T is worthy of attention. It is a homogeneous quadratic function of the 

velocities   and  , the coefficients of their squares being functions of the coordinates   and  , the 

product term in   and   being absent in this case. We may prove that if a point moves on any 

surface the kinetic energy is always of this form. We may prove that if a point moves on any surface 

the kinetic energy is always of this form. 
 

In the geometry of surfaces it is convenient to express the coordinates of a point in terms of two 

parameters 1q and 2q . Suppose 

      ,,,,,, 2132121211 qqfzqqfyqqfx   

from these three equations we can eliminate the two parameters 1q , 2q , obtaining a single equation 

between x, y, z, the equation of the surface. The parameters 1q  and 2q  may be called the coordinates 

of a point 
 

We may obtain the length of the infinitesimal arc of any curve in terms of 1q and 2q . We have 
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Squaring and adding, 

   
2

221

2

1

2222 2 GdqqFdqEdqdzdydxds  ,      (2.17) 

where 

 

2

2

2

2

2

2

212121

2

1

2

1

2

1












































































































q

z

q

y

q

x
G

q

z

q

z

q

y

q

y

q

x

q

x
F

q

z

q

y

q

x
E

,      (2.18) 

Thus the square of the length of any infinitesimal arc is a homogeneous quadratic function of the 

differentials of the coordinates 1q  and 2q  , the coefficients E, F, G being functions of the coordinates 

1q , 2q  themselves. 

 

If the coordinate lines cut each other everywhere at right angles we shall have  

 
2

2

2

1

2 GdqEdqds  ,    (2.19) 

The coordinates 1q , 2q  are then said to be orthogonal curvilinear coordinates.  

 

In general we  have the equations of change of coordinates, 
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 ,cos  ,sinsin  ,cossin  rzryrx       (2.20) 

from which 
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 222 sin  ,0  , rGFrE   

 

Employing the expression (2.17) for the length of the arc, dividing by  
2dt  and writing  

 2
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we find for the kinetic energy, 
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This is a typical example of the employment of the generalised coordinates introduced by Lagrange 

interval, 1q  and  2q  being the coordinates, 1q , 2q , the velocities corresponding, and T being a 

homogeneous quadratic function or quadratic form in the velocities q[, q2 , the coefficients of the 

squares and products of the velocities being functions of the coordinates alone. We shall show that 

this is a characteristic property of the kinetic energy for any system depending upon any number of 

variables. 

 

In the case of a single free particle we may express the coordinates х, у, z  in terms of three 

parameters  1q , 2q , 3q  , and we shall then have as in (2.16) and (2.17) 
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(here 3,2,1, ji ) 

Proceeding now to the general case of any number of particles, whether constrained or not, let us 

express all the coordinates as functions of m independent parameters, mqqq ,..., 21 , the generalized 

coordinates of the system, 

     mrkmrkmrk qqqzzqqqyyqqqxx ,...,  ,,...,  ,,..., 212121  ,       (2.24) 

where   nk ,...,3,2,1  

 

Differentiating, squaring and adding, we obtain  
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where 
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       (2.26) 

Thus the square of each infinitesimal arc is a quadratic form in the differentials of all the coordinates 

q. Dividing by 2dt , multiplying by 2km  and taking the sum for all the particles, we obtain 

          ...22...
2
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31132112
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111  qdqdEqdqdEqdEqdEqdEmT kk
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k
 ,    (2.27) 

Thus the kinetic energy possesses the characteristic property mentioned above of being a quadratic 

form in the generalized velocities q , the coefficients ijE  being functions of only the generalized 

coordinates q . They must satisfy the conditions necessary, in order that for all assignable values of 

the q 's T  shall be positive. 

 

It is sometimes convenient to employ the language of multidimensional geometry. This signifies 

nothing more than that when we speak of a point as being in n  dimensional space we mean that it 

requires n  parameters to determine its position.  

 

Inasmuch as in motion along a curve, that is in a space of one dimension we have for the length of 

arc 

 2

2

2 dq
dq

ds
ds 








  

on a surface, that is in a space of two dimensions, 
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2 2 GdqqFdqEdqds  ,     

and in space of three dimensions 

 
 


3

1

3

1

2

i j

jiij qdqFds  

so by analogy , in space of  n  dimensions, 

  
 


n

i

n

j

jiij qdqFds
1 1

2   ,    (2.28)  

That is to say a quadratic form in n  differentials may be interpreted as the square of an arc in n  

dimensional space. Thus we may assimilate our system depending upon m coordinates to a single 

point moving in space of n  dimensions. 

 

To each possible position of this point corresponds a possible configuration of our system. No matter 

what be taken as the mass of the point, n , its kinetic energy,   22 dtdsmT    is equal to the 

kinetic energy of our system, the coefficients in the quadratic form for ds  and Т  being proportional. 
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The advantage of this mode of speaking (for it is no more) may easily be seen from the many 

analogies that arise, connecting the dynamical theory of least action with the purely geometrical 

theory of geodesic lines.  

 

This method is adopted by Hertz in his book (Hertz, 1894). The ideas involved were first set forth by 

Beltrami. (Beltrami, 1869 ). 

 

Analogies that arise, connecting the dynamical theory of least action with the purely geometrical 

theory of geodesic lines   были развиты далее благодаря  principle of varying action of Hamilton 

 

Hamilton showed that the function S , which is named action 

 
t

t

LdtS

0

,       (2.29)   

where WTL   is Lagrange function, satisfies a certain partial differential equation, a solution of 

which being obtained, the whole problem is solved: 

 0,..., ,,... ,
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S
qqtH

t

S
,      (2.30) 

where WTH   is the Hamilton function 

 

The equation is of the first order since only first derivatives of S appear, and, from the way in which 

T contains the momenta, is of the second degree in the derivatives. Since S appears only through its 

derivatives an arbitrary constant may be added to it. 

 

Hamilton's equation (2.30) assumes a somewhat simpler form when the force-function and 

consequently H are independent of the time that is when the system is conservative. We may then 

advantageously replace the principal function S  by another function called by Hamilton the 

characteristic function, which represents the action A. Making use of the equation of energy, 

hWT  , to eliminate W , we have 

  0

0

2 tthSTdtA

t

t

  ,    (2.31) 

and the above partial differential equation (2.30) becomes merely 
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1

1 ,                 (2.32) 

 

In these system a new variational principle will work; this principle was obtained in 1837 by Jacobi 

(Encyclpedia of matematics, 2011).  

The kinetic energy of a system may be expressed in generalized coordinates iq  as follows:  

                                      j

n

ji

iij qqaT 



1,2

1
,       (2.33) 

The metric of the coordinate space is given by the formula 
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 j
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
1,

2

2

1
                 (2.34) 

The initial and final positions 0r  and  1r  of the system in some actual motion are also given. 

 

Jacobi's principle of stationary action: if the initial and final positions of a holonomic conservative 

system are given, then the following equation is valid for the actual motion:  

   02
1

0

 dsWh

r

r

 ,     (2.35) 

as compared to all other infinitely near motions between identical initial and final positions and for 

the same constant value of the energy h  as in the actual motion.  

Jacobi's principle reduces the study of the motion of a holonomic conservative system to the 

geometric problem of finding the extremals of the variational problem (2.35) in a Riemannian space 

with the metric (2.34) which represents the real trajectories of the system. Jacobi's principle reveals 

the close connection between the motions of a holonomic conservative system and the geometry of 

Riemannian spaces.  

 

If the motion of the system takes place in the absence of applied forces, i.e., 0U , the system moves 

along a geodesic line of the coordinate space  nqq ,...1  at a constant rate. This fact is a generalization 

of Galilei's law of inertia. If 0U , determining the motion of a holonomic conservative system is 

also reduced to the task of determining the geodesics in a Riemannian space with the metric  

   j

n

ji

iij qqbdshUds 



1,

22

1
2

1
2                  (2.36) 

In the case of a single material point, when the line element ds is the element of three-dimensional 

Euclidean space, Jacobi's principle is the mechanical analogue of Fermat's principle in optics.  

 

These results prove that in a Riemannian form we can write all classical potential fields, not just 

gravity field. 

 

3. Geometry and Physics of Theory of Elementary Particles (Pseudo-
Euclidean or Lorentz-invariant Space) 

Let us now consider the connection of interval with physics in the case of the pseudo-Euclidean 

geometry. 

 

A study of the literature shows that the pseudo-Euclidean coordinates and interval of the four-

dimensional space-time are introduced into physics by analogy with the interval of Euclidean 

geometry (Landau and Lifshitz, 1973): “It is frequently useful for reasons of presentation to use a 

fictitious four-dimensional space, on the axes of which are marked three space coordinates and the 

time”. 
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3.1. Interval and square of 4-distance differential  

In  Cartesian coordinate system of the Euclidean geometry an interval is the distance s  between two 

points on a straight line in space, which is calculated according to the Pythagorean theorem. Since in 

physics trajectories are often curved lines, the Pythagorean theorem in this case is valid only for the 

infinitelisemal distances. Therefore, an interval is defined here according to (2.1) as the square root of 

the square of the distance differential in Euclidean space.  

 

In the pseudo-Euclidean geometry an interval is defined as the square root of the square of the 4- 

distance differential and  is given by the sum (taking into account the summation of Einstein) 

 dxdxds  ,  

where 3 ,2 ,1 ,0  icdtdx 0 .  

The square of the interval looks like: 

       22222222
)()()()( dzdydxdtcrddticds 


 

 

Note that currently the imaginary time coordinate is rarely used (although it is by no means a mistake 

and has certain advantages), and is written as: 

       22222222
)()()()( dzdydxdtcrddtcds 


,     (3.1) 

   dxdxds 
2

,     (3.1') 

where 4 ,3 ,2 ,1  , and cdtdx 4 . In addition, the squares of differentials are often written without 

parentheses: 22  , dxds , instead of 22 )(  ,)( dxds , etc .. 

 

Thus, the use of characteristics of the 3-dimensional space in the case of 4-dimensional space –time 

is a postulate, i.e., some chosen mathematical expression, which is necessary for the construction of 

special relativity by Minkowski . It also follows from the fact that in nature the length of the arc in 

the 4- space-time is not measurable. 

 

Therefore  the question of the physical meaning of the 4-interval arises. Let's try to answer it. 

 

3.2. Derivation of pseudo-Euclidean interval from the physical equations 

The vectors of the Lorentz-invariant (i.e., relativistic) theories necessarily depend on the 4-

coordinate: one time coordinate and three space coordinates. In other words, these equations are 

"working" in a 4-dimensional space-time. Does this theory contain the equations, which have a sum 

of terms, each of which is associated with one of the four coordinates, like the square of the interval? 

 

As we know, in the first time such equations in classical electrodynamics appear, and then in 

quantum field theory. The wave equations of these theories include a sum of terms, each of which is 

associated with one of the variables t, x, y, z. It would be logical, to seek the cause and the meaning of 

the appearance of 4-interval in them, instead of introducing them artificially, as did Minkowski. 

 

Recall that our study of the gravitational field is based on an inhomogeneous wave equation of the 

so-called "massive photon" (which in mathematical notation is similar to the Klein-Gordon 
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equation). It is an equation for the two vectors of the electric and magnetic fields that give this photon 

a mass.  From this equation follows the well-known equation of conservation of energy and 

momentum for massive particles, which is easy to obtain also from the definitions of 4-vectors of 

momentum and energy (see above). (Landau and Lifshitz, 1973) 

 

From (3.1) we can easily obtain: 

      

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c

dtdr
dtcrddtcds


,   (3.2) 

At the same time interval is associated with proper time  d  by  relation: 

   cddtccds  221 ,    (3.3) 

 

For a free material point the concept of the 4-momentum is introduced:   

  mcup     or   ippp ,0 ,    (3.4) 

where 
2222

0

1
   ,

1 c

m
p

c

mc

c
ip

i

i
i

i 











 , 

22

2

1 c

mc





 ;   u  is the 4-velocity.    

From this:       
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2
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cmp
c
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

,    (3.5) 

where the energy and momentum is rewritten for convenience as follows: 
Lmcp  2

0  , 

  LiLii dtdxmmp     (where 2211 cL    and 221 1 cL    are the Lorentz 

factor and antifactor, respectively). Hence, in the Cartesian coordinate system: 

 
22222

2

2

cmppp
c

zyx 


,      (3.5’) 

Since   LiLii dtdxmmp   , a Lmc  2 , this relation can be rewritten as: 

          22222222222 dtcdzdydxdtc LLLL   ,    (3.6) 

Multiplying it by 2

L  , we get: 

          22222222 dzdydxdtcdtc L  ,    (3.7)   

Since (see above (3.2)) we got        22222222 1 dscdtcdtc L    ,  the expression (3.7) can be 

written as square of a 4-interval: 

          222222
dzdydxdtcds  ,    (3.1') 

 

In general case of use in Euclidean space of any other, than the Cartesian, coordinate system for 

recording of the relation (3.5’), particularly, the orthogonal curvilinear coordinates, this interval takes 

the form: 

   
 dxdxgds 

2
,    (3.8) 
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where g  is a so-called metric tensor, whose elements take into account the changes in the 

projections of the segments of the trajectory of the body on the coordinate axes, at the transition from 

the Cartesian coordinate system to any other. In a Cartesian system, all elements g are equal to 

unities. 

 

Obviously, if we go in the opposite direction, we can obtain the equation (3.5’) from the square of the 

interval. This implies, firstly, that these equations - (3.1) and (3.5’) - closely bind the massive 

elementary particles physics and geometry. Secondly, the equation of "massive photon" is derived 

from Maxwell's equations of a massless photon as a result of his self-interaction of fields (Kyriakos, 

2014a). 

 

This non-linearity of a self-acting fields of the “massive photon” does not mean transition from 

Euclidean to some new geometry. From this it follows that (3.1) is not a metric of pseudo-Euclidean 

geometry, but it is a metric of Euclidean geometry that describes the Lorentz-invariant field 

equations. The only change in the geometry, which we can observe in this case is the transition from 

rectilinear  to curvilinear geometry. 

 

In addition, another link between the interval (2.1) and the physical equation  is detected. As we have 

shown in a previous article (Kyriakos, 2010; 2014b), using the Schroedinger definition of action 

(  xSp  ), from the equation (3.5’) it is easy obtain Lorentz-invariant Hamilton-Jacobi 

equation in general view. For this it is enough to write the equation (3.5’) in a form, suitable for any 

of the Euclidean coordinate system: 

 22cmppg 
 ,    (3.9) 

where, we recall, g   is the metric tensor  of geometrical space, but not of the gravitational space-

time of general relativity (in other words, in this case the tensor g   does not include the physical 

characteristics of the field). In this case the Hamilton-Jacobi equation of free particles obtains the 

form: 
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,     (3.10)  

 

Recall that the physical field (e.g., electromagnetic field) is included in Hamilton-Jacobi equation in 

the following way: 
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 ,    (3.11) 

 

Thus, we conclude that the three equations: (3.1) (3.5’) and (3.10) are bonded to each other one-to-

one and, in fact, are equivalent. From this follows that the interval (3.1) within a relativistic physics is 

the physical law, and not a geometric relation. 

  

Next, we consider how the 4-interval is introduced in the transition from Euclidean geometry to 

Riemann geometry. 
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4. Geometry and Physics in the Pseudo-Riemannian Space 

In general relativity an interval similar to (3.8) is introduced (postulated), where g  takes into 

account the peculiarities of the Riemann geometry. But the most important thing here is other: in 

general relativity, it is postulated that, due to the transition to the Riemann geometry, the metric 

tensor is a function of the gravitational field. 

 

Whether this is  proved by experiment, we do not know because all the experimental confirmation of 

general relativity are obtained for problems in the pseudo-Euclidean metric. 

 

Another fact also raises the question about the significance of Riemann geometry in physics. As we 

know, all theories of physics, except the GTR, are built in a Euclidean space, although 

mathematically, relativistic theories can be constructed in the pseudo-Euclidean space. But there is 

no such theory, which needs the introduction of the Riemann geometry. 

 

Let us write the interval GRT as follows: 

   
 dxdxgds GR

2
,      (4.1) 

where the metric tensor  GRg   contains the characteristics of the gravitational field. 

 

In addition, instead of the equation for the external field (3.11) in general relativity the equation of 

external field of type (3.10) is taken, but with the appropriate metric tensor GRg  : 
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The question is, why is there such a difference between (3.10) and (4.2), as well as between (3.8) and 

(4.1), and why is the external field in GTR inserted through the metric tensor? 

 

To answer this question, we will try to find out the physical sense of the metric tensor. Let us turn 

first to Euclidean geometry. 

 

4.1. The physical sense of the metric tensor of curvilinear coordinates’ system of 
the Euclidean geometry 

 

Recall the generalized coordinate system and particularly, curvilinear coordinates. (Korn and 

Korn, 1968) 

Let us introduce a new set of coordinates 321 ,, qqq , so that among zyx ,,   and 321 ,, qqq   there are 

some relations 

              321321321 ,, ,,., ,,., qqqzzqqqyyqqqxx  ,         (4.3) 

The differentials are then  
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and the same for  dy and dz. 

 

In Cartesian coordinates the measure of distance, or metric, in a given coordinate system is the arc 

length ds , which is defined by 

                   2222 dzdydxds  ,                                             (4.5) 

In general, taking into account (4.4), from (4.5) we obtain 

                 
ij

jiij dqdqgdqdqgdqgds ...2112

2

111

2 ,                 (4.6) 

where ijg   is the metric tensor.  Thus in orthogonal system we can write 
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2 dqHdqHdqHds  ,                    (4.7) 

where the iH ’s  где iH  
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H ,       (4.8) 

are called Lame coefficients or scale factors, and are 1 for Cartesian coordinates. 

 

Thus, the Riemann metric tensor, recorded in coordinates iq , is a diagonal matrix whose diagonal 

contains the squares of Lame coefficients: 

 

For example, in the case of spherical coordinates, the bond of spherical coordinates with Cartesian is 

given by (2.20). 

 

The Lame coefficients in this case are equal to:  sin  ,  ,1 rHrHH r  , and the square of the 

differential of arc (interval) is: 
2222222 sin  drdrdrds   

 

Since the metric tensor is determined by means of Lame coefficients, let us recall the geometric 

meaning of the latter: the Lame coefficients show how many units of length are contained in the unit 

of length of coordinates of the given point, and used to transform vectors when  transition from one 

system to another takes place. 

 

This means that the metric tensor in Euclidean geometry defines rescaling of three coordinates 

 ,,r , and in the pseudo-Euclidean or pseudo-Riemannian geometry it determines rescaling of four 

coordinates  ,,, rt . 

 

As we have seen from the solution of the Kepler problem within LIGT (Kyriakos, 2014c), the 

relativistic corrections within LIGT correspond to changes of scales t  and r , caused by the Lorentz-

invariant effects (time dilation and Lorentz-Fitzgerald length contraction). In the next article, we will 

show that the same thing occurs in problems of a moving source. 
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Thus, we conclude that relationships  (4.1) and (4.2) have metric tensor GRg    as a factor that takes 

into account the change of scales of  time and distance due to relativistic effects associated with 

motion of bodies. 

 

5. Consequences  

From the foregoing analysis follows that by regular way the interval of a 4-space-time can be 

obtained only for the pseudo-Euclidean space, as a variant of the physical law of motion of 

elementary particles. 

 

Since there is no other law of motion for massive particles, we can assume that the hypothesis of 

Einstein that the gravitational field is created by the curvature of space-time, which requires a 

transition to a pseudo-Riemannian geometry, needs considerable adjustment. 

 

Following the theory of mass generation (Kyriakos, 2014a), we have to conclude that the 

gravitational field arises from the self-action of massless fields. It is indeed accompanied by the 

transformation of the linear movement of fields in curvilinear motion (mathematically, this is the 

transition from linear equations to nonlinear equations). But this has nothing to do with the Riemann 

geometry. 

 

It can be assumed that the use of the Riemann geometry in GR is possible for the reason that math 

physics in the case of the Riemann geometry is very close to the math physics using generalized 

coordinates of Euclidean geometry. Formally, the coordinates of the Riemann geometry, can be 

considered as generalized coordinates of the set of n  material points, or as one point in the n - 

dimensional space. This is evidenced by the form of squared length of arc (trajectory) element using 

generalized coordinates (2.25) with the values of the Gauss coefficients (2.26). In the transition to the 

Riemann geometry the Gaussian quadratic form coefficients E   are replaced by elements of the 

metric tensor g . 

 

In this sense, the Riemann geometry should not be opposed to Euclidean geometry. 

 

From a formal point of view (Bogorodskiy, 1971) the Riemann space can be determined, like the 

Euclidean multidimensional space, as a field of the metric tensor in the n-dimensional continuum in 

which the distance between the infinitely near points is using quadratic forms 


 xxgds 2
, and 

the angle between two linear elements - at sdsxxg  
cos . Riemann geometry covers a wide 

class of spaces and includes Euclidean geometry as a simple special case. 

 

Moreover, it is possible to choose the coordinates in Euclidean space in any way, that all ijg  and 

their first derivatives with respect to coordinates in Riemannian and Euclidean metrics were the same 

values in all points of the line. In this case, the Euclidean metric is in contact along a given curve 

with the Riemann metric. In an infinitely thin tube containing the curve, Euclidean space is Riemann 

space up to the second order. This is called the contiguous Euclidean space. 
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Another reason to believe that in the theory of gravity it is sufficient to use the pseudo-Euclidean 

metric is the possibility to present the Hilbert-Einstein equations in the form of generalized 

d'Alembert equation (Fock,.1964): 

“In the previous section we saw that, at least if 0 (i.e., in harmonic coordinates) Einstein’s 

equations are of the type of the wave equation, because their main terms involve the d’Alamber 

operator”.  

 

A similar result can be obtained based on the nonlinear theory of elementary particles. Since the 

equation (3.9) is a formal consequence of squaring of the Dirac electron equation, one might think 

that there is a connection between the Dirac matrices, and tensor metric space. Indeed, such a 

connection exists. And it gives the possibility to receive the general covariant form of the squared 

Dirac electron equation in a gravitational field (for details, see. (Schroedinger, 1932; Kyriakos, 

2012). 

 

The connection between the Dirac matrices and metric tensor  is defined by relations 

  g2  and     
2

1
S , from which  follows   Sg  . 

where     is the Dirac matrices 

The seeking equation is the d'Alembert equation: 

 2

2

1

4

1
mSf

R
gg

g
 




 ,    (4.9) 

where R  is an invariant curvature 



 SSRRggR ,,

8

1
 , and   ,R is a symmetric 

Riemann tensor 

 

In the first term of equation (4.9) is easy to find a regular operator of the Klein second order equation 

in the Riemann geometry. In the third term on the left is recognized well-known term associated with 

the spin magnetic and electric moments of the electron (tensor 
S ). 

The second term provoked  particular interest of Schrödinger: “To me, the second term seems to be of 

considerable theoretical interest. To be sure, it is much too small by many powers of ten in order to 

replace, say, the term on the r.h.s. For m  is the reciprocal Compton length, about 
11110 cm . Yet it 

appears important that in the generalised theory a term is encountered at all which is equivalent to 

the enigmatic mass term”.  

 

Nonlinear theory of elementary particles can explain the physical meaning of this term: it define the 

charge and mass of elementary particle. 
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