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Abstract

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric gauge
theories and the Yangian symmetry suggests that much more than mere technical breakthrough is in
question. Twistors seem to be tailor made for TGD but it seems that the generalization of twistor
structure to that for 8-D imbedding space H = M4

×CP2 is necessary. M4 (and S4 as its Euclidian
counterpart) and CP2 are indeed unique in the sense that they are the only 4-D spaces allowing twistor
space with Kähler structure. The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1)×U(1)
and F3 defines twistor space for the imbedding space H and one can ask whether this generalized
twistor structure could allow to understand both quantum TGD and classical TGD defined by the
extremals of Kähler action. In the following I summarize the background and develop a proposal for
how to construct extremals of Kähler action in terms of the generalized twistor structure. One ends
up with a scenario in which space-time surfaces are lifted to twistor spaces by adding CP1 fiber so
that the twistor spaces give an alternative representation for generalized Feynman diagrams.

There is also a very closely analogy with superstring models. Twistor spaces replace Calabi-
Yau manifolds and the modification recipe for Calabi-Yau manifolds by removal of singularities can
be applied to remove self-intersections of twistor spaces and mirror symmetry emerges naturally.
The overall important implication is that the methods of algebraic geometry used in super-string
theories should apply in TGD framework. The physical interpretation is totally different in TGD. The
landscape is replaced with twistor spaces of space-time surfaces having interpretation as generalized
Feynman diagrams and twistor spaces as sub-manifolds of P3 × F3 replace Witten’s twistor strings.
The classical view about twistorialization of TGD makes possible a more detailed formulation of
the previous ideas about the relationship between TGD and Witten’s theory and twistor Grassmann
approach. Furthermore, one ends up to a formulation of the scattering amplitudes in terms of Yangian
of the super-symplectic algebra relying on the idea that scattering amplitudes are sequences consisting
of algebraic operations (product and co-product) having interpretation as vertices in the Yangian
extension of super-symplectic algebra. These sequences connect given initial and final states and
having minimal length. One can say that Universe performs calculations.
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1 Introduction

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric gauge theories
and the Yangian symmetry suggests that much more than mere technical breakthrough is in question.
Twistors seem to be tailor made for TGD but it seems that the generalization of twistor structure to that
for 8-D imbedding space H = M4 × CP2 is necessary. M4 (and S4 as its Euclidian counterpart) and
CP2 are indeed unique in the sense that they are the only 4-D spaces allowing twistor space with Kähler
structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1)× U(1) and F3 defines twistor space
for the imbedding space H and one can ask whether this generalized twistor structure could allow to
understand both quantum TGD [36, 37, 43] and classical TGD [35] defined by the extremals of Kähler
action.

In the following I summarize first the basic results and problems of the twistor approach. After that
I describe some of the mathematical background and develop a proposal for how to construct extremals
of Kähler action in terms of the generalized twistor structure. One ends up with a scenario in which
space-time surfaces are lifted to twistor spaces by adding CP1 fiber so that the twistor spaces give an
alternative representation for generalized Feynman diagrams having as lines space-time surfaces with
Euclidian signature of induced metric and having wormhole contacts as basic building bricks.

There is also a very close analogy with superstring models. Twistor spaces replace Calabi-Yau mani-
folds [1, 5] and the modification recipe for Calabi-Yau manifolds by removal of singularities can be applied
to remove self-intersections of twistor spaces and mirror symmetry [20]emerges naturally. The overall im-
portant implication is that the methods of algebraic geometry used in super-string theories should apply
in TGD framework.

The physical interpretation is totally different in TGD. Twistor space has space-time as base-space
rather than forming with it Cartesian factors of a 10-D space-time. The Calabi-Yau landscape is replaced
with the space of twistor spaces of space-time surfaces having interpretation as generalized Feynman
diagrams and twistor spaces as sub-manifolds of P3 ×F3 replace Witten’s twistor strings [22]. The space
of twistor spaces is the lift of the “world of classical worlds” (WCW) by adding the CP1 fiber to the
space-time surfaces so that the analog of landscape has beautiful geometrization.

The classical view about twistorialization of TGD makes possible a more detailed formulation of
the previous ideas about the relationship between TGD and Witten’s theory and twistor Grassmann
approach.

1. The notion of quaternion analyticity extending the notion of ordinary analyticity to 4-D context is
highly attractive but has remained one of the long-standing ideas difficult to take quite seriously
but equally difficult to throw to paper basked. Four-manifolds possess almost quaternion structure.
In twistor space context the formulation of quaternion analyticity becomes possible and relies on
an old notion of tri-holomorphy about which I had not been aware earlier. The natural formulation
for the preferred extremal property is as a condition stating that various charges associated with
generalized conformal algebras vanish for preferred extremals. This leads to ask whether Euclidian
space-time regions could be quaternion-Kähler manifolds for which twistor spaces are so called Fano
spaces. In Minkowskian regions so called Hamilton-Jacobi property would apply.

2. The generalization of Witten’s twistor theory to TGD framework is a natural challenge and the
2-surfaces studied defining scattering amplitudes in Witten’s theory could correspond to partonic
2-surfaces identified as algebraic surfaces characterized by degree and genus. Besides this also string
world sheets are needed. String worlds have 1-D lines at the light-like orbits of partonic 2-surfaces
as their boundaries serving as carriers of fermions. This leads to a rather detailed generalization of
Witten’s approach using the generalization of twistors to 8-D context.

3. The generalization of the twistor Grassmannian approach to 8-D context is second fascinating
challenge. If one requires that the basic formulas relating twistors and four-momentum generalize
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one must consider the situation in tangent space M8 of imbedding space (M8 − H duality) and
replace the usual sigma matrices having interpretation in terms of complexified quaternions with
octonionic sigma matrices.

The condition that octonionic spinors are are equivalent with ordinary spinors has strong conse-
quences. Induced spinors must be localized to 2-D string world sheets, which are (co-)commutative
sub-manifolds of (co-)quaternionic space-time surface. Also the gauge fields should vanish since
they induce a breaking of associativity even for quaternionic and complex surface so that CP2 pro-
jection of string world sheet must be 1-D. If one requires also the vanishing of gauge potentials,
the projection is geodesic circle of CP2 so that string world sheets are restricted to Minkowskian
space-time regions. Although the theory would be free in fermionic degrees of freedom, the scat-
tering amplitudes are non-trivial since vertices correspond to partonic 2-surfaces at which partonic
orbits are glued together along common ends. The classical light-like 8-momentum associated with
the boundaries of string world sheets defines the gravitational dual for 4-D momentum and color
quantum numbers associated with imbedding space spinor harmonics. This leads to a more detailed
formulation of Equivalence Principle which would reduce to M8 −H duality basically.

Number theoretic interpretation of the positivity of Grassmannians is highly suggestive since the
canonical identification maps p-adic numbers to non-negative real numbers. A possible general-
ization is obtained by replacing positive real axis with upper half plane defining hyperbolic space
having key role in the theory of Riemann surfaces. The interpretation of scattering amplitudes
as representations of permutations generalizes to interpretation as braidings at surfaces formed by
the generalized Feynman diagrams having as lines the light-like orbits of partonic surfaces. This
because 2-fermion vertex is the only interaction vertex and induced by the non-continuity of the
induced Dirac operator at partonic 2-surfaces. OZI rule generalizes and implies an interpretation
in terms of braiding consistent with the TGD as almost topological QFT vision. This suggests
that non-planar twistor amplitudes are constructible as analogs of knot and braid invariants by a
recursive procedure giving as an outcome planar amplitudes.

4. Yangian symmetry is associated with twistor amplitudes and emerges in TGD from completely dif-
ferent idea interpreting scattering amplitudes as representations of algebraic manipulation sequences
of minimal length (preferred extremal instead of path integral over space-time surfaces) connecting
given initial and final states at boundaries of causal diamond. The algebraic manipulations are car-
ried out in Yangian using product and co-product defining the basic 3-vertices analogous to gauge
boson absorption and emission. 3-surface representing elementary particle splits into two or vice
versa such that second copy carries quantum numbers of gauge boson or its super counterpart. This
would fix the scattering amplitude for given 3-surface and leave only the functional integral over
3-surfaces.

2 Background and motivations

In the following some background plus basic facts and definitions related to twistor spaces are summarized.
Also reasons for why twistor are so relevant for TGD is considered at general level.

2.1 Basic results and problems of twistor approach

The author describes both the basic ideas and results of twistor approach as well as the problems.

2.1.1 Basic results

There are three deep results of twistor approach besides the impressive results which have emerged after
the twistor resolution.
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1. Massless fields of arbitrary helicity in 4-D Minkowski space are in 1-1 correspondence with elements
of Dolbeault cohomology in the twistor space CP3. This was already the discovery of Penrose..The
connection comes from Penrose transform. The light-like geodesics of M4 correspond to points
of 5-D sub-manifold of CP3 analogous to light-cone boundary. The points of M4 correspond to
complex lines (Riemann spheres) of the twistor space CP3: one can imagine that the point of M4

corresponds to all light-like geodesics emanating from it and thus to a 2-D surface (sphere) of CP3.
Twistor transform represents the value of a massless field at point of M4 as a weighted average of
its values at sphere of CP3. This correspondence is formulated between open sets of M4 and of
CP3. This fits very nicely with the needs of TGD since causal diamonds which can be regarded as
open sets of M4 are the basic objects in zero energy ontology (ZEO).

2. Self-dual instantons of non-Abelian gauge theories for SU(n) gauge group are in one-one corre-
spondence with holomorphic rank-N vector bundles in twistor space satisfying some additional
conditions. This generalizes the correspondence of Penrose to the non-Abelian case. Instantons are
also usually formulated using classical field theory at four-sphere S4 having Euclidian signature.

3. Non-linear gravitons having self-dual geometry are in one-one correspondence with spaces obtained
as complex deformations of twistor space satisfying certain additional conditions. This is a gener-
alization of Penrose’s discovery to the gravitational sector.

Complexification of M4 emerges unavoidably in twistorial approach and Minkowski space identified
as a particular real slice of complexified M4 corresponds to the 5-D subspace of twistor space in which
the quadratic form defined by the SU(2,2) invariant metric of the 8-dimensional space giving twistor
space as its projectivization vanishes. The quadratic form has also positive and negative values with
its sign defining a projective invariant, and this correspond to complex continuations of M4 in which
positive/negative energy parts of fields approach to zero for large values of imaginary part of M4 time
coordinate.

Interestgingly, this complexification of M4 is also unavoidable in the number theoretic approach to
TGD: what one must do is to replace 4-D Minkowski space with a 4-D slice of 8-D complexified quater-
nions. What is interesting is that real M4 appears as a projective invariant consisting of light-like
projective vectors of C4 with metric signature (4,4). Equivalently, the points of M4 represented as linear
combinations of sigma matrices define hermitian matrices.

2.1.2 Basic problems of twistor approach

The best manner to learn something essential about a new idea is to learn about its problems. Difficulties
are often put under the rug but the thesis is however an exception in this respect. It starts directly from
the problems of twistor approach. There are two basic challenges.

1. Twistor approach works as such only in the case of Minkowski space. The basic condition for
its applicability is that the Weyl tensor is self-dual. For Minkowskian signature this leaves only
Minkowski space under consideration. For Euclidian signature the conditions are not quite so
restrictive. This looks a fatal restriction if one wants to generalize the result of Penrose to a general
space-time geometry. This difficulty is known as “googly” problem.

According to the thesis MHV construction of tree amplitudes of N = 4 SYM based on topological
twistor strings in CP3 meant a breakthrough and one can indeed understand also have analogs
of non-self-dual amplitudes. The problem is however that the gravitational theory assignable to
topological twistor strings is conformal gravity, which is generally regarded as non-physical. There
have been several attempts to construct the on-shell scattering amplitudes of Einstein’s gravity
theory as subset of amplitudes of conformal gravity and also thesis considers this problem.
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2. The construction of quantum theory based on twistor approach represents second challenge. In this
respect the development of twistor approach to N = 4 SYM meant a revolution and one can indeed
construct twistorial scattering amplitudes in M4.

2.2 Results about twistors relevant for TGD

First some background.

1. The twistors originally introduced by Penrose (1967) have made breakthrough during last decade.
First came the twistor string theory of Edward Witten [22] proposed twistor string theory and the
work of Nima-Arkani Hamed and collaborators [12] led to a revolution in the understanding of the
scattering amplitudes of scattering amplitudes of gauge theories [15, 21, 13]. Twistors do not only
provide an extremely effective calculational method giving even hopes about explicit formulas for
the scattering amplitudes of N = 4 supersymmetric gauge theories but also lead to an identification
of a new symmetry: Yangian symmetry [2], [17, 16], which can be seen as multilocal generalization
of local symmetries.

This approach, if suitably generalized, is tailor-made also for the needs of TGD. This is why I got
seriously interested on whether and how the twistor approach in empty Minkowski space M4 could
generalize to the case of H = M4 × CP2. The twistor space associated with H should be just the
cartesian product of those associated with its Cartesian factors. Can one assign a twistor space
with CP2?

2. First a general result [3] deserves to be mentioned: any oriented manifold X with Riemann metric
allows 6-dimensional twistor space Z as an almost complex space. If this structure is integrable, Z
becomes a complex manifold, whose geometry describes the conformal geometry of X. In general
relativity framework the problem is that field equations do not imply conformal geometry and
twistor Grassmann approach certainly requires conformal structure.

3. One can consider also a stronger condition: what if the twistor space allows also Kähler struc-
ture? The twistor space of empty Minkowski space M4 (and its Euclidian counterpart S4 is the
Minkowskian variant of P3 = SU(2, 2)/SU(2, 1) × U(1) of 3-D complex projective space CP3 =
SU(4)/SU(3)× U(1) and indeed allows Kähler structure.

Rather remarkably, there are no other space-times with Minkowski signature allowing twistor space
with Kähler structure. Does this mean that the empty Minkowski space of special relativity is much
more than a limit at which space-time is empty?

This also means a problem for GRT. Twistor space with Kähler structure seems to be needed
but general relativity does not allow it. Besides twistor problem GRT also has energy problem:
matter makes space-time curved and the conservation laws and even the definition of energy and
momentum are lost since the underlying symmetries giving rise to the conservation laws through
Noether’s theorem are lost. GRT has therefore two bad mathematical problems which might explain
why the quantization of GRT fails. This would not be surprising since quantum theory is to high
extent representation theory for symmetries and symmetries are lost. Twistors would extend these
symmetries to Yangian symmetry but GRT does not allow them.

4. What about twistor structure in CP2? CP2 allows complex structure (Weyl tensor is self-dual),
Kähler structure plus accompanying symplectic structure, and also quaternion structure. One of
the really big personal surprises of the last years has been that CP2 twistor space indeed allows
Kähler structure meaning the existence of antisymmetric tensor representing imaginary unit whose
tensor square is the negative of metric in turn representing real unit.

The article by Nigel Hitchin, a famous mathematical physicist, describes a detailed argument iden-
tifying S4 and CP2 as the only compact Riemann manifolds allowing Kählerian twistor space [3].
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Hitchin sent his discovery for publication 1979. An amusing co-incidence is that I discovered CP2

just this year after having worked with S2 and found that it does not really allow to understand
standard model quantum numbers and gauge fields. It is difficult to avoid thinking that maybe
synchrony indeed a real phenomenon as TGD inspired theory of consciousness predicts to be pos-
sible but its creator cannot quite believe. Brains at different side of globe discover simultaneously
something closely related to what some conscious self at the higher level of hierarchy using us as
instruments of thinking just as we use nerve cells is intensely pondering.

Although 4-sphere S4 allows twistor space with Kähler structure, it does not allow Kähler structure
and cannot serve as candidate for S in H = M4 ×S. As a matter of fact, S4 can be seen as a Wick
rotation of M4 and indeed its twistor space is CP3.

In TGD framework a slightly different interpretation suggests itself. The Cartesian products of
the intersections of future and past light-cones - causal diamonds (CDs) - with CP2 - play a key
role in zero energy ontology (ZEO) [23]. Sectors of “world of classical worlds” (WCW) [32, 28]
correspond to 4-surfaces inside CD × CP2 defining a the region about which conscious observer
can gain conscious information: state function reductions - quantum measurements - take place
at its light-like boundaries in accordance with holography. To be more precise, wave functions in
the moduli space of CDs are involved and in state function reductions come as sequences taking
place at a given fixed boundary. This kind of sequence is identifiable as self and give rise to the
experience about flow of time. When one replaces Minkowski metric with Euclidian metric, the
light-like boundaries of CD are contracted to a point and one obtains topology of 4-sphere S4.

5. Another really big personal surprise was that there are no other compact 4-manifolds with Euclidian
signature of metric allowing twistor space with Kähler structure! The imbedding space H = M4 ×
CP2 is not only physically unique since it predicts the quantum number spectrum and classical
gauge potentials consistent with standard model but also mathematically unique!

After this I dared to predict that TGD will be the theory next to GRT since TGD generalizes
string model by bringing in 4-D space-time. The reasons are many-fold: TGD is the only known
solution to the two big problems of GRT: energy problem and twistor problem. TGD is consistent
with standard model physics and leads to a revolution concerning the identification of space-time at
microscopic level: at macroscopic level it leads to GRT but explains some of its anomalies for which
there is empirical evidence (for instance, the observation that neutrinos arrived from SN1987A at
two different speeds different from light velocity [?]SN1987A has natural explanation in terms of
many-sheeted space-time). TGD avoids the landscape problem of M-theory and anthropic non-
sense. I could continue the list but I think that this is enough.

6. The twistor space of CP2 is 3-complex dimensional flag manifold F3 = SU(3)/U(1)× U(1) having
interpretation as the space for the choices of quantization axes for the color hypercharge and isospin.
This choice is made in quantum measurement of these quantum numbers and a means localization
to single point in F3. The localization in F3 could be higher level measurement leading to the choice
of quantizations for the measurement of color quantum numbers.

F3 is symmetric space meaning that besides being a coset space with SU(3) invariant metric it
also has involutions acting as a reflection at geodesics through a point remaining fixed under the
involution. As a symmetric space with Fubini-Study metric F3 is positive constant curvature space
having thus positive constant sectional curvatures. This implies Einstein space property. This
also conforms with the fact that F3 is CP1 bundle over CP2 as base space (for more details see
http://www.cirget.uqam.ca/~apostolo/papers/AGAG1.pdf ).

7. Analogous interpretation could make sense for M4 twistors represented as points of P3. Twistor cor-
responds to a light-like line going through some point of M4 being labelled by 4 position coordinates
and 2 direction angles: what higher level quantum measurement could involve a choice of light-like
line going through a point of M4? Could the associated spatial direction specify spin quantization
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axes? Could the associated time direction specify preferred rest frame? Does the choice of position
mean localization in the measurement of position? Do momentum twistors relate to the localization
in momentum space? These questions remain fascinating open questions and I hope that they will
lead to a considerable progress in the understanding of quantum TGD.

8. It must be added that the twistor space of CP2 popped up much earlier in a rather unexpected
context [31]: I did not of course realize that it was twistor space. Topologist Barbara Shipman
[7] has proposed a model for the honeybee dance leading to the emergence of F3. The model led
her to propose that quarks and gluons might have something to do with biology. Because of her
position and specialization the proposal was forgiven and forgotten by community. TGD however
suggests both dark matter hierarchies and p-adic hierarchies of physics [30, 45]. For dark hierarchies
the masses of particles would be the standard ones but the Compton scales would be scaled up by
heff/h = n [45]. Below the Compton scale one would have effectively massless gauge boson: this
could mean free quarks and massless gluons even in cell length scales. For p-adic hierarchy mass
scales would be scaled up or down from their standard values depending on the value of the p-adic
prime.

2.3 Basic definitions related to twistor spaces

One can find from web several articles explaining the basic notions related to twistor spaces and Calabi-
Yau manifolds. At the first look the notions of twistor as it appears in the writings of physicists and
mathematicians don’t seem to have much common with each other and it requires effort to build the
bridge between these views. The bridge comes from the association of points of Minkowski space with the
spheres of twistor space: this clearly corresponds to a bundle projection from the fiber to the base space,
now Minkowski space. The connection of the mathematician’s formulation with spinors remains still
somewhat unclear to me although one can understand CP1 as projective space associated with spinors
with 2 complex components. Minkowski signature poses additional challenges. In the following I try my
best to summarize the mathematician’s view, which is very natural in classical TGD.

There are many variants of the notion of twistor depending on whether how powerful assumptions
one is willing to make. The weakest definition of twistor space is as CP1 bundle of almost complex
structures in the tangent spaces of an orientable 4-manifold. Complex structure at given point means
selection of antisymmetric form J whose natural action on vector rotates a vector in the plane defined by
it by π/2 and thus represents the action of imaginary unit. One must perform this kind of choice also in
normal plane and the direct sum of the two choices defines the full J . If one choses J to be self-dual or
anti-self-dual (eigenstate of Hodge star operation), one can fix J uniquely. Orientability makes possible
the Hodge start operation involving 4-dimensional permutation tensor.

The condition i1 = −1 is translated to the condition that the tensor square of J equals to J2 = −g.
The possible choices of J span sphere S2 defining the fiber of the twistor spaces. This is not quite
the complex sphere CP1, which can be thought of as a projective space of spinors with two complex
components. Complexification must be performed in both the tangent space of X4 and of S2. Note that
in the standard approach to twistors the entire 6-D space is projective space P3 associated with the C8

having interpretation in terms of spinors with 4 complex components.
One can introduce almost complex structure also to the twistor space itself by extending the almost

complex structure in the 6-D tangent space obtained by a preferred choices of J by identifiying it as
a point of S2 and acting in other points of S2 identified as antisymmetric tensors. If these points are
interpreted as imaginary quaternion units, the action is commutator action divided by 2. The existence
of quaternion structure of space-time surfaces in the sense as I have proposed in TGD framework might
be closely related to the twistor structure.

Twistor structure as bundle of almost complex structures having itself almost complex structure is
characterized by a hermitian Kähler form ω defining the almost complex structure of the twistor space.
Three basic objects are involved: the hermitian form h, metric g and Kähler form ω satisfying h = g+ iω,
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g(X,Y ) = ω(X, JY ).
In the base space the metric of twistor space is the metric of the base space and in the tangent space

of fibre the natural metric in the space of antisymmetric tensors induced by the metric of the base space.
Hence the properties of the twistor structure depend on the metric of the base space.

The relationship to the spinors requires clarification. For 2-spinors one has natural Lorentz invariant
antisymmetric bilinear form and this seems to be the counterpart for J?

One can consider various additional conditions on the definition of twistor space.

1. Kähler form ω is not closed in general. If it is, it defines symplectic structure and Kähler structure.
S4 and CP2 are the only compact spaces allowing twistor space with Kähler structure.

2. Almost complex structure is not integrable in general. In the general case integrability requires that
each point of space belongs to an open set in which vector fields of type (1, 0) or (0, 1) having basis
∂/∂zk and ∂/∂zk expressible as linear combinations of real vector fields with complex coefficients
commute to vector fields of same type. This is non-trivial conditions since the leading names for
the vector field for the partial derivatives does not yet guarantee these conditions.

This necessary condition is also enough for integrability as Newlander and Nirenberg have demon-
strated. An explicit formulation for the integrability is as the vanishing of Nijenhuis tensor associated
with the antisymmetric form J (see (http://insti.physics.sunysb.edu/conf/simonsworkII/
talks/LeBrun.pdf and http://en.wikipedia.org/wiki/Almost_complex_manifold#Integrable_
almost_complex_structures ). Nijenhuis tensor characterizes Nijenhuis bracket generalizing or-
dinary Lie bracket of vector fields (for detailed formula see http://en.wikipedia.org/wiki/

FrlicherNijenhuis_bracket ).

3. In the case of twistor spaces there is an alternative formulation for the integrability. Curvature
tensor maps in a natural manner 2-forms to 2-forms and one can decompose the Weyl tensor W
identified as the traceless part of the curvature tensor to self-dual and anti-self-dual parts W+ and
W−, whose actions are restricted to self-dual resp. antiself-dual forms (self-dual and anti-self-dual
parts correspond to eigenvalue + 1 and -1 under the action of Hodge ∗ operation: for more details
see http://www.math.ucla.edu/~greene/YauTwister(8-9).pdf ). If W+ or W− vanishes - in
other worlds W is self-dual or anti-self-dual - the assumption that J is self-dual or anti-self-dual
guarantees integrability. One says that the metric is anti-self-dual (ASD). Note that the vanishing
of Weyl tensor implies local conformal flatness (M4 and sphere are obviously conformally flat). One
might think that ASD condition guarantees that the parallel translation leaves J invariant.

ASD property has a nice implication: the metric is balanced. In other words one has d(ω ∧ ω) =
2ω ∧ dω = 0.

4. If the existence of complex structure is taken as a part of definition of twistor structure, one
encounters difficulties in general relativity. The failure of spin structure to exist is similar difficulty:
for CP2 one must indeed generalize the spin structure by coupling Kähler gauge potential to the
spinors suitably so that one obtains gauge group of electroweak interactions.

5. One could also give up the global existence of complex structure and require symplectic structure
globally: this would give dω = 0. A general result is that hyperbolic 4-manifolds allow symplectic
structure and ASD manifolds allow complex structure and hence balanced metric.

2.4 Why twistor spaces with Kähler structure?

I have not yet even tried to answer an obvious question. Why the fact that M4 and CP2 have twistor
spaces with Kähler structure could be so important that it could fix the entire physics? Let us consider
a less general question. Why they would be so important for the classical TGD - exact part of quantum
TGD - defined by the extremals of Kähler action [25] ?
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1. Properly generalized conformal symmetries are crucial for the mathematical structure of TGD
[28, 40, 27]. Twistor spaces have almost complex structure and in these two special cases also
complex, Kähler, and symplectic structures (note that the integrability of the almost complex
structure to complex structure requires the self-duality of the Weyl tensor of the 4-D manifold).

The Cartesian product CP3 × F3 of the two twistor spaces with Kähler structure is expected to
be fundamental for TGD. The obvious wishful thought is that this space makes possible the con-
struction of the extremals of Kähler action in terms of holomorphic surfaces defining 6-D twistor
sub-spaces of CP3 × F3 allowing to circumvent the technical problems due to the signature of M4

encountered at the level of M4 × CP2. It would also make the the magnificent machinery of the
algebraic geometry so powerful in string theories a tool of TGD. For years ago I considered the
possibility that complex 3-manifolds of CP3 × CP3 could have the structure of S2 fiber space and
have space-time surfaces as base space. I did not realize that this spaces could be twistor spaces
nor did I realize that CP2 allows twistor space with Kähler structure so that CP3 × F3 is a more
plausible choice.

2. Every 4-D orientable Riemann manifold allows a twistor space as 6-D bundle with CP1 as fiber
and possessing almost complex structure. Metric and various gauge potentials are obtained by
inducing the corresponding bundle structures. Hence the natural guess is that the twistor structure
of space-time surface defined by the induced metric is obtained by induction from that for CP3×F3

by restricting its twistor structure to a 6-D (in real sense) surface of CP3 × F3 with a structure
of twistor space having at least almost complex structure with CP1 as a fiber. If so then one can
indeed identify the base space as 4-D space-time surface in M4 ×SCP2 using bundle projections in
the factors CP3 and F3.

3. There might be also a connection to the number theoretic vision about the extremals of Kähler
action. At space-time level however complexified quaternions and octonions could allow alternative
formulation. I have indeed proposed that space-time surfaces have associative of co-associative
meaning that the tangent space or normal space at a given point belongs to quaternionic subspace
of complexified octonions.

3 About the identification of 6-D twistor spaces as sub-manifolds

of CP3 × F3

How to identify the 6-D sub-manifolds with the structure of twistor space? Is this property all that is
needed? Can one find a simple solution to this condition? What is the relationship of twistor spaces to
the Calabi-Yau manifolds of suyper string models? In the following intuitive considerations of a simple
minded physicist. Mathematician could probably make much more interesting comments.

3.1 Conditions for twistor spaces as sub-manifolds

Consider the conditions that must be satisfied using local trivializations of the twistor spaces. Before
continuing let us introduce complex coordinates zi = xi + iyi resp. wi = ui + ivi for CP3 resp. F3.

1. 6 conditions are required and they must give rise by bundle projection to 4 conditions relating
the coordinates in the Cartesian product of the base spaces of the two bundles involved and thus
defining 4-D surface in the Cartesian product of compactified M4 and CP2.

2. One has Cartesian product of two fiber spaces with fiber CP1 giving fiber space with fiber CP 1
1 ×

CP 2
1 . For the 6-D surface the fiber must be CP1. It seems that one must identify the two spheres

CP i
1. Since holomorphy is essential, holomorphic identification w1 = f(z1) or z1 = f(w1) is the first

guess. A stronger condition is that the function f is meromorphic having thus only finite numbers
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of poles and zeros of finite order so that a given point of CP i
1 is covered by CP i+1

1 . Even stronger
and very natural condition is that the identification is bijection so that only Möbius transformations
parametrized by SL(2, C) are possible.

3. Could the Möbius transformation f : CP 1
1 → CP 2

1 depend parametrically on the coordinates z2, z3
so that one would have w1 = f1(z1, z2, z3), where the complex parameters a, b, c, d (ad− bc = 1) of
Möbius transformation depend on z2 and z3 holomorphically? Does this mean the analog of local
SL(2, C) gauge invariance posing additional conditions? Does this mean that the twistor space as
surface is determined up to SL(2, C) gauge transformation?

What conditions can one pose on the dependence of the parameters a, b, c, d of the Möbius trans-
formation on (z2, z3)? The spheres CP1 defined by the conditions w1 = f(z1, z2, z3) and z1 =
g(w1, w2, w3) must be identical. Inverting the first condition one obtains z1 = f−1(w1, z2, z3). If
one requires that his allows an expression as z1 = g(w1, w2, w3), one must assume that z2 and z3
can be expressed as holomorphic functions of (w2, w3): zi = fi(wk), i = 2, 3, k = 2, 3. Of course,
non-holomorphic correspondence cannot be excluded.

4. Further conditions are obtained by demanding that the known extremals - at least non-vacuum
extremals - are allowed. The known extremals [25] can be classified into CP2 type vacuum extremals
with 1-D light-like curve as M4 projection, to vacuum extremals with CP2 projection, which is
Lagrangian sub-manifold and thus at most 2-dimensional, to massless extremals with 2-D CP2

projection such that CP2 coordinates depend on arbitrary manner on light-like coordinate defining
local propagation direction and space-like coordinate defining a local polarization direction, and to
string like objects with string world sheet as M4 projection (minimal surface) and 2-D complex sub-
manifold of CP2 as CP2 projection, . There are certainly also other extremals such as magnetic flux
tubes resulting as deformations of string like objects. Number theoretic vision relying on classical
number fields suggest a very general construction based on the notion of associativity of tangent
space or co-tangent space.

5. The conditions coming from these extremals reduce to 4 conditions expressible in the holomorphic
case in terms of the base space coordinates (z2, z3) and (w2, w3) and in the more general case in
terms of the corresponding real coordinates. It seems that holomorphic ansatz is not consistent
with the existence of vacuum extremals, which however give vanishing contribution to transition
amplitudes since WCW (“world of classical worlds”) metric is completely degenerate for them.

The mere condition that one has CP1 fiber bundle structure does not force field equations since
it leaves the dependence between real coordinates of the base spaces free. Of course, CP1 bundle
structure alone does not imply twistor space structure. One can ask whether non-vacuum extremals
could correspond to holomorphic constraints between (z2, z3) and (w2, w3).

6. The metric of twistor space is not Kähler in the general case. However, if it allows complex structure
there is a Hermitian form ω, which defines what is called balanced Kähler form [8] satisfying
d(ω ∧ ω) = 2ω ∧ dω = 0: ordinary Kähler form satisfying dω = 0 is special case about this. The
natural metric of compact 6-dimensional twistor space is therefore balanced. Clearly, mere CP1

bundle structure is not enough for the twistor structure. If the the Kähler and symplectic forms are
induced from those of CP3×Y3, highly non-trivial conditions are obtained for the imbedding of the
twistor space, and one might hope that they are equivalent with those implied by Kähler action at
the level of base space.

7. Pessimist could argue that field equations are additional conditions completely independent of the
conditions realizing the bundle structure! One cannot exclude this possibility. Mathematician
could easily answer the question about whether the proposed CP1 bundle structure with some
added conditions is enough to produce twistor space or not and whether field equations could be
the additional condition and realized using the holomorphic ansatz.

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.



Prespacetime Journal | May 2015 | Volume 6 | Issue 5 | pp. 376-449 388

Pitkänen, M., TGD Variant of Twistor Story

3.2 Twistor spaces by adding CP1 fiber to space-time surfaces

The physical picture behind TGD is the safest starting point in an attempt to gain some idea about what
the twistor spaces look like.

1. Canonical imbeddings of M4 and CP2 and their disjoint unions are certainly the natural starting
point and correspond to canonical imbeddings of CP3 and F3 to CP3 × F3.

2. Deformations of M4 correspond to space-time sheets with Minkowskian signature of the induced
metric and those of CP2 to the lines of generalized Feynman diagrams. The simplest deformations
of M4 are vacuum extremals with CP2 projection which is Lagrangian manifold.

Massless extremals represent non-vacuum deformations with 2-D CP2 projection. CP2 coordinates
depend on local light-like direction defining the analog of wave vector and local polarization direction
orthogonal to it.

The simplest deformations of CP2 are CP2 type extremals with light-like curve asM4 projection and
have same Kähler form and metric as CP2. These space-time regions have Euclidian signature of
metric and light-like 3-surfaces separating Euclidian and Minkowskian regions define parton orbits.

String like objects are extremals of type X2 × Y 2, X2 minimal surface in M4 and Y 2 a complex
sub-manifold of CP2. Magnetic flux tubes carrying monopole flux are deformations of these.

Elementary particles are important piece of picture. They have as building bricks wormhole contacts
connecting space-time sheets and the contacts carry monopole flux. This requires at least two
wormhole contacts connected by flux tubes with opposite flux at the parallel sheets.

3. Space-time surfaces are constructed using as building bricks space-time sheets, in particular massless
exrremals, deformed pieces of CP2 defining lines of generalized Feynman diagrams as orbits of
wormhole contacts, and magnetic flux tubes connecting the lines. Space-time surfaces have in
the generic case discrete set of self intersections and it is natural to remove them by connected
sum operation. Same applies to twistor spaces as sub-manifolds of CP3 × F3 and this leads to a
construction analogous to that used to remove singularities of Calabi-Yau spaces [8].

Physical intuition suggests that it is possible to find twistor spaces associated with the basic building
bricks and to lift this engineering procedure to the level of twistor space in the sense that the twistor
projections of twistor spaces would give these structure. Lifting would essentially mean assigning CP1

fiber to the space-time surfaces.

1. Twistor spaces should decompose to regions for which the metric induced from the CP3×F3 metric
has different signature. In particular, light-like 5-surfaces should replace the light-like 3-surfaces as
causal horizons. The signature of the Hermitian metric of 4-D (in complex sense) twistor space is
(1, 1, -1, -1). Minkowskian variant of CP3 is defined as projective space SU(2, 2)/SU(2, 1)× U(1).
The causal diamond (CD) (intersection of future and past directed light-cones) is the key geometric
object in zero energy ontology (ZEO) and the generalization to the intersection of twistorial light-
cones is suggestive.

2. Projective twistor space has regions of positive and negative projective norm, which are 3-D complex
manifolds. It has also a 5-dimensional sub-space consisting of null twistors analogous to light-cone
and has one null direction in the induced metric. This light-cone has conic singularity analogous to
the tip of the light-cone of M4.

These conic singularities are important in the mathematical theory of Calabi-You manifolds since
topology change of Calabi-Yau manifolds via the elimination of the singularity can be associated
with them. The S2 bundle character implies the structure of S2 bundle for the base of the singularity
(analogous to the base of the ordinary cone).
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3. Null twistor space corresponds at the level ofM4 to the light-cone boundary (causal diamond has two
light-like boundaries). What about the light-like orbits of partonic 2-surfaces whose light-likeness
is due to the presence of CP2 contribution in the induced metric? For them the determinant of
induced 4-metric vanishes so that they are genuine singularities in metric sense. The deformations for
the canonical imbeddings of this sub-space (F3 coordinates constant) leaving its metric degenerate
should define the lifts of the light-like orbits of partonic 2-surface. The singularity in this case
separates regions of different signature of induced metric.

It would seem that if partonic 2-surface begins at the boundary of CD, conical singularity is not
necessary. On the other hand the vertices of generalized Feynman diagrams are 3-surfaces at which
3-lines of generalized Feynman digram are glued together. This singularity is completely analogous
to that of ordinary vertex of Feynman diagram. These singularities should correspond to gluing
together 3 deformed F3 along their ends.

4. These considerations suggest that the construction of twistor spaces is a lift of construction space-
time surfaces and generalized Feynman diagrammatics should generalize to the level of twistor
spaces. What is added is CP1 fiber so that the correspondence would rather concrete.

5. For instance, elementary particles consisting of pairs of monopole throats connected buy flux tubes
at the two space-time sheets involved should allow lifting to the twistor level. This means double
connected sum and this double connected sum should appear also for deformations of F3 associated
with the lines of generalized Feynman diagrams. Lifts for the deformations of magnetic flux tubes
to which one can assign CP3 in turn would connect the two F3s.

6. A natural conjecture inspired by number theoretic vision is that Minkowskian and Euclidian space-
time regions correspond to associative and co-associative space-time regions. At the level of twistor
space these two kinds of regions would correspond to deformations of CP3 and F3. The signature
of the twistor norm would be different in this regions just as the signature of induced metric is
different in corresponding space-time regions.

These two regions of space-time surface should correspond to deformations for disjoint unions of
CP3s and F3s and multiple connected sum form them should project to multiple connected sum
(wormhole contacts with Euclidian signature of induced metric) for deformed CP3s. Wormhole
contacts could have deformed pieces of F3 as counterparts.

There are interesting questions related to the detailed realization of the twistor spaces of space-time
surfaces.

1. In the case of CP2 J would naturally correspond to the Kähler form of CP2. Could one identify J
for the twistor space associated with space-time surface as the projection of J? For deformations of
CP2 type vacuum extremals the normalization of J would allow to satisfy the condition J2 = −g.
For general extremals this is not possible. Should one be ready to modify the notion of twistor
space by allowing this?

2. Or could the associativity/co-associativity condition realized in terms of quaternionicity of the
tangent or normal space of the space-time surface guaranteeing the existence of quaternion units
solve the problem and J could be identified as a representation of unit quaternion? In this case J
would be replaced with vielbein vector and the decomposition 1+3 of the tangent space implied by
the quaternion structure allows to use 3-dimensional permutation symbol to assign antisymmetric
tensors to the vielbein vectors. Also the triviality of the tangent bundle of 3-D space allowing global
choices of the 3 imaginary units could be essential.

3. Does associativity/co-associativity imply twistor space property or could it provide alternative man-
ner to realize this notion? Or could one see quaternionic structure as an extension of almost complex
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structure. Instead of single J three orthogonal J : s (3 almost complex structures) are introduced
and obey the multiplication table of quaternionic units? Instead of S2 the fiber of the bundle would
be SO(3) = S3. This option is not attractive. A manifold with quaternionic tangent space with
metric representing the real unit is known as quaternionic Riemann manifold and CP2 with holon-
omy U(2) is example of it. A more restrictive condition is that all quaternion units define closed
forms: one has quaternion Kähler manifold, which is Ricci flat and has in 4-D case Sp(1)=SU(2)
holonomy. (see http://www.encyclopediaofmath.org/index.php/Quaternionic_structure ).

4. Anti-self-dual property (ASD) of metric guaranteeing the integrability of almost complex structure
of the twistor space implies the condition ω∧dω = 0 for the twistor space. What does this condition
mean physically for the twistor spaces associated with the extremals of Kähler action? For the 4-D
base space this property is of course identically true. ASD property need of course not be realized.

3.3 Twistor spaces as analogs of Calabi-Yau spaces of super string models

CP3 is also a Calabi-Yau manifold in the strong sense that it allows Kähler structure and complex
structure. Witten’s twistor string theory considers 2-D (in real sense) complex surfaces in twistor space
CP3. This inspires some questions.

1. Could TGD in twistor space formulation be seen as a generalization of this theory?

2. General twistor space is not Calabi-Yau manifold because it does does not have Kähler structure.
Do twistor spaces replace Calabi-Yaus in TGD framework?

3. Could twistor spaces be Calabi-Yau manifolds in some weaker sense so that one would have a closer
connection with super string models.

Consider the last question.

1. One can indeed define non-Kähler Calabi-Yau manifolds by keeping the hermitian metric and giving
up symplectic structure or by keeping the symplectic structure and giving up hermitian metric
(almost complex structure is enough). Construction recipes for non-Kähler Calabi-Yau manifold
are discussed in [8]. It is shown that these two manners to give up Kähler structure correspond to
duals under so called mirror symmetry [20] which maps complex and symplectic structures to each
other. This construction applies also to the twistor spaces.

2. For the modification giving up symplectic structure, one starts from a smooth Kähler Calabi-Yau
3-fold Y , such as CP3. One assumes a discrete set of disjoint rational curves diffeomorphic to CP1.
In TGD framework work they would correspond to special fibers of twistor space.

One has singularities in which some rational curves are contracted to point - in twistorial case the
fiber of twistor space would contract to a point - this produces double point singularity which one
can visualize as the vertex at which two cones meet (sundial should give an idea about what is
involved). One deforms the singularity to a smooth complex manifold. One could interpret this as
throwing away the common point and replacing it with connected sum contact: a tube connecting
the holes drilled to the vertices of the two cones. In TGD one would talk about wormhole contact.

3. Suppose the topology looks locally like S3 × S2 × R± near the singularity, such that two copies
analogous to the two halves of a cone (sundial) meet at single point defining double point singularity.
In the recent case S2 would correspond to the fiber of the twistor space. S3 would correspond to 3-
surface and R± would correspond to time coordinate in past/future direction. S3 could be replaced
with something else.
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The copies of S3 × S2 contract to a point at the common end of R+ and R− so that both the
based and fiber contracts to a point. Space-time surface would look like the pair of future and past
directed light-cones meeting at their tips.

For the first modification giving up symplectic structure only the fiber S2 is contracted to a point
and S2 × D is therefore replaced with the smooth ”bottom” of S3. Instead of sundial one has
two balls touching. Drill small holes two the two S3s and connect them by connected sum contact
(wormhole contact). Locally one obtains S3 × S3 with k connected sum contacts.

For the modification giving up Hermitian structure one contracts only S3 to a point instead of S2.
In this case one has locally two CP3: s touching (one can think that CPn is obtained by replacing
the points of Cn at infinity with the sphere CP1). Again one drills holes and connects them by a
connected sum contact to get k-connected sum of CP3.

For k CP1s the outcome looks locally like to a k-connected sum of S3 × S3 or CP3 with k ≥ 2.
In the first case one loses symplectic structure and in the second case hermitian structure. The
conjecture is that the two manifolds form a mirror pair.

The general conjecture is that all Calabi-Yau manifolds are obtained using these two modifications.
One can ask whether this conjecture could apply also the construction of twistor spaces representable
as surfaces in CP3 × F3 so that it would give mirror pairs of twistor spaces.

4. This smoothing out procedures isa actually unavoidable in TGD because twistor space is sub-
manifold. The 6-D twistor spaces in 12-D CP3 × F3 have in the generic case self intersections
consisting of discrete points. Since the fibers CP1 cannot intersect and since the intersection is
point, it seems that the fibers must contract to a point. In the similar manner the 4-D base spaces
should have local foliation by spheres or some other 3-D objects with contract to a point. One has
just the situation described above.

One can remove these singularities by drilling small holes around the shared point at the two
sheets of the twistor space and connected the resulting boundaries by connected sum contact. The
preservation of fiber structure might force to perform the process in such a manner that local
modification of the topology contracts either the 3-D base (S3 in previous example or fiber CP1 to
a point.

The interpretation of twistor spaces is of course totally different from the interpretation of Calabi-
Yaus in superstring models. The landscape problem of superstring models is avoided and the multiverse
of string models is replaced with generalized Feynman diagrams! Different twistor spaces correspond
to different space-time surfaces and one can interpret them in terms of generalized Feynman diagrams
since bundle projection gives the space-time picture. Mirror symmetry means that there are two different
Calabi-Yaus giving the same physics. Also now twistor space for a given space-time surface can have
several imbeddings - perhaps mirror pairs define this kind of imbeddings.

To sum up, the construction of space-times as surfaces of H lifted to that of (almost) complex sub-
manifolds in CP3 × F3 with induced twistor structure shares the spirit of the vision that induction
procedure is the key element of classical and quantum TGD. It also gives deep connection with the
mathematical methods applied in super string models and these methods should be of direct use in TGD.

3.4 Are Euclidian regions of preferred extremals quaternion-Kähler mani-

folds?

In blog comments Anonymous gave a link to an article about construction of 4-D quaternion-Kähler
metrics with an isometry: they are determined by so called SU(∞) Toda equation. I tried to see whether
quaternion-Kähler manifolds could be relevant for TGD.

From Wikipedia one can learn that QK is characterized by its holonomy, which is a subgroup of
Sp(n) × Sp(1): Sp(n) acts as linear symplectic transformations of 2n-dimensional space (now real). In
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4-D case tangent space contains 3-D sub-manifold identifiable as imaginary quaternions. CP2 is one
example of QK manifold for which the subgroup in question is SU(2)×U(1) and which has non-vanishing
constant curvature: the components of Weyl tensor represent the quaternionic imaginary units. QKs are
Einstein manifolds: Einstein tensor is proportional to metric.

What is really interesting from TGD point of view is that twistorial considerations show that one can
assign to QK a special kind of twistor space (twistor space in the mildest sense requires only orientability).
Wiki tells that if Ricci curvature is positive, this (6-D) twistor space is what is known as projective Fano
manifold with a holomorphic contact structure. Fano variety has the nice property that as (complex)
line bundle (the twistor space property) it has enough sections to define the imbedding of its base space
to a projective variety. Fano variety is also complete: this is algebraic geometric analogy of topological
property known as compactness.

3.4.1 QK manifolds and twistorial formulation of TGD

How the QKs could relate to the twistorial formulation of TGD?

1. In the twistor formulation of TGD [39] the space-time surfaces are 4-D base spaces of 6-D twistor
spaces in the Cartesian product of 6-D twistor spaces of M4 and CP2 - the only twistor spaces with
Kähler structure. In TGD framework space-time regions can have either Euclidian or Minkowskian
signature of induced metric. The lines of generalized Feynman diagrams are Euclidian.

2. Could the twistor spaces associated with the lines of generalized Feynman diagrams be projective
Fano manifolds? Could QK structure characterize Euclidian regions of preferred extremals of Kähler
action? Could a generalization to Minkowskian regions exist.

I have proposed that so called Hamilton-Jacobi structure [40] characterizes preferred extremals in
Minkowskian regions. It could be the natural Minkowskian counterpart for the quaternion Kähler
structure, which involves only imaginary quaternions and could make sense also in Minkowski
signature. Note that unit sphere of imaginary quaternions defines the sphere serving as fiber of the
twistor bundle.

Why it would be natural to have QK that is corresponding twistor space, which is projective contact
Fano manifold?

1. QK property looks very strong condition but might be true for the preferred extremals satisfying
very strong conditions stating that the classical conformal charges associated with various conformal
algebras extending the conformal algebras of string models [40], [?]variationalhamed. These condi-
tions would be essentially classical gauge conditions stating that strong form of holography implies
by strong form of General Coordinate Invariance (GCI) is realized: that is partonic 2-surfaces and
their 4-D tangent space data code for quantum physics.

2. Kähler property makes sense for space-time regions of Euclidian signature and would be natural is
these regions can be regarded as small deformations of CP2 type vacuum extremals with light-like
M4 projection and having the same metric and Kähler form as CP2 itself.

3. Fano property implies that the 4-D Euclidian space-time region representing line of the Feynman
diagram can be imbedded as a sub-manifold to complex projective space CPn. This would allow
to use the powerful machinery of projective geometry in TGD framework. This could also be a
space-time correlate for the fact that CPns emerge in twistor Grassmann approach expected to
generalize to TGD framework.

4. CP2 allows both projective (trivially) and contact (even symplectic) structures. δM4
+ ×CP2 allows

contact structure - I call it loosely symplectic structure. Also 3-D light-like orbits of partonic 2-
surfaces allow contact structure. Therefore holomorphic contact structure for the twistor space is
natural.
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5. Both the holomorphic contact structure and projectivity of CP2 would be inherited if QK property
is true. Contact structures at orbits of partonic 2-surfaces would extend to holomorphic contact
structures in the Euclidian regions of space-time surface representing lines of generalized Feyn-
man diagrams. Projectivity of Fano space would be also inherited from CP2 or its twistor space
SU(3)/U(1)×U(1) (flag manifold identifiable as the space of choices for quantization axes of color
isospin and hypercharge).

The article considers a situation in which the QK manifold allows an isometry. Could the isometry
(or possibly isometries) for QK be seen as a remnant of color symmetry or rotational symmetries of
M4 factor of imbedding space? The only remnant of color symmetry at the level of imbedding space
spinors is anomalous color hyper charge (color is like orbital angular momentum and associated with
spinor harmonic in CP2 center of mass degrees of freedom). Could the isometry correspond to anomalous
hypercharge?

3.4.2 How to choose the quaternionic imaginary units for the space-time surface?

Parallellizability is a very special property of 3-manifolds allowing to choose quaternionic imaginary units:
global choice of one of them gives rise to twistor structure.

1. The selection of time coordinate defines a slicing of space-time surface by 3-surfaces. GCI would
suggest that a generic slicing gives rise to 3 quaternionic units at each point each 3-surface? The
parallelizability of 3-manifolds - a unique property of 3-manifolds - means the possibility to select
global coordinate frame as section of the frame bundle: one has 3 sections of tangent bundle whose
inner products give rose to the components of the metric (now induced metric) guarantees this. The
tri-bein or its dual defined by two-forms obtained by contracting tri-bein vectors with permutation
tensor gives the quanternionic imaginary units. The construction depends on 3-metric only and
could be carried out also in GRT context. Note however that topology change for 3-manifold might
cause some non-trivialities. The metric 2-dimensionality at the light-like orbits of partonic 2-surfaces
should not be a problem for a slicing by space-like 3-surfaces. The construction makes sense also
for the regions of Minkowskian signature.

2. In fact, any 4-manifold [4] allows almost quaternionic as the above slicing argument relying on
parallelizibility of 3-manifolds strongly suggests.

3. In zero energy ontology (ZEO)- a purely TGD based feature - there are very natural special slic-
ings. The first one is by linear time-like Minkowski coordinate defined by the direction of the line
connecting the tips of the causal diamond (CD). Second one is defined by the light-cone proper time
associated with either light-cone in the intersection of future and past directed light-cones defining
CD. Neither slicing is global as it is easy to see.

3.4.3 The relationship to quaternionicity conjecture and M8 −H duality

One of the basic conjectures of TGD is that preferred extremals consist of quaternionic/ co-quaternionic
(associative/co-associative) regions [38]. Second closely related conjecture is M8 −H duality allowing to
map quaternionic/co-quaternionic surfaces of M8 to those of M4×CP2. Are these conjectures consistent
with QK in Euclidian regions and Hamilton-Jacobi property in Minkowskian regions? Consider first the
definition of quaternionic and co-quaternionic space-time regions.

1. Quaternionic/associative space-time region (with Minkowskian signature) is defined in terms of
induced octonion structure obtained by projecting octonion units defined by vielbein of H = M4 ×
CP2 to space-time surface and demanding that the 4 projections generate quaternionic sub-algebra
at each point of space-time.
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If there is also unique complex sub-algebra associated with each point of space-time, one obtains
one can assign to the tangent space-of space-time surface a point of CP2. This allows to realize
M8−H duality [38] as the number theoretic analog of spontaneous compactification (but involving
no compactification) by assigning to a point of M4 = M4 × CP2 a point of M4 × CP2. If the
image surface is also quaternionic, this assignment makes sense also for space-time surfaces in H so
that M8 −H duality generalizes to H −H duality allowing to assign to given preferred extremal
a hierarchy of extremals by iterating this assignment. One obtains a category with morphisms
identifiable as these duality maps.

2. Co-quaternionic/co-associative structure is conjectured for space-time regions of Euclidian signature
and 4-D CP2 projection. In this case normal space of space-time surface is quaternionic/associative.
A multiplication of the basis by preferred unit of basis gives rise to a quaternionic tangent space
basis so that one can speak of quaternionic structure also in this case.

3. Quaternionicity in this sense requires unique identification of a preferred time coordinate as imbed-
ding space coordinate and corresponding slicing by 3-surfaces and is possible only in TGD context.
The preferred time direction would correspond to real quaternionic unit. Preferred time coordi-
nate implies that quaternionic structure in TGD sense is more specific than the QK structure in
Euclidian regions.

4. The basis of induced octonionic imaginary unit allows to identify quaternionic imaginary units
linearly related to the corresponding units defined by tri-bein vectors. Note that the multiplication
of octonionic units is replaced with multiplication of antisymmetric tensors representing them when
one assigns to the quaternionic structure potential QK structure. Quaternionic structure does
not require Kähler structure and makes sense for both signatures of the induced metric. Hence a
consistency with QK and its possible analog in Minkowskian regions is possible.

5. The selection of the preferred imaginary quaternion unit is necessary for M8 −H correspondence.
This selection would also define the twistor structure. For quaternion-Kähler manifold this unit
would be covariantly constant and define Kähler form - maybe as the induced Kähler form.

6. Also in Minkowskian regions twistor structure requires a selection of a preferred imaginary quater-
nion unit. Could the induced Kähler form define the preferred imaginary unit also now? Is the
Hamilton-Jacobi structure consistent with this?

Hamilton-Jacobi structure involves a selection of 2-D complex plane at each point of space-time
surface. Could induced Kähler magnetic form for each 3-slice define this plane? It is not necessary
to require that 3-D Kähler form is covariantly constant for Minkowskian regions. Indeed, massless
extremals representing analogs of photons are characterized by local polarization and momentum
direction and carry time-dependent Kähler-electric and -magnetic fields. One can however ask
whether monopole flux tubes carry covariantly constant Kähler magnetic field: they are indeed
deformations of what I call cosmic strings [25, 29] for which this condition holds true?

3.5 Could quaternion analyticity make sense for the preferred extremals?

The 4-D generalization of conformal invariance suggests strongly that the notion of analytic function
generalizes somehow. The obvious ideas coming in mind are appropriately defined quaternionic and
octonion analyticity. I have used a considerable amount of time to consider these possibilities but had to
give up the idea about octonion analyticity could somehow allow to preferred extemals.

3.5.1 Basic idea

One can argue that quaternion analyticity is the more natural option in the sense that the local octonionic
imbedding space coordinate (or at least M8 or E8 coordinate, which is enough if M8 −H duality holds
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true) would for preferred extremals be expressible in the form

o(q) = u(q) + v(q)× I .

Here q is quaternion serving as a coordinate of a quaternionic sub-space of octonions, and I is octonion
unit belonging to the complement of the quaternionic sub-space, and multiplies v(q) from right so that
quaternions and qiaternionic differential operators acting from left do not notice these coefficients at all.
A stronger condition would be that the coefficients are real. u(q) and v(q) would be quaternionic Taylor-
of even Laurent series with coefficients multiplying powers of q from right for the same reason.

The signature of M4 metric is a problem. I have proposed complexification of M8 and M4 to get rid of
the problem by assuming that the imbedding space corresponds to surfaces in the space M8 identified as
octonions of form o8 = Re(o)+iIm(o), where o is imaginary part of ordinary octonion and i is commuting
imaginary unit. M4 would correspond to quaternions of form q4 = Re(q)+ iIm(q). What is important is
that powers of q4 and o8 belong to this sub-space (as follows from the vanishing of cross product term in
the square of octonion/quaternion) so that powers of q4 (o8) has imaginary part proportional to Im(q)
(Im(o))

I ended up to reconsider the idea of quaternion analyticity after having found two very interesting
articles discussing the generalization of Cauchy-Riemann equations. The first article [4] was about so
called triholomorphic maps between 4-D almost quaternionic manifolds. The article gave as a reference
an article [6] about quaternionic analogs of Cauchy-Riemann conditions discussed by Fueter long ago
(somehow I have managed to miss Fueter’s work just like I missed Hitchin’s work about twistorial unique-
ness of M4 and CP2), and also a new linear variant of these conditions, which seems especially interesting
from TGD point of view as will be found.

3.5.2 The first form of Cauchy-Rieman-Fueter conditions

Cauhy-Riemann-Fueter (CRF) conditions generalize Cauchy-Riemann conditions. These conditions are
however not unique. Consider first the translationally invariant form of CRF conditions.

1. The translationally invariant form of CRF conditions is ∂qf = 0 or explicitly

∂qf = (∂t − ∂xI − ∂yJ − ∂zK)f = 0 .

This form does not allow quaternionic Taylor series. Note that the Taylor coefficients multiplying
powers of the coordinate from right are arbitrary quaternions. What looks pathological is that even
linear functions of q fail be solve this condition. What is however interesting that in flat space the
equation is equivalent with Dirac equation for a pair of Majorana spinors [4].

2. The condition allows functions depending on complex coordinate z of some complex-plane only. It
also allows functions satisfying two separate analyticity conditions, say

∂uf = (∂t − ∂xI)f = 0 ,

∂vf = −(∂yJ + ∂zK)f = −J(∂y − ∂zI)f = 0 .

In the latter formula J multiplies from left ! One has good hopes of obtaining holomorphic
functions of two complex coordinates. This might be enough to understand the preferred extremals
of Kähler action as quaternion analytic mops.

There are potential problems due to non-commutativity of u = t±xI and v = yJ ±zK = (y±zI)J
(note that J multiplies from right !) and ∂u and ∂v. A prescription for the ordering of the powers
u and v in the polynomials of u and v appearing in the double Taylor series seems to be needed.
For instance, powers of u can be taken to be at left and v or of a related variable at right.
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By the linearity of ∂v one can leave J to the left and commute only (∂y − ∂zI) through the u-
dependent part of the series: this operation is trivial. The condition ∂vf = 0 is satisfied if the
polynomials of y and z are polynomials of y+ iz multiplied by J from right. The solution ansatz is
thus product of Taylor series of monomials fmn = (x+ iy)m(y+ iz)nJ with Taylor coefficients amn,
which multiply the monomials from right and are arbitrary quaternions. Note that the monomials
(y + iz)n do not reduce to polynomials of v and that the ordering of these powers is arbitrary. If
the coefficients amn are real f maps 4-D quaternionic region to 2-D region spanned by J and K.
Otherwise the image is 4-D.

3. By linearity the solutions obey linear superposition. They can be also multiplied if product is
defined as ordered product in such a manner that only the powers t+ ix and y + iz are multiplied
together at left and coefficients amn are multiplied together at right. The analogy with quantum
non-commutativity is obvious.

4. In Minkowskian signature one must multiply imaginary units I, J,K with an additional commuting
imaginary unit i. This would give solutions as powers of (say) t+ ex, e = iI with e2 = 1 represent-
ing imaginary unit of hyper-complex numbers. The natural interpretation would be as algebraic
extension which is analogous to the extension of rational number by adding algebraic number, say√
2 to get algebraically 2-dimensional structure but as real numbers 1-D structure. Only the non-

commutativity with J and K distinguishes e from e = ±1 and if J and K do not appear in the
function, one can replace e by ±1 in t + ex to get just t ± x appearing as argument for waves
propagating with light velocity.

3.5.3 Second form of CRF conditions

Second form of CRF conditions proposed in [6] is tailored in order to realize the almost obvious manner
to realize quaternion analyticity.

1. The ingenious idea is to replace preferred quaternionic imaginary unit by a imaginary unit which
is in radial direction: er = (xI + yJ + zK)/r and require analyticity with respect to the coordinate
t + er. The solution to the condition is power series in t + rer = q so that one obtains quaternion
analyticity.

2. The excplicit form of the conditions is

(∂t − er∂r)f = (∂t − er
r
r∂r)f = 0 .

This form allows both the desired quaternionic Taylor series and ordinary holomorphic functions of
complex variable in one of the 3 complex coordinate planes as general solutions.

3. This form of CRF is neither Lorentz invariant nor translationally invariant but remains invariant
under simultaneous scalings of t and r and under time translations. Under rotations of either coordi-
nates or of imaginary units the spatial part transforms like vector so that quaternionic automorphism
group SO(3) serves as a moduli space for these operators.

4. The interpretation of the latter solutions inspired by ZEO would be that in Minkowskian regions r
corresponds to the light-like radial coordinate of the either boundary of CD, which is part of δM4

±.
The radial scaling operator is that assigned with the light-like radial coordinate of the light-cone
boundary. A slicing of CD by surfaces parallel to the δM4

± is assumed and implies that the line r = 0
connecting the tips of CD is in a special role. The line connecting the tips of CD defines coordinate
line of time coordinate. The breaking of rotational invariance corresponds to the selection of a
preferred quaternion unit defining the twistor structure and preferred complex sub-space.
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In regions of Euclidian signature r could correspond to the radial Eguchi-Hanson coordinate of CP2

and r = 0 corresponds to a fixed point of U(2) subgroup under which CP2 complex coordinates
transform linearly.

5. Also in this case one can ask whether solutions depending on two complex local coordinates analo-
gous to those for translationally invariant CRF condition are possible. The remain imaginary units
would be associated with the surface of sphere allowing complex structure.

3.5.4 Generalization of CRF conditions?

Could the proposed forms of CRF conditions be special cases of much more general CRF conditions as
CR conditions are?

1. Ordinary complex analysis suggests that there is an infinite number of choices of the quaternionic
coordinates related by the above described quaternion-analytic maps with 4-D images. The form of
of the CRF conditions would be different in each of these coordinate systems and would be obtained
in a straightforward manner by chain rule.

2. One expects the existence of large number of different quaternion-conformal structures not related by
quaternion-analytic transformations analogous to those allowed by higher genus Riemann surfaces
and that these conformal equivalence classes of four-manifolds are characterized by a moduli space
and the analogs of Teichmueller parameters depending on 3-topology. In TGD framework strong
form of holography suggests that these conformal equivalence classes for preferred extremals could
reduce to ordinary conformal classes for the partonic 2-surfaces. An attractive possibility is that
by conformal gauge symmetries the functional integral over WCW reduces to the integral over the
conformal equivalence classes.

3. The quaternion-conformal structures could be characterized by a standard choice of quaternionic
coordinates reducing to the choice of a pair of complex coordinates. In these coordinates the general
solution to quaternion-analyticity conditions would be of form described for the linear ansatz. The
moduli space corresponds to that for complex or hyper-complex structures defined in the space-time
region.

3.5.5 Geometric formulation of the CRF conditions

The previous naive generalization of CRF conditions treats imaginary units without trying to understand
their geometric content. This leads to difficulties when when tries to formulate these conditions for maps
between quaternionic and hyper-quaternionic spaces using purely algebraic representation of imaginary
units since it is not clear how these units relate to each other.

In [4] the CRF conditions are formulated in terms of the antisymmetric (1, 1) type tensors representing
the imaginary units: they exist for almost quaternionic structure and presumably also for almost hyper-
quaternionic structure needed in Minkowskian signature.

The generalization of CRF conditions is proposed in terms of the Jacobian J of the map mapping
tangent space TM to TN and antisymmetric tensors Ju and Ju representing the quaternionic imaginary
units of N and M. The generalization of CRF conditions reads as

J −
∑

u

Ju ◦ J ◦ ju = 0 .

For N = M it reduces to the translationally invariant algebraic form of the conditions discussed above.
These conditions seem to be well-defined also when one maps quaternionic to hyper-quaternionic space
or vice versa. These conditions are not unique. One can perform an SO(3) rotation (quaternion auto-
morphism) of the imaginary units mediated by matrix Λuv to obtain
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J − ΛuvJu ◦ J ◦ jv = 0 .

The matrix Λ can depend on point so that one has a kind of gauge symmetry. The most general
triholomorphic map allows the presence of Λ Note that these conditions make sense on any coordinates
and complex analytic maps generate new forms of these conditions.

Covariant forms of structure constant tensors reduce to octonionic structure constants and this allows
to write the conditions explicitly. The index raising of the second index of the structure constants is
however needed using the metrics of M and N. This complicates the situation and spoils linearity: in par-
ticular, for surfaces induced metric is needed. Whether local SO(3) rotation can eliminate the dependence
on induced metric is an interesting question. Since M4 imaginary units differ only by multiplication by
i, Minkowskian structure constants differ only by sign from the Euclidian ones.

In the octonionic case the geometric generalization of CRF conditions does not seem to make sense.
By non-associativity of octonion product it is not possible to have a matrix representation for the matrices
so that a faithful representation of octonionic imaginary units as antisymmetric 1-1 forms does not make
sense. If this representation exists it it must map octonionic associators to zero. Note however that CRF
conditions do not involve products of three octonion units so that they make sense as algebraic conditions
at least.

3.5.6 Does residue calculus generalize?

CRF conditions allow to generalize Cauchy formula allowing to express value of analytic function in
terms of its boundary values [4]. This would give a concrete realization of the holography in the sense
that the physical variables in the interior could be expressed in terms of the data at the light-like partonic
orbits and and the ends of the space-time surface. Triholomorphic function satisfies d’Alembert/Laplace
equations - in induced metric in TGD framework- so that the maximum modulus principle holds true.
The general ansatz for a preferred extremals involving Hamilton-Jacobi structure leads to d’Alembert
type equations for preferred extremals [40].

Could the analog of residue calculus exist? Line integral would become 3-D integral reducing to a sum
over poles and possible cuts inside the 3-D contour. The space-like 3-surfaces at the ends of CDs could
define natural integration contours, and the freedom to choose contour rather freely would reflect General
Coordinate Invariance. A possible choice for the integration contour would be the closed 3-surface defined
by the union of space-like surfaces at the ends of CD and by the light-like partonic orbits.

Poles and cuts would be in the interior of the space-time surface. Poles have co-dimension 2 and cuts
co-dimension 1. Strong form of holography suggests that partonic 2-surfaces and perhaps also string world
sheets serve as candidates for poles. Light-like 3-surfaces (partonic orbits) defining the boundaries between
Euclidian and Minkowskian regions are singular objects and could serve as cuts. The discontinuity would
be due to the change of the signature of the induced metric. There are CDs inside CDs and one can also
consider the possibility that sub-CDs define cuts, which in turn reduce to cuts associated with sub-CDs.

3.5.7 Could one understand the preferred extremals in terms of quaternion- analyticity?

Could one understand the preferred extremals in terms of quaternion-analyticity or its possible general-
ization to an analytic representation for co-quaternionicity expected in space-time regions with Euclidian
signature? What is the generalization of the CRF conditions for the counterparts of quaternion-analytic
maps from hyper-quaternionic X4 to quaternionic CP2 and from quaternionic X4 to hyper-quaternionic
M4? It has already become clear that this problem can be probably solved by using the the geometric
representation for quaternionic imaginary units.

The best thing to do is to look whether this is possible for the known extremals: CP2 type vacuum
extremals, vacuum extremals expressible as graph of map from M4 to a Lagrangian sub-manifold of
CP2, cosmic strings of form X2 × Y 2 ⊂ M4 × CP2 such that X2 is string world sheet (minimal surface)
and Y 2 complex sub-manifold of CP2. One can also check whether Hamilton-Jacobi structure of M4
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and of Minkowskian space-time regions and complex structure of CP2 have natural counterparts in the
quaternion-analytic framework.

1. Consider first cosmic strings. In this case the quaternionic-analytic map from X4 = X2 × Y 2 to
M4×CP2 with octonion structure would be map X4 to 2-D string world sheet in M2 and Y 2 to 2-D
complex manifold of CP2. This could be achieved by using the linear variant of CRF condition. The
map from X4 to M4 would reduce to ordinary hyper-analytic map from X2 with hyper-complex
coordinate to M4 with hyper-complex coordinates just as in string models. The map from X4 to
CP2 would reduce to an ordinary analytic map from X2 with complex coordinates. One would not
leave the realm of string models.

2. For the simplest massless extremals (MEs) CP2 coordinates are arbitrary functions of light-like co-
ordinate u = k ·m, k constant light-like vector, and of v = ǫ ·m, ǫ a polarization vector orthogonal
to k. The interpretation as classical counterpart of photon or Bose-Einstein condense of photons is
obvious. There are good reasons to expect that this ansatz generalizes by replacing the variables
u and v with coordinate along the light-like and space-like coordinate lines of Hamilton-Jacobi
structure. The non-geodesic motion of photons with light-velocity and variation of the polarization
direction would be due to interactions with the space-time sheet to which it is topologically con-
densed. Note that light-likeness condition for the coordinate curve gives rise to Virasoro conditions.
This observation led long time ago to the idea that 2-D conformal invariance must have a non-trivial
generalization to 4-D case.

Now space-time surface would have naturally M4 coordinates and the map M4 → M4 would be
just identity map satisfying the radial CRF condition. Can one understand CP2 coordinates in
terms of quaternion- analyticity? The dependence of CP2 coordinates on u = t − x only can be
formulated as CFR condition ∂us

k = 0 and this could is expected to generalize in the formulation
using the geometric representation of quaternionic imaginary units at both sides. The dependence
on light-light coordinate u follows from the translationally invariant CRF condition.

The dependence on the real coordinate v is however problematic since the dependence is naturally
on complex coordinate w assignable to the polarization plane of form z = f(w). This would give
dependence on 2 transversal coordinates and CP2 projection would be 3-D rather than 2-D. One
can of course ask whether this dependence is actually present for preferred extremals? Could the
polarization vector be complex local polarization vector orthogonal to the light-like vector? In
quantum theory complex polarization vectors are used of routinely and become oscillator operators
in second quantization and in TGD Universe MEs indeed serve as space-time correlates for photons
or their BE condensates.

3. Vacuum extremals with Lagrangian manifold as (in the generic case 2-D) CP2 projection are not
expected to be preferred extremals for obvious reasons. One one can however try similar approach.
Hyper-quaternionic structure for space-time surface using Hamilton-Jacobi structure is the first
guess. CP2 should allow a quaternionic coordinate decomposing to a pair of complex coordinates
such that second complex coordinate is constant for 2-D Lagrangian manifold and second param-
eterizes it. Any 2-D surface allows complex structure defined by the induced metric so that there
are good hopes that these coordinates exist. The quaternion-analytic map would map in the most
general case is trivial for both hypercomplex and complex coordinate of M4 but the quaternionic
Taylor coefficients reduce to real numbers to that the image is 2-D.

4. For CP2 type vacuum extremals the M4 projection is random light-like curve. Now one expects co-
quaternionicity and that quaternion-analyticity is not the correct manner to formulate the situation.
”Co-” suggests that instead of expressing surface as graph one should perhaps express it in terms
of conditions stating that some quaternionic analytic functions in H are vanish.
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One can fix the coordinates of X4 to be complex coordinates of CP2 so that one gets rid of the de-
generacy due to the choice of coordinates. M4 allows hyper-quaternionic coordinates and Hamilton-
Jacobi structures define different choices of hyper-quaternionic coordinates. Now the second light-
like coordinate would vary along random light-like curves providing slicing of M4 by 3-D surfaces.
Hamilton-Jacobi structure defines at each point a plane M2(x) fixed by the light-like vector at the
point and the 2-D orthogonal plane. In fact 4-D coordinate grid is defined. This local choice must
be integrable, which means that one has slicing by 2-D string world sheets and polarization planes
orthogonal to them.

The problem is that the mapping of quaternionic CP2 coordinate to hyper-quaternionic coordinates
of M4 (say v = 0, w = 0) in terms of quaternionic analyticity is not easy. ”Co-” suggets that,
one could formulate light-likeness condition using Hamilton-Jacobi structure as conditions w −
constant = 0 and v − constant = 0. Note that one has u = v.

5. In the naive generalization CRF conditions are linear. Whether this is the case in the formulation
using the geometric representation of the imaginary units is not clear since the quaternionic imag-
inary units depend on the vielbein of the induced 3-metric (note however that the SO(3) gauge
rotation appearing in the conditions could allow to compensate for the change of the tensors in
small deformations of the spaced-time surface). If linearity is real and not true only for small per-
turbations, one could have linear superpositions of different types of solutions, which looks strange.
Could the superpositions describe perturbations of say cosmic strings and massless extremals?

6. According to [6] both forms of the algebraic C-R-F conditions generalize to the octonionic situation
and right multiplication of powers of octonion by Taylor coefficients plus linearity imply that there
are no problems with associativity. This inspires several questions.

Could octonion analytic maps of imbedding space allow to construct new solutions from the existing
ones? Could quaternion analytic maps applied at space-time level act as analogs of holomorphic
maps and generalize conformal gauge invariance to 4-D context?

3.5.8 Conclusions

To sum up, connections between different conjectures related to the preferred extremals - M8 − H du-
ality, Hamilton-Jacobi structure, induced twistor space structure, quaternion-Kähler property and its
Minkowskian counterpart, and even quaternion analyticity, are clearly emerging. The underlying reason
is strong form of GCI forced by the construction of WCW geometry and implying strong from of hologra-
phy posing extremely powerful quantization conditions on the extremals of Kähler action in ZEO. Without
the conformal gauge conditions the mutual inconsistency of these conjectures looks rather infeasible.
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