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Abstract 
We realize an algebraic study of the spinors associated with real and Newman-Penrose tetrads in 

Minkowski space and obtain an adequate platform for the spinorial analysis of Faraday and 

energy-momentum tensors of the electromagnetic field. Maxwell spinor naturally appears in our 

approach. 

Part I of this two-part article includes: 1. Introduction, 2. The Cartan spinor, and 3. Tetrads and 

their 2-spinors. 
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1. Introduction 
 

In Minkowski spacetime, we have the metric tensor (𝑔𝜇𝜈) =  𝐷𝑖𝑎𝑔 (1, −1, −1, −1) with the 

quaternion of position:  

                                       𝐑 =  
1

√2
(𝑐 𝑡 + 𝑖 𝑥 𝐈 + 𝑖 𝑦 𝐉 + 𝑖 𝑧 𝐊),          𝑖 =  √−1 ,                            (1) 

 

and the corresponding Lorentz transformations are generated by means of the Klein-

Sommerfeld’s expression [1-6]: 

          �̃� = 𝐀 𝐑 �̅�∗ ,                                                                      (2) 

 

where  𝐀 = 𝑎0 + 𝑎1 𝐈 + 𝑎2 𝐉 + 𝑎3 𝐊  is an arbitrary unit quaternion, and: 

 

                                 �̅�∗ =  𝑎0
∗ −  𝑎1

∗  𝐈 −  𝑎2
∗  𝐉 −  𝑎3

∗  𝐊 .                                                      (3) 

 

The formula (2) was obtained by Hamilton [7] and Cayley [8] for 3-rotations [9, 10], in such a 

case the quantities  𝑎𝜇, 𝜇 = 0, … , 3  are real and do match with the Euler-Olinde Rodrigues 

parameters [11-13]. 
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The matrix version of (2) will be the starting point of our spinorial analysis, and it can be 

deduced by means of the isomorphism introduced by Cayley [14, 15] between the quaternion 

basis elements and the Cayley [14]-Sylvester [16]-Pauli [17] matrices: 

 

  1 ⟷   I2x2 ,          𝐈   ⟷  −𝑖 𝜎1 ,         𝐉   ⟷  −𝑖 𝜎2 ,        𝐊   ⟷  −𝑖 𝜎3 ,                  (4) 

so that 

                                𝜎1 =  (
0 1
1 0

) ,           𝜎2 =  (
0 −𝑖
𝑖 0

) ,          𝜎3 =   (
1 0
0 −1

) .                  (5) 

 

Thus, the quaternion A is isomorphic to the complex matrix 2x2 [11, 18]: 

 

                           A =  (
𝑎0 − 𝑖𝑎3 −𝑎2 − 𝑖𝑎1

𝑎2 − 𝑖𝑎1 𝑎0 + 𝑖𝑎3
) =  𝑎0 I − 𝑖 𝑎1𝜎1 − 𝑖 𝑎2𝜎2 − 𝑖 𝑎3𝜎3 ,             (6) 

moreover  

                                   𝐀 �̅� =  𝑎0
2 + 𝑎1

2 +  𝑎2
2 +  𝑎3

2 = 1         ⟹      𝑑𝑒𝑡 A = 1 ,                        (7) 

 

as is the case when it is employed (2) to build Lorentz transformations. With the aid of (6), it is 

straightforward to find the matrices associated with the quaternions (1) and (3): 

             

𝐑  ⟷    X =  
1

√2
(

𝑐𝑡 + 𝑧 𝑥 − 𝑖𝑦
𝑥 + 𝑖𝑦 𝑐𝑡 − 𝑧

) ,          �̅�∗   ⟷   A† =  AT∗
=  (

𝑎0
∗ + 𝑖𝑎3

∗ 𝑎2
∗ + 𝑖𝑎1

∗

−𝑎2
∗ + 𝑖𝑎1

∗ 𝑎0
∗ − 𝑖𝑎3

∗) ,  (8) 

 

then (2) leads to the Cartan’s expression [19, 20]: 

 

                                           X̃ = A X A†  ,        𝑑𝑒𝑡 A = 𝑑𝑒𝑡 A† = 1 ,                                      (9) 

  

also obtained by Olinde Rodrigues [21] for 3-rotations. 

 

Taking the determinant of (9) we deduce the conservation of Minkowski’s interval: 

 

                                    𝑐2�̃�2 − �̃�2 − �̃�2 − �̃�2 =  𝑐2𝑡2 − 𝑥2 − 𝑦2 − 𝑧2 ,                              (10) 

 

which implies [12] the linearity of the coordinate transformation between both reference frames 

(we use the summation convention on repeated indices introduced by Dedekind (1868) [23, 24] 

and Einstein): 

                                         �̃�𝜇 =  L𝜇
𝜈 𝑥𝜈 ,           (𝑥𝜇) = (𝑐𝑡, 𝑥, 𝑦, 𝑧),                                    (11) 

 

where L = (L𝛼
𝛽) is an element of the homogeneous Lorentz group with 𝑑𝑒𝑡 L = 1. The 

substitution of (11) into (9) provides explicit formulas for L𝜇
𝜈 in terms of the Euler-Olinde 

Rodrigues parameters, see [4, 22, 25, 26]. The matrices ±A lead to the same L, therefore they 

constitute a bi-representation of the Lorentz transformations. 

 

In (9) we have the 2-spinor (Ehrenfest introduced the term spinor, see [27-29]): 

 

(XAḂ) =  (X11̇ X12̇

X21̇ X22̇
) ,         X11̇ =  

1

√2
(𝑥0 + 𝑥3),            X12̇ =  

1

√2
(𝑥1 − 𝑖 𝑥2),            (12) 
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              X21̇ =  
1

√2
(𝑥1 + 𝑖 𝑥2),           X22̇ =  

1

√2
(𝑥0 − 𝑥3),             XAḂ̅̅ ̅̅ ̅ =  XBȦ , 

 

it is evident the Hermitian character of X; furthermore, one of its indices transforms (under a 

Lorentz mapping) according to A, meanwhile the dotted index does so via  A†: 
 

                                                        XBC̃̇ =  AB
D X

DĖ A†
Ė

Ċ
 ,                                                     (13) 

 

which, together with (12), is equivalent to the tensorial relation (11) due to the connection of L 

with  A = (AB
C)  and  A† = (A†

Ḃ
Ċ

). 

 

The paper is organized as follows. In Sec. 2 it is undertaken a detailed study of the spinor X, 

which allows to introduce in a natural manner the Infeld-van der Waerden symbols 𝜎𝜇
AḂ [30, 

31], of great importance to perform the spinor transcription of a tensor expression, or 

analogously, given a certain tensor, to deduce its corresponding spinor. We show that these 

symbols provide an explicit formula for L in terms of A and  A†, in harmony with the results 

obtained in [32]. On the other hand, it is established that for 𝑥𝜇 null it is possible to express XAḂ 

as the product of simple spinors, which turns out to be relevant in the spinorial analysis of 

vectors on the light cone.  

 

In Sec. 3, we consider the simple spinors associated with an arbitrary null tetrad of Newman-

Penrose (NP) type [33], which in turn generates spinors for a real orthonormal Minkowskian 

tetrad, that facilitates the spinorial study of any tensor (for instance, the skew-symmetric tensor 

of the Maxwell field) written in terms of a real tetrad, or in terms of a NP type. In [34-37], it was 

used a real tetrad to build a basis for any skew-symmetric tensor of second order, with the aim of 

analyzing the trajectories of charged particles (with or without radiation reaction) in special 

relativity.  

 

Finally, in Sec. 4 we apply this technique to the electromagnetic tensor, and it is shown the 

existence of the Maxwell symmetric spinor. The method and the results of this section are 

successfully applied to obtain the spinorial structure of Maxwell’s energy-momentum tensor. In 

addition, in Secs. 2-4 we also indicate the NP versions of the main spinorial relations. 

 

 

2.  The Cartan spinor 
 

In (12) it is immediate the following expansion: 

 

             X =  
𝑥0

√2
 (

1 0
0 1

) + 
𝑥1

√2
 (

0 1
1 0

) +  
𝑥2

√2
 (

0 −𝑖
𝑖    0

) +  
𝑥3

√2
 (

1    0
0 −1

) ,                          (14) 

 

which motivates the introduction of the Infeld-van der Waerden symbols [30, 31, 38, 39] in 

terms of the Cayley-Sylvester-Pauli matrices indicated in (5): 
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                         (𝜎0
AḂ) =  

1

√2
 I ,             (𝜎𝑗

AḂ) =  
1

√2
 𝜎𝑗  ,              𝑗 = 1, 2, 3,                      (15) 

 

notice that it is verified the Hermitian property  𝜎𝜇
AḂ̅̅ ̅̅ ̅̅ =  𝜎𝜇

BȦ.  Then (14) acquires the form: 

 

                                               XAḂ =  𝑥𝜇  𝜎𝜇
AḂ ,                𝑥𝜇    ⟷    XAḂ ,                                 (16) 

 

whose structure shows the pattern to follow for constructing the 2-spinor associated with a 

vector, for each tensor index we have a pair of spinor indices. In 𝜎𝜇
AḂ the μ index can be raised 

with the Minkowski metric  (𝑔𝜇𝜈) =  𝐷𝑖𝑎𝑔 (1, −1, −1, −1), thus: 

 

                      (𝜎0 AḂ) =  
1

√2
 I ,           (σ𝑘 AḂ) =  −

1

√2
 𝜎𝑘 ,       𝑘 = 1, 2, 3,                          (17)  

 

then it is easy to prove that:     

                                                    𝜎𝜇 AḂ 𝜎𝜇
CḊ =  𝜖AC 𝜖ḂḊ ,                                             (18) 

with the skew-symmetric matrices: 

 

(𝜖AB) = (𝜖AB) =  (
   0 1
−1 0

) ,        (𝜖ȦḂ) = (𝜖ȦḂ) =  (
   0 1
−1 0

) , 

 

    𝜖AB 𝜖CD =  δA
C  δB

D − δA
DδB

C  ,                                                     (19) 

       

                                   𝜖B
D =  −𝜖D

B =  𝜖AB 𝜖AD =  δB
D ,             𝜖AB 𝜖AB = 2 ; 

 

in [40] it is indicated that  𝜖AC  is the quantity that defines the sympletic complex structure of the 

spin space.  

 

The spinorial indices can be raised and lowered by means of (19) (we shall employ the Penrose-

Rindler convention [41]): 

 

    ψA =  𝜖AB ψB ,         ψC =  𝜖BC ψB ,          ψȦ =  𝜖ȦḂ ψḂ ,          ψĊ =  𝜖ḂĊ ψḂ ,              (20) 

 

that is, for an arbitrary simple spinor: 

 

  ψ1 =  ψ2 ,       ψ2 =  −ψ1        ∴        ψAψA = 0 ,       ψȦψȦ = 0 ,       ψAϕA =  −ψAϕA .     (21) 

 

Furthermore,  

  

    (𝜎0
AḂ) = (𝜎0 AḂ) =  

1

√2
 I ,                  (𝜎1

AḂ) = (−𝜎1 AḂ) = − 
1

√2
𝜎1 ,                    (22) 

                          

(𝜎2
AḂ) = (−𝜎2 AḂ) = − 

1

√2
𝜎2 ,             (𝜎3

AḂ) = (−𝜎3 AḂ) = − 
1

√2
𝜎3 , 

 

and together with (15) it implies the interesting relation [42]: 
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                                     𝜎𝜇
AḂ 𝜎𝜈 AḂ =  𝑔𝜇𝜈 ,                                                      (23) 

 

that allows to invert the equation (16): 

                              𝑥𝜇 =  𝜎𝜇
AB ̇ X

AḂ ,                                                        (24) 

 

where it is shown how to obtain the vector associated with a 2-spinor, indeed, the Infeld-van der 

Waerden symbols capture one pair of spinor indices to assign one tensor index. 

 

The numerical values (15) are not altered with a change of reference frame: 

 

                                                        𝜎𝜇 BĊ =  L𝜇
𝜈 AB

D 𝜎𝜈 DĖ A†
Ė

Ċ
 ,                                          (25) 

 

it is not difficult to invert the matrices (6) and (8), see [41]: 

 

(A−1  B
C) =  (

   𝑎0 + 𝑖𝑎3 𝑎2 + 𝑖𝑎1

−𝑎2 + 𝑖𝑎1 𝑎0 − 𝑖𝑎3
) ,            (A† −1

Ḃ
Ċ

) =  (
𝑎0

∗ − 𝑖𝑎3
∗ −𝑎2

∗ − 𝑖𝑎1
∗

𝑎2
∗ − 𝑖𝑎1

∗    𝑎0
∗ + 𝑖𝑎3

∗ ) ,       (26) 

 

then, using (23) and (26) in (25) the Lorentz matrix is deduced in terms of the Olinde Rodrigues 

parameters and of the Infeld-van der Waerden symbols: 

 

  L𝜇
𝜈 =  𝜎𝜇

DĖ  𝜎𝜈
BĊ  A−1 D

B  A† −1
Ċ

Ė
 ,                                           (27) 

 

from which the expressions of [32] are immediate and the explicit formulas of [22, 25, 26] for L 

in terms of the aforesaid parameters. 

 

With the prescription (16) and the identity (18) we can build the spinor associated with the 

metric tensor: 

𝑔ACḂḊ =  𝜎𝜇
AḂ 𝑔𝜇𝜈 𝜎𝜈

CḊ =  𝜎𝜇
AḂ 𝜎𝜇 CḊ =  𝜖AC 𝜖ḂḊ ,                          (28) 

 

compatible with (23), and from (24) we obtain  𝑥𝜇𝑥𝜇 =  𝑥𝜇𝑥𝜈𝑔𝜇𝜈 =  XAḂXCḊ𝜖AC𝜖ḂḊ ,  therefore: 

 

𝑥𝜇𝑥𝜇 =  XAḂXAḂ .                                                        (29) 

 

If the 2-spinor  XDĖ is the product of two simple spinors: 

 

XAḂ =  𝜉A 𝜉Ḃ,     X2𝑥2 = (𝜉A)2𝑥1 (𝜉Ḃ)
1𝑥2

 , 

 

  (𝜉A) =  (𝜉1

𝜉2),   (𝜉Ḃ) = (𝜉1̇  𝜉2̇) = (𝜉1̅̅ ̅   𝜉2̅̅ ̅) =  (𝜉1

𝜉2)
†

,                            (30) 

 

then, its associated vector must be null because with (21) and (30) we have that XAB ̇ XAḂ =

|𝜉A𝜉A|
2

= 0, thus (29) gives: 
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                          𝑐2𝑡2 − 𝑥2 − 𝑦2 − 𝑧2 =  𝑥𝜇𝑥𝜇 = 0 ,                                             (31) 

 

 𝑥𝜈  is on a light cone, and it can be assumed that it is pointing to the future (𝑥0 > 0). Now, the 

aim is to calculate  𝜉A given XAḂ: 
 

    𝜉1 = 𝑝 𝑒𝑖𝜑 ,           𝜉1̇ = 𝑝 𝑒−𝑖𝜑 ,            𝜉2 = 𝑞 𝑒𝑖𝜃 ,            𝜉2̇ = 𝑞 𝑒−𝑖𝜃 ,                    (32) 

 

and the expressions: 

 

    𝑝2 =  𝜉1 𝜉1̇ =  X11̇ =  
1

√2
(𝑥0 + 𝑥3),       𝑞2 =  𝜉2 𝜉2̇ =  X22̇ =  

1

√2
(𝑥0 − 𝑥3),          (33) 

 

are univocally determining the magnitudes p and q, however, θ and φ are arbitrary except for 

their difference which can be obtained by means of: 

  

                   𝑝𝑞 𝑒𝑖(𝜑−𝜃) =  
1

√2
(𝑥1 − 𝑖𝑥2),                                                    (34) 

 

this manifests the non-unicity of  𝜉A due to the fact that it can be multiplied by an arbitrary phase 

without altering the Cartan 2-spinor: 

 

                  XAḂ =  𝜉A 𝜉Ḃ =  𝜉A 𝜉B̅̅ ̅ = (𝑒𝑖Ω 𝜉A) (𝑒𝑖Ω 𝜉B̅̅ ̅̅ ̅̅ ̅̅ ).                                         (35) 

 

If 𝑥𝜇 points to the past (𝑥0 < 0), the decomposition will take the form  XAḂ =  −𝜉A 𝜉Ḃ. In 

summary, if  𝑘𝜈 is a real null vector, then: 

 

                                𝑘𝜇           ⟷          KAḂ =  𝛾A 𝛾Ḃ ,                                                     (36) 

 

where  𝛾C is defined up to an arbitrary phase.  

 

With (36) and  𝑡𝜇  ⟷   TAḂ =  𝜂A𝜂Ḃ  one gets the inner product: 

 

                         𝑘𝜇 𝑡𝜇 =  |𝛾A𝜂A|
2

,                                                                 (37) 

 

therefore 𝑘𝜈𝑡𝜈 = 0 if and only if 𝛾A𝜂A = 0, but Synge [22] demonstrates that 𝑘𝜈𝑡𝜈 = 0 implies 

the proportionality of such null vectors, thus: 

 

                    𝑘𝜇 = λ 𝑡𝜇         ⟺        𝛾A𝜂A = 0,                                                   (38) 

 

in whose case 𝛾A = √λ 𝜂A . When studying the Newman-Penrose tetrad and the electromagnetic 

field, a situation with  𝑘𝜇𝑡𝜇 = 1 arises, and the arbitrarity in the phases of  𝛾A  and  𝜂B  allows to 

choose the norm   𝛾A𝜂A =  −𝛾A𝜂A = 1, in harmony with (37). 

 



Prespacetime Journal| February 2015 | Volume 6 | Issue 2 | pp. 88-97 
Hernández-Galeana, A.,  López-Vázquez , R., López-Bonilla, J. & Pérez-Teruel, G. R., Faraday Tensor & Maxwell Spinor (Part I) 

 

ISSN: 2153-8301 Prespacetime Journal 
Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

94 

In Sec. 3, the analysis made here (for the Cartan XAḂ) is extended to a null tetrad of the NP type 

[33] and to its corresponding real orthonormal tetrad, which is important in the spinorial 

structure of the Faraday and Maxwell tensors (Sec. 4). 

 

3. Tetrads and their 2-spinors 
 

For each event in the spacetime it can be constructed a real orthonormal tetrad:  

 

e(0)
𝜇 e(0) 𝜇 = 1,          e(0)

𝜇 e(𝑗) 𝜇 = 0,          e(𝑗)
𝜈 e(𝑘) 𝜈 =  −δ𝑗𝑘 ,        𝑗, 𝑘 = 1, 2, 3           (39) 

 

positive-oriented: 

                     𝜂𝜇𝜈𝛼𝛽 e(0)
𝜇 e(1)

𝜈 e(2)
𝛼 e(3)

𝛽 = 1,                                                (40) 

 

where the totally skew-symmetric Levi-Civita tensor takes part:  

 

  𝜂𝜇𝜈𝛼𝛽 =  −𝜂𝜇𝜈𝛼𝛽 = 1  or − 1  if  (𝜇𝜈𝛼𝛽)                                          (41) 

 

is even or odd permutation of (0123), respectively, and 0 if two of its indices have the same 

value.                                     

 

The real tetrad permits to establish a basis for any tensorial object, for example, the 

electromagnetic field tensor (Sec. 4), thus the spinorial study of (39) is useful in the deduction of 

the Maxwell spinor and does also provide a convenient platform for the spinor formulation of 

differential geometry of curves [43, 44]; besides, it leads to the Newman-Penrose null tetrad [33, 

45-47]: 

𝑙𝜇 =
1

√2
(e(0)

𝜇 + e(3)
𝜇), 𝑛𝜇 =

1

√2
(e(0)

𝜇 − e(3)
𝜇), 

 

𝑚𝜇 =
1

√2
(e(1)

𝜇 − 𝑖e(2)
𝜇), �̅�𝜇 =

1

√2
(e(1)

𝜇 + 𝑖e(2)
𝜇),                              (42) 

 

with the properties: 

𝑙𝜇𝑛𝜇 = −𝑚𝜈�̅�𝜈 = 1,    𝑙𝜇𝑚𝜇 = 𝑛𝜈𝑚𝜈 = 0, 
 

    𝑙𝜇𝑙𝜇 = 𝑛𝜇𝑛𝜇 = 𝑚𝜇𝑚𝜇 = 0,    𝜂𝜇𝜈𝛼𝛽𝑙𝜇𝑛𝜈𝑚𝛼�̅�𝛽 = −𝑖.                            (43) 

 

According to (36), the real null vectors 𝑛𝜇 and 𝑙𝜇 have got associated simple spinors, which we 

shall denote with the Greek letters iota and omicron, respectively:  

 

𝑙AḂ =  𝜊A𝜊Ḃ ,           𝑛AḂ =  𝜄A𝜄Ḃ ,          𝜊A𝜄A =  −𝜊A𝜄A = 1 .                         (44) 

 

The vector  𝑚𝜇 is associated with the spinor  𝑚AḂ  that can be written in terms of a basis of 

simple spinors:  

                                         𝑚CḊ =  λ1 𝜊C𝜊Ḋ +  λ2 𝜄C𝜄Ḋ +  λ3 𝜊C𝜄Ḋ +  λ4 𝜄C𝜊Ḋ , 
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but (43) imposes conditions, for example,  𝜊C𝜊Ḋ𝑚CḊ = 0   implies  λ2 = 0,  𝜄C𝜄Ḋ𝑚CḊ = 0  gives  

λ1 = 0,  𝑚CḊ𝑚CḊ = 0  leads to  λ3λ4 = 0,  and  𝑚CḊ𝑚DĊ̅̅ ̅̅ ̅̅ = −1  requires that  |λ3|2 +  |λ4|2 =
1,  then without loss of generality we choose  λ3 = 1  and  λ4 = 0, therefore: 

 

𝑚𝜈    ⟷     𝑚CḊ =  𝜊C𝜄Ḋ ,          �̅�𝜈    ⟷    MCḊ =  𝑚DĊ̅̅ ̅̅ ̅̅ =  𝜄C𝜊Ḋ ,                 (45) 

 

which together with (42) and (44) gives the spinors associated with the real tetrad: 

 

    e(0) 𝜈    ⟷    
1

√2
(𝜊A𝜊Ḃ +  𝜄A𝜄Ḃ),         e(1) 𝜈      ⟷      

1

√2
(𝜊A𝜄Ḃ +  𝜄A𝜊Ḃ),               (46) 

                         e(2) 𝜈    ⟷     
𝑖

√2
(𝜊A𝜄Ḃ − 𝜄A𝜊Ḃ),         e(3) 𝜈      ⟷      

1

√2
(𝜊A𝜊Ḃ − 𝜄A𝜄Ḃ),  

 

consistent with (39), and taking into account the norm indicated in (44). 

 

With the real and NP tetrads, it is straightforward to generate the metric tensor:  

 

𝑔𝜇𝜈 =  𝑙𝜇𝑛𝜈 + 𝑙𝜈𝑛𝜇 − 𝑚𝜇�̅�𝜈 − 𝑚𝜈�̅�𝜇 =  e(0) 𝜇e(0) 𝜈 −  e(𝑗) 𝜇e(𝑗) 𝜈 ,        𝑗 = 1, 2, 3        (47) 

 

where we can use  (44) and (45) or (46) to deduce the spinor associated with the Minkowski 

metric: 

              

                      𝑔ACḂḊ = (𝜊A x  𝜄C) (𝜊Ḃ  x  𝜄Ḋ),                                              (48) 

 

with the Lowry notation [48] applicable to tensorial and spinorial indices: 

 

         A𝜇  x  B𝜈   ≡   A𝜇 B𝜈 −  A𝜈 B𝜇 ,                                          (49) 

 

and comparing this with (28) we get the expressions:   

 

  𝜖AB =  𝜊A x  𝜄B =  𝜊A𝜄B − 𝜊B𝜄A ,            𝜖ḂḊ =  𝜊Ḃ  x  𝜄Ḋ ,                         (50) 

 

which are valid for any pair of simple spinors that fulfill the normalization (44); in particular, by 

means of (50) it is immediate to obtain the useful relation: 

 

2(𝜊A𝜄C𝜊Ḃ𝜄Ḋ − 𝜊C𝜄A𝜊Ḋ𝜄Ḃ) =  𝜖AC (𝜊Ḃ𝜄Ḋ +  𝜊Ḋ𝜄Ḃ) + (𝜊A𝜄C +  𝜊C𝜄A) 𝜖ḂḊ .                    (51) 

 

The real tetrad gives rise to the following six skew-symmetric tensors, which are quite relevant 

in the study of the movement of classical charged particles [34-37, 49]: 

 

                   W(𝑗) 𝜇𝜈 =  e(0) 𝜇  x  e(𝑗) 𝜈 ,    𝑗 = 1, 2, 3,            W(4) 𝜇𝜈 =  e(1) 𝜇  x  e(2) 𝜈 ,            (52) 

 

                            W(5) 𝜇𝜈 =  e(1) 𝜇  x  e(3) 𝜈 ,          W(6) 𝜇𝜈 =  e(2) 𝜇  x  e(3) 𝜈 ,  
 

and from (39) (without sum over  r): 
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  W(𝑟) 𝜇𝜈 W(𝑟)
𝜇𝜈 =  −2  or  2   for   r = 1, 2, 3   or   r = 4, 5, 6,  respectively, 

                (53) 

                                    W(𝑗) 𝜇𝜈 W(𝑘)
𝜇𝜈 = 0,       𝑗 ≠ 𝑘 ,      𝑗, 𝑘 = 1, 2, … , 6 . 

 

The concept of dual tensor [22, 50-53]: 

 

                                         ⁺F𝜇𝜈 =  
1

2
 𝜂𝜇𝜈𝛼𝛽 F𝛼𝛽 ,              F𝜇𝜈 =  −F𝜈𝜇 ,                                      (54) 

 

together with (52), implies the connection: 

 

                                   ⁺W(𝑛) 𝜇𝜈 =  −(−1)𝑛 W(7−𝑛) 𝜇𝜈 ,        𝑛 = 1, 2, … , 6 ,                             (55) 

 

namely, ⁺W(2) 𝛼𝛽 =  −W(5) 𝛼𝛽 ,   ⁺W(3) 𝛼𝛽 =  W(4) 𝛼𝛽 , etc., with importance in the study of the 

algebraic composition of the Faraday tensor. 

 

By means of (46) and (51) it is obtained the spinorial version of (52): 

 

                                   W(1) ACḂḊ =      
1

2
[(𝜊A𝜊C − 𝜄A𝜄C) 𝜖ḂḊ +  𝜖AC (𝜊Ḃ𝜊Ḋ − 𝜄Ḃ𝜄Ḋ)],    

                                   W(2) ACḂḊ =      
𝑖

2
[(𝜊A𝜊C + 𝜄A𝜄C) 𝜖ḂḊ −  𝜖AC (𝜊Ḃ𝜊Ḋ + 𝜄Ḃ𝜄Ḋ)],       

                                   W(3) ACḂḊ = − 
1

2
[(𝜊A𝜄C + 𝜊C𝜄A) 𝜖ḂḊ +  𝜖AC (𝜊Ḃ𝜄Ḋ + 𝜊Ḋ𝜄Ḃ)],      

           W(4) ACḂḊ =      
𝑖

2
[(𝜊A𝜄C + 𝜊C𝜄A) 𝜖ḂḊ −  𝜖AC (𝜊Ḃ𝜄Ḋ + 𝜊Ḋ𝜄Ḃ)], 

                                   W(5) ACḂḊ = − 
1

2
[(𝜊A𝜊C + 𝜄A𝜄C) 𝜖ḂḊ +  𝜖AC (𝜊Ḃ𝜊Ḋ + 𝜄Ḃ𝜄Ḋ)],         

                                   W(6) ACḂḊ =      
𝑖

2
[−(𝜊A𝜊C − 𝜄A𝜄C) 𝜖ḂḊ +  𝜖AC (𝜊Ḃ𝜊Ḋ − 𝜄Ḃ𝜄Ḋ)],               (56) 

 

where it is verified the property  W(𝑟) ACḂḊ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  W(𝑟) BDȦĊ  because the W(𝑟) 𝜇𝜈 are real. The 

relations given by (56) motivate the following comment of Rindler [20]: 

 

 ‘Every spinor can be written as a linear combination of symmetric spinors multiplied     (57)  

  by  𝜖AB  or/and  𝜖ȦḂ’.                                                                                                                  

                                                                                                                                                                                                                                                                                                          

In the structure of (56) we can observe the repetition of different kinds of terms, then it is natural 

to introduce the spinors: 

 

    VACḂḊ =  𝜊A𝜊C 𝜖ḂD ̇ ,        UACḂḊ =  𝜄A𝜄C 𝜖ḂḊ ,         MACḂḊ =  −(𝜊A𝜄C + 𝜊C𝜄A) 𝜖ḂḊ ,          (58) 

 

and the prescription (24), together with (44), (45) and (50), gives their tensorial counterpart: 

 

    V𝜇𝜈 =  𝑙𝜇 x  𝑚ν ,               U𝜇𝜈 =  �̅�𝜇 x  𝑛𝜈 ,             M𝜇𝜈 =  𝑚𝜇 x  �̅�𝜈 +  𝑛𝜇 x  𝑙𝜈 ,           (59) 

 

with importance in the formalism of NP [33, 45-47]. 

 

The Levi-Civita tensor admits a representation in terms of the real and NP tetrads:  
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    𝜂𝜇𝜈𝛼𝛽 = − ||

e(0)𝜇

e(1)𝜇

e(0)𝜈

e(1)𝜈

e(0)𝛼 e(0)𝛽

e(1)𝛼 e(1)𝛽

e(2)𝜇 e(2)𝜈
e(2)𝛼 e(2)𝛽

e(3)𝜇 e(3)𝜈
e(3)𝛼 e(3)𝛽

|| = −𝑖 ||

  𝑙𝜇

 𝑛𝜇

  𝑙𝜈

 𝑛𝜈

  𝑙𝛼    𝑙𝛽

 𝑛𝛼   𝑛𝛽

𝑚𝜇 𝑚𝜈
𝑚𝛼 𝑚𝛽

�̅�𝜇 �̅�𝜈 �̅�𝛼 �̅�𝛽

||,                        (60) 

 

where the positive orientation indicated by (40) and (43) is respected. With (52), (54) and (60) it 

is easy to prove (55); besides, (60) leads to the relations:  

 

       𝜂𝜇𝜈𝛼𝛽 𝑙𝛼𝑚𝛽 =  −𝑖 𝑙𝜇 x  𝑚𝜈 ,              𝜂𝜇𝜈𝛼𝛽 𝑚𝛼�̅�𝛽 = 𝑖 𝑙𝜇 x  𝑛𝜈 ,                      (61) 

 

                          𝜂𝜇𝜈𝛼𝛽 𝑛𝛼𝑚𝛽 =    𝑖 𝑛𝜇  x  𝑚𝜈 ,              𝜂𝜇𝜈𝛼𝛽 𝑙𝛼𝑛𝛽 =  𝑖 𝑚𝜇 x  �̅�𝜈 , 

 

which imply the self-dual character of (59): 

 

         ⁺V𝜇𝜈 =  −𝑖 V𝜇𝜈  ,              ⁺U𝜇𝜈 = −𝑖 U𝜇𝜈 ,             ⁺M𝜇𝜈 = −𝑖 M𝜇𝜈 .                    (62) 

 

Projecting (60) onto the Infeld-van der Waerden symbols [54], and employing (44), (45) and 

(50), we obtain the corresponding spinor [39]: 

 

    𝜂ACEGḂḊḞḢ = 𝑖 (𝜖AE 𝜖CG 𝜖ḂḢ 𝜖ḊḞ −  𝜖AG 𝜖CE 𝜖ḂḞ 𝜖ḊḢ).                               (63) 

 

Let  F𝜇𝜈  be an arbitrary tensor, then the prescription (16) gives its associated spinor:  

 

   FACḂḊ =  𝜎𝜇
AḂ F𝜇𝜈 𝜎𝜈

CḊ ,                                                      (64) 

from where: 

   FACḂḊ
̅̅ ̅̅ ̅̅ ̅̅ =  FBDȦĊ                                                                (65)   

 

because  F𝛼𝛽  is real,   FACḂḊ =  −FCAḊḂ     because  F𝜇𝜈 is skew-symmetric,        

 

these results together with (54) and (63) lead to the spinor associated with the dual tensor:    

 

                          ⁺FACḂḊ = 𝑖 FACḊḂ ,                                                       (66)   

 

which also verifies the symmetries (65).        

 

Penrose [40] asseverates that the 2-spinors formalism is not only simpler when it comes to 

establish properties of conformal invariance, but does also provide a more systematical overview 

when it comes to understand the propagation of massless fields. Then, Sec. 4 is devoted to the 

study of some spinorial aspects of the electromagnetic field. 

 

 

(Continued on Part II) 

 


