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Abstract

An updated view about M8−H duality is discussed. M8−H duality allows to deduce M4×CP2

via number theoretical compactification. One important correction is that octonionic spinor structure
makes sense only for M8 whereas for M4 × CP2 complexified quaternions characterized the spinor
structure.

Octonions, quaternions, quaternionic space-time surfaces, octonionic spinors and twistors and
twistor spaces are highly relevant for quantum TGD. In the following some general observations
distilled during years are summarized.

There is a beautiful pattern present suggesting that H = M4 × CP2 is completely unique on
number theoretical grounds. Consider only the following facts. M4 and CP2 are the unique 4-D
spaces allowing twistor space with Kähler structure. Octonionic projective space OP2 appears as
octonionic twistor space (there are no higher-dimensional octonionic projective spaces). Octotwistors
generalise the twistorial construction from M4 to M8 and octonionic gamma matrices make sense also
for H with quaternionicity condition reducing OP2 to 12-D G2/U(1) × U(1) having same dimension
as the the twistor space CP3 × SU(3)/U(1) × U(1) of H assignable to complexified quaternionic
representation of gamma matrices.

A further fascinating structure related to octo-twistors is the non-associated analog of Lie group
defined by automorphisms by octonionic imaginary units: this group is topologically six-sphere. Also
the analogy of quaternionicity of preferred extremals in TGD with the Majorana condition central
in super string models is very thought provoking. All this suggests that associativity indeed could
define basic dynamical principle of TGD.

Number theoretical vision about quantum TGD involves both p-adic number fields and classical
number fields and the challenge is to unify these approaches. The challenge is non-trivial since the
p-adic variants of quaternions and octonions are not number fields without additional conditions. The
key idea is that TGD reduces to the representations of Galois group of algebraic numbers realized
in the spaces of octonionic and quaternionic adeles generalizing the ordinary adeles as Cartesian
products of all number fields: this picture relates closely to Langlands program. Associativity would
force sub-algebras of the octonionic adeles defining 4-D surfaces in the space of octonionic adeles
so that 4-D space-time would emerge naturally. M8 − H correspondence in turn would map the
space-time surface in M8 to M4 × CP2.

1 Introduction

Octonions, quaternions, quaternionic space-time surfaces, octonionic spinors and twistors and twistor
spaces are highly relevant for quantum TGD. In the following some general observations distilled during
years are summarized. This summary involves several corrections to the picture which has been developing
for a decade or so.

A brief updated view about M8 − H duality and twistorialization is in order. There is a beautiful
pattern present suggesting that M8 − H duality makes sense and that H = M4 × CP2 is completely
unique on number theoretical grounds.

1. M8 − H duality allows to deduce M4 × CP2 via number theoretical compactification. For the
option with minimal number of conjectures the associativity/co-associativity of the space-time sur-
faces in M8 guarantees that the space-time surfaces in M8 define space-time surfaces in H. The
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tangent/normal spaces of quaternionic/hyper-quaternionic surfaces in M8 contain also an integrable
distribution of hyper-complex tangent planes M2(x).

An important correction is that associativity/co-associativity does not make sense at the level of H
since the spinor structure of H is already complex quaternionic and reducible to the ordinary one
by using matrix representations for quaternions. The associativity condition should however have
some counterpart at level of H. One could require that the induced gamma matrices at each point
could span a real-quaternionic sub-space of complexified quaternions for quaternionicity and a purely
imaginery quaternionic sub-space for co-quaternionicity. One might hope that it is consistent with
- or even better, implies - preferred extremal property. I have not however found a viable definition
of quaternionic ”reality”. On the other hand, it is possible assigne the tangent space M8 of H with
octonion structure and define associativity as in case of M8.

The delicacies coming from the signature of imbedding space metric are discussed and the conjecture
that real-octonion-analyticity could define quaternionic surfaces in M8 is considered as also the
variant of this hypothesis for H.

2. M4 and CP2 are the unique 4-D spaces allowing twistor space with Kähler structure. M8 allows
twistor space for octonionic spinor structure obtained by direct generalization of the standard con-
struction for M4. M4 × CP2 spinors can be regarded as tensor products of quaternionic spinors
associated with M4 and CP2: this trivial observation forces to challenge the earlier rough vision,
which however seems to stand up the challenge.

3. Octotwistors generalise the twistorial construction from M4 to M8 and octonionic gamma matrices
make sense also for H with quaternionicity condition reducing 12-D T (M8) = G2/U(1) × U(1) to
the 12-D twistor space T (H) = CP3 × SU3/U(1) × U(1). The interpretation of the twistor space
in the case of M8 is as the space of choices of quantization axes for the 2-D Cartan algebra of G2

acting as octonionic automorphisms. For CP2 one has space for the chocies of quantization axes for
the 2-D SU(3) Cartan algebra.

4. It is also possible that the dualities extend to a sequence M8 → H → H... by mapping the
associative/co-associative tangent space to CP2 and M4 point to M4 point at each step. One
has good reasons to expect that this iteration generates fractal as the limiting space-time surface.

5. A fascinating structure related to octo-twistors is the non-associated analog of Lie group defined
by automorphisms by octonionic imaginary units: this group is topologically 7-sphere. Second
analogous structure is the 7-D Lie algebra like structure defined by octonionic analogs of sigma
matrices.

The analogy of quaternionicity of M8 pre-images of preferred extremals and quaternionicity of the
tangent space of space-time surfaces in H with the Majorana condition central in super string models is
very thought provoking. All this suggests that associativity at the level of M8 indeed could define basic
dynamical principle of TGD.

In the following some general view about these topics distilled during years are summarized. The
first section deals with M8 −H duality and second second with the various manners to define twistors.
Third section is devoted to the recent view about number theoretic vision: the key idea is that TGD
reduces to the representations of Galois group of algebraic numbers realized in the spaces of octonionic
and quaternionic adeles generalizes the ordinary notion of adele: this picture relates closely to Langlands
probram. Associativity would force sub-algebras of octonionic adeles defining 4-D surfaces in the space
of octonionic adeles so that 4-D space-time would emerge naturally. M8 − H correspondence in turn
would map the space-time surface in M8 to M4 × CP2. This summary involves several corrections to
the picture which has been developing for a decade or so.
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2 Number theoretic compactification and M 8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the classical
dynamics to associativity or co-associativity. Originally M8−H duality was introduced as a number the-
oretic explanation for H = M4×CP2. Much later it turned out that the completely exceptional twistorial
properties of M4 and CP2 are enough to justify X4 ⊂ H hypothesis. Skeptic could therefore criticize
the introduction of M8 (actually its complexification) as an un-necessary mathematical complication pro-
ducing only unproven conjectures and bundle of new statements to be formulated precisely. However,
if quaternionicity can be realized in terms of M8

c using Oc-real analytic functions and if quaternionicity
is equivalent with preferred extremal property, a huge simplification results and one can say that field
equations are exactly solvable.

One can question the feasibility of M8 −H duality if the dynamics is purely number theoretic at the
level of M8 and determined by Kähler action at the level of H. Situation becomes more democratic if
Kähler action defines the dynamics in both M8 and H: this might mean that associativity could imply
field equations for preferred extremals or vice versa or there might be equivalence between two. This
means the introduction Kähler structure at the level of M8, and motivates also the coupling of Kähler
gauge potential to M8 spinors characterized by Kähler charge or em charge. One could call this form of
duality strong form of M8 −H duality.

The strong form M8−H duality boils down to the assumption that space-time surfaces can be regarded
either as 4-surfaces ofH or as surfaces ofM8 or evenM8

c composed of associative and co-associative regions
identifiable as regions of space-time possessing Minkowskian resp. Euclidian signature of the induced
metric. They have the same induced metric and Kähler form and WCW associated with H should be
essentially the same as that associated with M8. Associativity corresponds to hyper-quaterniocity at
the level of tangent space and co-associativity to co-hyper-quaternionicity - that is associativity/hyper-
quaternionicity of the normal space. Both are needed to cope with known extremals. Since in Minkowskian
context precise language would force to introduce clumsy terms like hyper-quaternionicity and co-hyper-
quaternionicity, it is better to speak just about associativity or co-associativity.

Remark: The original assumption was that space-times could be regarded as surfaces in M8 rather
than in its complexification M8

c identifiable as complexified octonions. This assumption is un-necessarily
strong and if one assumes that octonion-real analytic functions characterize these surfaces M8

c must be
assumed.

For the octonionic spinor fields the octonionic analogs of electroweak couplings reduce to mere Kḧler
or electromagnetic coupling and the solutions reduce to those for spinor d’Alembertian in 4-D harmonic
potential breaking SO(4) symmetry. Due to the enhanced symmetry of harmonic oscillator, one expects
that partial waves are classified by SU(4) and by reduction to SU(3) × U(1) by em charge and color
quantum numbers just as for CP2 - at least formally.

Harmonic oscillator potential defined by self-dual em field splits M8 to M4×E4 and implies Gaussian
localization of the spinor modes near origin so that E4 effectively compactifies. The The resulting physics
brings strongly in mind low energy physics, where only electromagnetic interaction is visible directly,
and one cannot avoid associations with low energy hadron physics. These are some of the reasons for
considering M8 −H duality as something more than a mere mathematical curiosity.

Remark: The Minkowskian signatures of M8 and M4 produce technical nuisance. One could over-
come them by Wick rotation, which is however somewhat questionable trick. M8

c = Oc provides the
proper formulation.

1. The proper formulation is in terms of complexified octonions and quaternions involving the intro-
duction of commuting imaginary unit j. If complexified quaternions are used for H, Minkowskian
signature requires the introduction of two commuting imaginary units j and i meaning double
complexification.

2. Hyper-quaternions/octonions define as subspace of complexified quaternions/octonions spanned by
real unit and jIk, where Ik are quaternionic units. These spaces are obviously not closed under
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multiplication. One can however however define the notion of associativity for the sub-space of
M8 by requiring that the products and sums of the tangent space vectors generate complexified
quaternions.

3. Ordinary quaternions Q are expressible as q = q0 + qkIk. Hyper-quaternions are expressible as
q = q0 + jqkIk and form a subspace of complexified quaternions Qc = Q ⊕ jQ. Similar formula
applies to octonions and their hyper counterparts which can be regarded as subspaces of complexified
octonions O⊕ jO. Tangent space vectors of H correspond hyper-quaternions qH = q0 + jqkIk+ jiq2
defining a subspace of doubly complexified quaternions: note the appearance of two imaginary units.

The recent definitions of associativity and M8 duality has evolved slowly from in-accurate character-
izations and there are still open questions.

1. Kähler form for M8 non-trivial only in E4 ⊂ M8 implies unique decomposition M8 = M4 × E4

needed to define M8 −H duality uniquely. This applies also to M8
c . This forces to introduce also

Kähler action, induced metric and induced Kähler form. Could strong form of duality meant that
the space-time surfaces in M8 and H have same induced metric and induced Kähler form? Could
the WCWs associated with M8 and H be identical with this assumption so that duality would
provide different interpretations for the same physics?

2. One can formulate associativity in M8 (or M8
c ) by introducing octonionic structure in tangent

spaces or in terms of the octonionic representation for the induced gamma matrices. Does the
notion have counterpart at the level of H as one might expect if Kähler action is involved in both
cases? The analog of this formulation in H might be as quaternionic ”reality” since tangent space
of H corresponds to complexified quaternions: I have however found no acceptable definition for
this notion.

The earlier formulation is in terms of octonionic flat space gamma matrices replacing the ordinary
gamma matrices so that the formulation reduces to that in M8 tangent space. This formulation
is enough to define what associativity means although one can protest. Somehow H is already
complex quaternionic and thus associative. Perhaps this just what is needed since dynamics has
two levels: imbedding space level and space-time level. One must have imbedding space spinor
harmonics assignable to the ground states of super-conformal representations and quaternionicity
and octonionicity of H tangent space would make sense at the level of space-time surfaces.

3. Whether the associativity using induced gamma matrices works is not clear for massless extremals
(MEs) and vacuum extremals with the dimension of CP2 projection not larger than 2.

4. What makes this notion of associativity so fascinating is that it would allow to iterate duality as
a sequence M8 → H → H... by mapping the space-time surface to M4 × CP2 by the same recipe
as in case of M8. This brings in mind the functional composition of Oc-real analytic functions (Oc
denotes complexified octonions: complexification is forced by Minkowskian signature) suggested
to produced associative or co-associative surfaces. The associative (co-associative) surfaces in M8

would correspond to loci for vanishing of imaginary (real) part of octonion-real-analytic function.

It might be possible to define associativity in H also in terms of modified gamma matrices defined by
Kähler action (certainly not M8).

1. All known extremals are associative or co-associative in H in this sense. This would also give
direct correlation with the variational principle. For the known preferred extremals this variant is
successful partially because the modified gamma matrices need not span the entire tangent space.
The space spanned by the modified gammas is not necessarily tangent space. For instance for CP2

type vacuum extremals the modified gamma matrices are CP2 gamma matrices plus an additional
light-like component from M4 gamma matrices.
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If the space spanned by modified gammas has dimension D smaller than 3 co-associativity is auto-
matic. If the dimension of this space is D = 3 it can happen that the triplet of gammas spans by
multiplication entire octonionic algebra. For D = 4 the situation is of course non-trivial.

2. For modified gamma matrices the notion of co-associativity can produce problems since modified
gamma matrices do not in general span the tangent space. What does co-associativity mean now?
Should one replace normal space with orthogonal complement of the space spanned by modified
gamma matrices? Co-associativity option must be considered for D = 4 only. CP2 type vacuum
extremals provide a good example. In this case the modified gamma matrices reduce to sums of
ordinary CP2 gamma matrices and ligt-like M4 contribution. The orthogonal complement for the
modified gamma matrices consists of dual light-like gamma matrix and two gammas orthogonal to
it: this space is subspace of M4 and trivially associative.

2.1 Basic idea behind M8 −M4 × CP2 duality

If four-surfaces X4 ⊂M8 under some conditions define 4-surfaces in M4×CP2 indirectly, the spontaneous
compactification of super string models would correspond in TGD to two different manners to interpret the
space-time surface. This correspondence could be called number theoretical compactification or M8 −H
duality.

The hard mathematical facts behind the notion of number theoretical compactification are following.

1. One must assume that M8 has unique decomposition M8 = M4 × E4. This decomposition gener-
alizes also to the case of M8

c . This would be most naturally due to Kähler structure in E4 defined
by a self-dual Kähler form defining parallel constant electric and magnetic fields in Euclidian sense.
Besides Kähler form there is vector field coupling to sigma matrix representing the analog of strong
isospin: the corresponding octonionic sigma matrix however is imaginary unit times gamma matrix
- say ie1 in M4 - defining a preferred plane M2 in M4. Here it is essential that the gamma matrices
of E4 defined in terms of octonion units commute to gamma matrices in M4. What is involved
becomes clear from the Fano triangle illustrating octonionic multiplication table.

2. The space of hyper-complex structures of the hyper-octonion space - they correspond to the choices
of plane M2 ⊂M8 - is parameterized by 6-sphere S6 = G2/SU(3). The subgroup SU(3) of the full
automorphism group G2 respects the a priori selected complex structure and thus leaves invariant
one octonionic imaginary unit, call it e1. Fixed complex structure therefore corresponds to a point
of S6.

3. Quaternionic sub-algebras of M8 (and M8
c ) are parametrized by G2/U(2). The quaternionic sub-

algebras of octonions with fixed complex structure (that is complex sub-space defined by real and
preferred imaginary unit and parametrized by a point of S6) are parameterized by SU(3)/U(2) =
CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as
the isometry group of CP2, as the automorphism sub-group of octonions, and as color group. Thus
the space of quaternionic structures can be parametrized by the 10-dimensional space G2/U(2)
decomposing as S6 × CP2 locally.

4. The basic result behind number theoretic compactification and M8 −H duality is that associative
sub-spaces M4 ⊂ M8 containing a fixed commutative sub-space M2 ⊂ M8 are parameterized by
CP2. The choices of a fixed hyper-quaternionic basis 1, e1, e2, e3 with a fixed complex sub-space
(choice of e1) are labeled by U(2) ⊂ SU(3). The choice of e2 and e3 amounts to fixing e2±

√
−1e3,

which selects the U(2) = SU(2) × U(1) subgroup of SU(3). U(1) leaves 1 invariant and induced
a phase multiplication of e1 and e2 ± e3. SU(2) induces rotations of the spinor having e2 and
e3 components. Hence all possible completions of 1, e1 by adding e2, e3 doublet are labeled by
SU(3)/U(2) = CP2.
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Consider now the formulation of M8 −H duality.

1. The idea of the standard formulation is that associative manifold X4 ⊂ M8 has at its each point
associative tangent plane. That is X4 corresponds to an integrable distribution of M2(x) ⊂ M8

parametrized 4-D coordinate x that is map x → S6 such that the 4-D tangent plane is hyper-
quaternionic for each x.

2. Since the Kähler structure of M8 implies unique decomposition M8 = M4 × E4, this surface in
turn defines a surface in M4 × CP2 obtained by assigning to the point of 4-surface point (m, s) ∈
H = M4 × CP2: m ∈ M4 is obtained as projection M8 → M4 (this is modification to the earlier
definition) and s ∈ CP2 parametrizes the quaternionic tangent plane as point of CP2. Here the
local decomposition G2/U(2) = S6 × CP2 is essential for achieving uniqueness.

3. One could also map the associative surface in M8 to surface in 10-dimensional S6 × CP2. In this
case the metric of the image surface cannot have Minkowskian signature and one cannot assume
that the induced metrics are identical. It is not known whether S6 allows genuine complex structure
and Kähler structure which is essential for TGD formulation.

4. Does duality imply the analog of associativity for X4 ⊂ H? The tangent space of H can be seen
as a sub-space of doubly complexified quaternions. Could one think that quaternionic sub-space is
replaced with sub-space analogous to that spanned by real parts of complexified quaternions? The
attempts to define this notion do not however look promising. One can however define associativity
and co-associativity for the tangent space M8 of H using octonionization and can formulate it also
terms of induced gamma matrices.

5. The associativity defined in terms of induced gamma matrices in both in M8 and H has the in-
teresting feature that one can assign to the associative surface in H a new associative surface in
H by assigning to each point of the space-time surface its M4 projection and point of CP2 char-
acterizing its associative tangent space or co-associative normal space. It seems that one continue
this series ad infinitum and generate new solutions of field equations! This brings in mind iteration
which is standard manner to generate fractals as limiting sets. This certainly makes the heart of
mathematician beat.

6. Kähler structure in E4 ⊂M8 guarantees natural M4×E4 decomposition. Does associativity imply
preferred extremal property or vice versa, or are the two notions equivalent or only consistent with
each other for preferred extremals?

A couple of comments are in order.

1. This definition generalizes to the case of M8
c : all that matters is that tangent space-is is complexified

quaternionic and there is a unique identification M4 ⊂ M8
c : this allows to assign the point of 4-

surfaces a point of M4×CP2. The generalization is needed if one wants to formulate the hypothesis
about Oc real-analyticity as a manner to build quaternionic space-time surfaces properly.

2. This definition differs from the first proposal for years ago stating that each point of X4 contains
a fixed M2 ⊂ M4 rather than M2(x) ⊂ M8 and also from the proposal assuming integrable dis-
tribution of M2(x) ⊂ M4. The older proposals are not consistent with the properties of massless
extremals and string like objects for which the counterpart of M2 depends on space-time point and
is not restricted to M4. The earlier definition M2(x) ⊂ M4 was problematic in the co-associative
case since for the Euclidian signature is is not clear what the counterpart of M2(x) could be.

3. The new definition is consistent with the existence of Hamilton-Jacobi structure meaning slicing of
space-time surface by string world sheets and partonic 2-surfaces with points of partonic 2-surfaces
labeling the string world sheets [6]. This structure has been proposed to characterize preferred
extremals in Minkowskian space-time regions at least.
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4. Co-associative Euclidian 4-surfaces, say CP2 type vacuum extremal do not contain integrable distri-
bution of M2(x). It is normal space which contains M2(x). Does this have some physical meaning?
Or does the surface defined by M2(x) have Euclidian analog?

A possible identification of the analog would be as string world sheet at which W boson field is pure
gauge so that the modes of the modified Dirac operator [7] restricted to the string world sheet have
well-defined em charge. This condition appears in the construction of solutions of modified Dirac
operator.

For octonionic spinor structure the W coupling is however absent so that the condition does not
make sense in M8. The number theoretic condition would be as commutative or co-commutative
surface for which imaginary units in tangent space transform to real and imaginary unit by a
multiplication with a fixed imaginary unit! One can also formulate co-associativity as a condition
that tangent space becomes associative by a multiplication with a fixed imaginary unit.

There is also another justification for the distribution of Euclidian tangent planes. The idea about
associativity as a fundamental dynamical principle can be strengthened to the statement that space-
time surface allows slicing by hyper-complex or complex 2-surfaces, which are commutative or co-
commutative inside space-time surface. The physical interpretation would be as Minkowskian or
Euclidian string world sheets carrying spinor modes. This would give a connection with string
model and also with the conjecture about the general structure of preferred extremals.

5. Minimalist could argue that the minimal definition requires octonionic structure and associativity
only in M8. There is no need to introduce the counterpart of Kähler action in M8 since the dynamics
would be based on associativity or co-associativity alone. The objection is that one must assumes
the decomposition M8 = M4 × E4 without any justification.

The map of space-time surfaces to those of H = M4 × CP2 implies that the space-time surfaces in
H are in well-defined sense quaternionic. As a matter of fact, the standard spinor structure of H
can be regarded as quaternionic in the sense that gamma matrices are essentially tensor products
of quaternionic gamma matrices and reduce in matrix representation for quaternions to ordinary
gamma matrices. Therefore the idea that one should introduce octonionic gamma matrices in H is
questionable. If all goes as in dreams, the mere associativity or co-associativity would code for the
preferred extremal property of Kähler action in H. One could at least hope that associativity/co-
associativity in H is consistent with the preferred extremal property.

6. One can also consider a variant of associativity based on modified gamma matrices - but only in
H. This notion does not make sense in M8 since the very existence of quaternionic tangent plane
makes it possible to define M8 −H duality map. The associativity for modified gamma matrices is
however consistent with what is known about extremals of Kähler action. The associativity based
on induced gamma matrices would correspond to the use of the space-time volume as action. Note
however that gamma matrices are not necessary in the definition.

2.2 Hyper-octonionic Pauli ”matrices” and the definition of associativity

Octonionic Pauli matrices suggest an interesting possibility to define precisely what associativity means
at the level of M8 using gamma matrices (for background see [11] ).

1. According to the standard definition space-time surface X4 ⊂M8 is associative if the tangent space
at each point of X4 in X4 ⊂M8 picture is associative. The definition can be given also in terms of
octonionic gamma matrices whose definition is completely straightforward.

2. Could/should one define the analog of associativity at the level of H? One can identify the tangent
space of H as M8 and can define octonionic structure in the tangent space and this allows to define
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associativity locally. One can replace gamma matrices with their octonionic variants and formulate
associativity in terms of them locally and this should be enough.

Skeptic however reminds M4 allows hyper-quaternionic structure and CP2 quaternionic structure
so that complexified quaternionic structure would look more natural for H. The tangent space
would decompose as M8 = HQ+ ijQ, weher j is commuting imaginary unit and HQ is spanned by
real unit and by units iIk, where i second commutating imaginary unit and Ik denotes quaternionic
imaginary units. There is no need to make anything associative.

There is however far from obvious that octonionic spinor structure can be (or need to be!) defined
globally. The lift of the CP2 spinor connection to its octonionic variant has questionable features:
in particular vanishing of the charged part and reduction of neutral part to photon. Therefore
is is unclear whether associativity condition makes sense for X4 ⊂ M4 × CP2. What makes it
so fascinating is that it would allow to iterate duality as a sequences M8 → H → H.... This
brings in mind the functional composition of octonion real-analytic functions suggested to produced
associative or co-associative surfaces.

I have not been able to settle the situation. What seems the working option is associativity in both
M8 and H and modified gamma matrices defined by appropriate Kähler action and correlation between
associativity and preferred extremal property.

2.3 Are Kähler and spinor structures necessary in M8?

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces obtained
as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler action with
same value of Kähler action defining Kähler function. As found, this leads to the conclusion that the
M8 −H duality is Kähler isometry. Coupling of spinors to Kähler potential is the next step and this in
turn leads to the introduction of spinor structure so that quantum TGD in H should have full M8 dual.

2.3.1 Are also the 4-surfaces in M8 preferred extremals of Kähler action?

It would be a mathematical miracle if associative and co-associative surfaces in M8 would be in 1-1
correspondence with preferred extremals of Kähler action. This motivates the question whether Kähler
action make sense also in M8. This does not exclude the possibility that associativity implies or is
equivalent with the preferred extremal property.

One expects a close correspondence between preferred extremals: also now vacuum degeneracy is
obtained, one obtains massless extremals, string like objects, and counterparts of CP2 type vacuum
extremals. All known extremals would be associative or co-associative if modified gamma matrices define
the notion (possible only in the case of H).

The strongest form of duality would be that the space-time surfaces in M8 and H have same induced
metric same induced Kähler form. The basic difference would be that the spinor connection for surfaces
in M8 would be however neutral and have no left handed components and only em gauge potential. A
possible interpretation is that M8 picture defines a theory in the phase in which electroweak symmetry
breaking has happened and only photon belongs to the spectrum.

The question is whether one can define WCW also for M8. Certainly it should be equivalent with
WCW for H: otherwise an inflation of poorly defined notions follows. Certainly the general formulation
of the WCW geometry generalizes from H to M8. Since the matrix elements of symplectic super-
Hamiltonians defining WCW gamma matrices are well defined as matrix elements involve spinor modes
with Gaussian harmonic oscillator behavior, the non-compactness of E4 does not pose any technical
problems.
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2.3.2 Spinor connection of M8

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic constraint
to the spinor structure of M8 is that it reproduces basic facts about electro-weak interactions. This
includes neutral electro-weak couplings to quarks and leptons identified as different H-chiralities and
parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted as
realizations of quaternionic imaginary units. This is possible but perhaps a more natural option is
the introduction of just single Kähler form as in the case of CP2.

2. One should be able to distinguish between quarks and leptons also in M8, which suggests that
one introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors formed
from them allow a representation as an antisymmetric tensor. Hence one must select one preferred
Kähler structure, that is fix a point of S2 representing the selected imaginary unit. It is natural
to assume different couplings of the Kähler gauge potential to spinor chiralities representing quarks
and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving coupling
to Kähler form and Z0 contains both axial and vector parts. The naive replacement of sigma
matrices appearing in the coupling of electroweak gauge fields takes the left handed parts of these
fields to zero so that only neutral part remains. Further, gauge fields correspond to curvature of
CP2 which vanishes for E4 so that only Kähler form form remains. Kähler form couples to 3L and
q so that the basic asymmetry between leptons and quarks remains. The resulting field could be
seen as analog of photon.

4. The absence of weak parts of classical electro-weak gauge fields would conform with the standard
thinking that classical weak fields are not important in long scales. A further prediction is that
this distinction becomes visible only in situations, where H picture is necessary. This is the case at
high energies, where the description of quarks in terms of SU(3) color is convenient whereas SO(4)
QCD would require large number of E4 partial waves. At low energies large number of SU(3) color
partial waves are needed and the convenient description would be in terms of SO(4) QCD. Proton
spin crisis might relate to this.

2.3.3 Dirac equation for leptons and quarks in M8

Kähler gauge potential would also couple to octonionic spinors and explain the distinction between quarks
and leptons.

1. The complexified octonions representing H spinors decompose to 1+1+3+3 under SU(3) represent-
ing color automorphisms but the interpretation in terms of QCD color does not make sense. Rather,
the triplet and single combine to two weak isospin doublets and quarks and leptons corresponds to
to ”spin” states of octonion valued 2-spinor. The conservation of quark and lepton numbers follows
from the absence of coupling between these states.

2. One could modify the coupling so that coupling is on electric charge by coupling it to electromagnetic
charge which as a combination of unit matrix and sigma matrix is proportional to 1 + kI1, where
I1 is octonionic imaginary unit in M2 ⊂ M4. The complexified octonionic units can be chosen to
be eigenstates of Qem so that Laplace equation reduces to ordinary scalar Laplacian with coupling
to self-dual em field.
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3. One expects harmonic oscillator like behavior for the modes of the Dirac operator of M8 since the
gauge potential is linear in E4 coordinates. One possibility is Cartesian coordinates isA(Ax, Ay, Az, At) =
k(−y, x, t,−z). Thhe coupling would make E4 effectively a compact space.

4. The square of Dirac operator gives potential term proportional to r2 = x2 + y2 + z2 + t2 so that
the spectrum of 4-D harmonic oscillator operator and SO(4) harmonics localized near origin are
expected. For harmonic oscillator the symmetry enhances to SU(4).

If one replaces Kähler coupling with em charge symmetry breaking of SO(4) to vectorial SO(3)
is expected since the coupling is proportional to 1 + ike1 defining electromagnetic charge. Since
the basis of complexified quaternions can be chosen to be eigenstates of e1 under multiplication,
octonionic spinors are eigenstates of em charge and one obtains two color singles 1 ± e1 and color
triplet and antitriplet. The color triplets cannot be however interpreted in terms of quark color.

Harmonic oscillator potential is expected to enhance SO(3) to SU(3). This suggests the reduction
of the symmetry to SU(3) × U(1) corresponding to color symmetry and em charge so that one
would have same basic quantum numbers as tof CP2 harmonics. An interesting question is how the
spectrum and mass squared eigenvalues of harmonics differ from those for CP2.

5. In the square of Dirac equation JklΣkl term distinguishes between different em charges (Σkl reduces
by self duality and by special properties of octonionic sigma matrices to a term proportional to iI1
and complexified octonionic units can be chosen to be its eigenstates with eigen value ±1. The
vacuum mass squared analogous to the vacuum energy of harmonic oscillator is also present and
this contribution are expected to cancel themselves for neutrinos so that they are massless whereas
charged leptons and quarks are massive. It remains to be checked that quarks and leptons can be
classified to triality T = ±1 and t = 0 representations of dynamical SU(3) respectively.

2.3.4 What about the analog of Kähler Dirac equation

Only the octonionic structure in T (M8) is needed to formulate quaternionicity of space-time surfaces:
the reduction to Oc-real-analyticity would be extremely nice but not necessary (Oc denotes complexified
octonions needed to cope with Minkowskian signature). Most importantly, there might be no need to
introduce Kähler action (and Kähler form) in M8. Even the octonionic representation of gamma matrices
is un-necessary. Neither there is any absolute need to define octonionic Dirac equation and octonionic
Kähler Dirac equation nor octonionic analog of its solutions nor the octonionic variants of imbedding
space harmonics.

It would be of course nice if the general formulas for solutions of the Kähler Dirac equation in H could
have counterparts for octonionic spinors satisfying quaternionicity condition. One can indeed wonder
whether the restriction of the modes of induced spinor field to string world sheets defined by integrable
distributions of hyper-complex spacesM2(x) could be interpretated in terms of commutativity of fermionic
physics in M8. M8 −H correspondence could map the octonionic spinor fields at string world sheets to
their quaternionic counterparts in H. The fact that only holomorphy is involved with the definition of
modes could make this map possible.

2.4 How could one solve associativity/co-associativity conditions?

The natural question is whether and how one could solve the associativity/-co-associativity conditions
explicitly. One can imagine two approaches besides M8 → H → H... iteration generating new solutions
from existing ones.

2.4.1 Could octonion-real analyticity be equivalent with associativity/co-associativity?

Analytic functions provide solutions to 2-D Laplace equations and one might hope that also the field
equations could be solved in terms of octonion-real-analyticity at the level of M8 perhaps also at the
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level of H. Signature however causes problems - at least technical. Also the compactness of CP2 causes
technical difficulties but they need not be insurmountable.

For E8 the tangent space would be genuinely octonionic and one can define the notion octonion-real
analytic map as a generalization of real-analytic function of complex variables (the coefficients of Laurent
series are real to guarantee associativity of the series). The argument is complexified octonion in O⊕ iO
forming an algebra but not a field. The norm square is Minkowskian as difference of two Euclidian
octonionic norms: N(o1 + io2) = N(o1) − N(o2) and vanishes at 15-D light cone boundary. Obviously,
differential calculus is possible outside the light-cone boundary. Rational analytic functions have however
poles at the light-cone boundary. One can wonder whether the poles at M4 light-cone boundary, which
is subset of 15-D light-cone boundary could have physical significance and relevant for the role of causal
diamonds in ZEO.

The candidates for associative surfaces defined by Oc-real-analytic functions (I use Oc for complexified
octonions) have Minkowskian signature of metric and are 4-surfaces at which the projection of f(o1 + io2)
to Im(O1), iIm(O2), and iRe(Q2) ⊕ Im(Q1) vanish so that only the projection to hyper-quaternionic
Minkowskian sub-space M4 = Re(Q1) + iIm(Q2) with signature (1,−1,−, 1−, 1) is non-vanishing. The
inverse image need not belong to M8 and in general it belongs to M8

c but this is not a problem: all that
is needed that the tangent space of inverse image is complexified quaternionic. If this is the case then
M8 −H duality maps the tangent space of the inverse image to CP2 point and image itself defines the
point of M4 so that a point of H is obtained. Co-associative surfaces would be surfaces for which the
projections of image to Re(O1), iRe(O2), and to Im(O1) vanish so that only the projection to iIm(O2)
with signature (−1,−1,−1,−1) is non-vanishing.

The inverse images as 4-D sub-manifolds of M8
c (not M8!) are excellent candidates for associative and

co-associative 4-surfaces since M8 −H duality assignes to them a 4-surface in M4 × CP2 if the tangent
space at given point is complexified quaternionic. This is true if one believes on the analytic continuation
of the intuition from complex analysis (the image of real axes under the map defined by Oc-real-analytic
function is real axes in the new coordinates defined by the map: the intuition results by replacing ”real” by
”complexified quaternionic”). The possibility to solve field equations in this manner would be of enormous
significance since besides basic arithmetic operations also the functional decomposition of Oc-real-analytic
functions produces similar functions. One could speak of the algebra of space-time surfaces.

What is remarkable that the complexified octonion real analytic functions are obtained by analytic
continuation from single real valued function of real argument. The real functions form naturally a
hierarchy of polynomials (maybe also rational functions) and number theoretic vision suggests that there
coefficients are rationals or algebraic numbers. Already for rational coefficients hierarchy of algebraic
extensions of rationals results as one solves the vanishing conditions. There is a temptation to regard this
hierarchy coding for space-time sheets as an analog of DNA.

Note that in the recent formulation there is no need to pose separately the condition about integrable
distribution of M2(x) ⊂M4.

2.4.2 Quaternionicity condition for space-time surfaces

Quaternionicity actually has a surprisingly simple formulation at the level of space-time surfaces. The
following discussion applies to both M8 and H with minor modifications if one accepts that also H can
allow octonionic tangent space structure, which does not require gamma matrices.

1. Quaternionicity is equivalent with associativity guaranteed by the vanishing of the associatorA(a, b, c) =
a(bc) − (ab)c for any triplet of imaginary tangent vectors in the tangent space of the space-time
surface. The condition must hold true for purely imaginary combinations of tangent vectors.

2. If one is able to choose the coordinates in such a manner that one of the tangent vectors corresponds
to real unit (in the imbedding map imbedding space M4 coordinate depends only on the time
coordinate of space-time surface), the condition reduces to the vanishing of the octonionic product of
remaining three induced gamma matrices interpreted as octonionic gamma matrices. This condition
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looks very simple - perhaps too simple!- since it involves only first derivatives of the imbedding space
vectors.

One can of course whether quaternionicity conditions replace field equations or only select preferred
extremals. In the latter case, one should be able to prove that quaternionicity conditions are
consistent with the field equations.

3. Field equations would reduce to tri-linear equations in in the gradients of imbedding space coordi-
nates (rather than involving imbedding space coordinates quadratically). Sum of analogs of 3 × 3
determinants deriving from a× (b× b) for different octonion units is involved.

4. Written explicitly field equations give in terms of vielbein projections eAα , vielbein vectors eAk ,
coordinate gradients ∂αh

k and octonionic structure constants fABC the following conditions stating
that the projections of the octonionic associator tensor to the space-time surface vanishes:

eAαe
B
β e

C
γ A

E
ABC = 0 ,

AEABC = f E
AD f D

BC − f D
AB f E

DC ,

eAα = ∂αh
keAk ,

Γk = eAk γA .

(2.1)

The very naive idea would be that the field equations are indeed integrable in the sense that
they reduce to these tri-linear equations. Tri-linearity in derivatives is highly non-trivial outcome
simplifying the situation further. These equations can be formulated as the as purely algebraic
equations written above plus integrability conditions

FAαβ = Dαe
A
β −Dβe

A
α = 0 . (2.2)

One could say that vielbein projections define an analog of a trivial gauge potential. Note however
that the covariant derivative is defined by spinor connection rather than this effective gauge potential
which reduces to that in SU(2). Similar formulation holds true for field equations and one should
be able to see whether the field equations formulated in terms of derivatives of vielbein projections
commute with the associatitivity conditions.

5. The quaternionicity conditions can be formulated as vanishing of generalization of Cayley’s hyper-
determinant for ”hypermatrix” aijk with 2-valued indiced
(see http://en.wikipedia.org/wiki/Hyperdeterminant). Now one has 8 hyper-matrices with 3
8-valued indices associated with the vanishing AEBCDx

ByCzD = 0 of trilinear forms defined by the
associators. The conditions say somethig only about the octonioni structure constants and since
octonionic space allow quaternionic sub-spaces these conditions must be satisfied.

The inspection of the Fano triangle [2] expressing the multiplication table for octonionic imaginary
units reveals that give any two imaginary octonion units e1 and e2 their product e1e2 (or equivalently
commutator) is imaginary octonion unit (2 times octonion unit) and the three units span together with
real unit quaternionic sub-algebra. There it seems that one can generate local quaternionic sub-space
from two imaginary units plus real unit. This generalizes to the vielbein components of tangent vectors
of space-time surface and one can build the solutions to the quaternionicity conditions from vielbein
projections e1, e2, their product e3 = k(x)e1e2 and real fourth ”time-like” vielbein component which
must be expressible as a combination of real unit and imaginary units:
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e0 = a× 1 + biei

For static solutions this condition is trivial. Here summation over i is understood in the latter term.
Besides these conditions one has integrability conditions and field equations for Kähler action. This
formulation suggests that quaternionicity is additional - perhaps defining - property of preferred extremals.

Figure 1: Octonionic triangle: the six lines and one circle containing three vertices define the seven
associative triplets for which the multiplication rules of the ordinary quaternion imaginary units hold
true. The arrow defines the orientation for each associative triplet. Note that the product for the units
of each associative triplets equals to real unit apart from sign factor.

2.5 Quaternionicity at the level of imbedding space quantum numbers

From the multiplication table of octonions as illustrated by Fano triangle [2] one finds that all edges of
the triangle, the middle circle and the three the lines connecting vertices to the midpoints of opposite
side define triplets of quaternionic units. This means that by taking real unit and any imaginary unit in
quaternionic M4 algebra spanning M2 ⊂ M4 and two imaginary units in the complement representing
CP2 tangent space one obtains quaternionic algebra. This suggests an explanation for the preferred M2

contained in tangent space of space-time surface (the M2:s could form an integrable distribution). Four-
momentum restricted to M2 and I3 and Y interpreted as tangent vectors in CP2 tangent space defined
quaterionic sub-algebra. This could give content for the idea that quantum numbers are quaternionic.

I have indeed proposed that the four-momentum belongs to M2. If M2(x) form a distribution as the
proposal for the preferred extremals suggests this could reflect momentum exchanges between different
points of the space-time surface such that total momentum is conserved or momentum exchange between
two sheets connected by wormhole contacts.

2.6 Questions

In following some questions related to M8 −H duality are represented.
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2.6.1 Could associativity condition be formulated using modified gamma matrices?

Skeptic can criticize the minimal form of M8−H duality involving no Kähler action in M8 is unrealistic.
Why just Kähler action? What makes it so special? The only defense that I can imagine is that Kähler
action is in many respects unique choice.

An alternative approach would replace induced gamma matrices with the modified ones to get the
correlation In the case of M8 this option cannot work. One cannot exclude it for H.

1. For Kähler action the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, assign to a given point

of X4 a 4-D space which need not be tangent space anymore or even its sub-space.

The reason is that canonical momentum current contains besides the gravitational contribution
coming from the induced metric also the ”Maxwell contribution” from the induced Kähler form not
parallel to space-time surface. In the case of M8 the duality map to H is therefore lost.

2. The space spanned by the modified gamma matrices need not be 4-dimensional. For vacuum ex-
tremals with at most 2-D CP2 projection modified gamma matrices vanish identically. For massless
extremals they span 1- D light-like subspace. For CP2 vacuum extremals the modified gamma ma-
trices reduces to ordinary gamma matrices for CP2 and the situation reduces to the quaternionicity
of CP2. Also for string like objects the conditions are satisfied since the gamma matrices define
associative sub-space as tangent space of M2 × S2 ⊂ M4 × CP2. It seems that associativity is
satisfied by all known extremals. Hence modified gamma matrices are flexible enough to realize
associativity in H.

3. Modified gamma matrices in Dirac equation are required by super conformal symmetry for the
extremals of action and they also guarantee that vacuum extremals defined by surfaces in M4 ×
Y 2, Y 2 a Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces. The modified
definition of associativity in H does not affect in any manner M8 −H duality necessarily based on
induced gamma matrices in M8 allowing purely number theoretic interpretation of standard model
symmetries. One can however argue that the most natural definition of associativity is in terms of
induced gamma matrices in both M8 and H.

Remark: A side comment not strictly related to associativity is in order. The anti-commutators of the
modified gamma matrices define an effective Riemann metric and one can assign to it the counterparts of
Riemann connection, curvature tensor, geodesic line, volume, etc... One would have two different metrics
associated with the space-time surface. Only if the action defining space-time surface is identified as the
volume in the ordinary metric, these metrics are equivalent. The index raising for the effective metric
could be defined also by the induced metric and it is not clear whether one can define Riemann connection
also in this case. Could this effective metric have concrete physical significance and play a deeper role in
quantum TGD? For instance, AdS-CFT duality leads to ask whether interactions be coded in terms of
the gravitation associated with the effective metric.

Now skeptic can ask why should one demand M8 −H correspondence if one in any case is forced to
introduced Kähler also at the level of M8? Does M8 − H correspondence help to construct preferred
extremals or does it only bring in a long list of conjectures? I can repeat the questions of the skeptic.

2.6.2 Minkowskian-Euclidian ↔ associative–co-associative?

The 8-dimensionality of M8 allows to consider both associativity of the tangent space and associativity
of the normal space- let us call this co-associativity of tangent space- as alternative options. Both options
are needed as has been already found. Since space-time surface decomposes into regions whose induced
metric possesses either Minkowskian or Euclidian signature, there is a strong temptation to propose that
Minkowskian regions correspond to associative and Euclidian regions to co-associative regions so that
space-time itself would provide both the description and its dual.
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The proposed interpretation of conjectured associative-co-associative duality relates in an interesting
manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as preferred
p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size of the space-time

sheet at which elementary particle represented as CP2 type extremal is topologically condensed and is of
order Compton length. Lk ∝

√
k represents the p-adic length scale of the wormhole contacts associated

with the CP2 type extremal and CP2 size is the natural length unit now. Obviously the quantitative
formulation for associative-co-associative duality would be in terms p→ k duality.

2.6.3 Can M8 −H duality be useful?

Skeptic could of course argue that M8 −H duality generates only an inflation of unproven conjectures.
This might be the case. In the following I will however try to defend the conjecture. One can however
find good motivations for M8 −H duality: both theoretical and physical.

1. If M8−H duality makes sense for induced gamma matrices also in H, one obtains infinite sequence
if dualities allowing to construct preferred extremals iteratively. This might relate to octonionic
real-analyticity and composition of octonion-real-analytic functions.

2. M8 − H duality could provide much simpler description of preferred extremals of Kähler action
as hyper-quaternionic surfaces. Unfortunately, it is not clear whether one should introduce the
counterpart of Kähler action in M8 and the coupling of M8 spinors to Kähler form. Note that the
Kähler form in E4 would be self dual and have constant components: essentially parallel electric
and magnetic field of same constant magnitude.

3. M8 − H duality provides insights to low energy physics, in particular low energy hadron physics.
M8 description might work when H-description fails. For instance, perturbative QCD which cor-
responds to H-description fails at low energies whereas M8 description might become perturbative
description at this limit. Strong SO(4) = SU(2)L×SU(2)R invariance is the basic symmetry of the
phenomenological low energy hadron models based on conserved vector current hypothesis (CVC)
and partially conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L×SU(2)R relates
closely also to electro-weak gauge group SU(2)L ×U(1) and this connection is not well understood
in QCD description. M8−H duality could provide this connection. Strong SO(4) symmetry would
emerge as a low energy dual of the color symmetry. Orbital SO(4) would correspond to strong
SU(2)L × SU(2)R and by flatness of E4 spin like SO(4) would correspond to electro-weak group
SU(2)L×U(1)R ⊂ SO(4). Note that the inclusion of coupling to Kähler gauge potential is necessary
to achieve respectable spinor structure in CP2. One could say that the orbital angular momentum
in SO(4) corresponds to strong isospin and spin part of angular momentum to the weak isospin.

This argument does not seem to be consistent with SU(3) × U(1) ⊂ SU(4) symmetry for Mx
Dirac equation. One can however argue that SU(4) symmetry combines SO(4) multiplets together.
Furthermore, SO(4) represents the isometries leaving Kähler form invariant.

2.6.4 M8 −H duality in low energy physics and low energy hadron physics

M8−H can be applied to gain a view about color confinement. The basic idea would be that SO(4) and
SU(3) provide provide dual descriptions of quarks using E4 and CP2 partial waves and low energy hadron
physics corresponds to a situation in which M8 picture provides the perturbative approach whereas H
picture works at high energies.

A possible interpretation is that the space-time surfaces vary so slowly in CP2 degrees of freedom that
can approximate CP2 with a small region of its tangent space E4. One could also say that color inter-
actions mask completely electroweak interactions so that the spinor connection of CP2 can be neglected
and one has effectively E4. The basic prediction is that SO(4) should appear as dynamical symmetry
group of low energy hadron physics and this is indeed the case.
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Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that QCD
description becomes appropriate whereas very higher color partial waves for quarks and gluons are
expected to appear at the confinement limit. Since configuration space degrees of freedom begin to
dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to the
fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum numbers
can be identified as orbital counterparts of right and left handed electro-weak isospin coinciding with
strong isospin for lowest quarks. In sigma model pion and sigma boson form the components of E4

valued vector field or equivalently collection of four E4 Hamiltonians corresponding to spherical E4

coordinates. Pion corresponds to S3 valued unit vector field with charge states of pion identifiable
as three Hamiltonians defined by the coordinate components. Sigma is mapped to the Hamiltonian
defined by the E4 radial coordinate. Excited mesons corresponding to more complex Hamiltonians
are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the repre-
sentations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial waves.
At the low energy limit only lowest representations would be be important whereas at higher ener-
gies higher partial waves would be excited and the description based on CP2 partial waves would
become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp. right
handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics problem
would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann mass
formula with highly successful predictions for hadron masses [9] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.

2.7 Summary

The overall conclusion is that the most convincing scenario relies on the associativity/co-associativity of
space-time surfaces define by induced gamma matrices and applying both for M8 and H. The fact that
the duality can be continued to an iterated sequence of duality maps M8 → H → H... is what makes the
proposal so fascinating and suggests connection with fractality.

The introduction of Kähler action and coupling of spinors to Kähler gauge potentials is highly natural.
One can also consider the idea that the space-time surfaces in M8 and H have same induced metric and
Kähler form: for iterated duality map this would mean that the steps in the map produce space-time
surfaces which identical metric and Kähler form so that the sequence might stop. M8

H duality might
provide two descriptions of same underlying dynamics: M8 description would apply in long length scales
and H description in short length scales.

3 Octo-twistors and twistor space

The basic problem of the twistor approach is that one cannot represent massive momenta in terms of
twistors in an elegant manner. One can also consider generalization of the notion of spinor and twistor.
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I have proposed a possible representation of massive states based on the existence of preferred plane of
M2 in the basic definition of theory allowing to express four-momentum as one of two light-like momenta
allowing twistor description. One could however ask whether some more elegant representation of massive
M4 momenta might be possible by generalizing the notion of twistor -perhaps by starting from the number
theoretic vision.

The basic idea is obvious: in quantum TGD massive states in M4 can be regarded as massless states
in M8 and M4 ×CP2 (recall M8 −H duality). One can therefore map any massive M4 momentum to a
light-like M8 momentum and hope that this association could be made in a unique manner. One should
assign to a massless 8-momentum an 8-dimensional spinor of fixed chirality. The spinor assigned with
the light-like four-momentum is not unique without additional conditions. The existence of covariantly
constant right-handed neutrino in CP2 degrees generating the super-conformal symmetries could allow
to eliminate the non-uniqueness. 8-dimensional twistor in M8 would be a pair of this kind of spinors
fixing the momentum of massless particle and the point through which the corresponding light-geodesic
goes through: the set of these points forms 8-D light-cone and one can assign to each point a spinor. In
M4 × CP2 definitions makes also in the case of M4 × CP2 and twistor space would also now be a lifting
of the space of light-like geodesics.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define the
8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma matrix algebra
which is not a matrix representation. The mapping of gamma matrices to this representation allows to
define a notion of hyper-quaternionicity in terms of the modified gamma matrices both in M8 and H.

The basic challenge is to achieve twistorial description of four-momenta or even M4 × CP2 quantum
numbers: this applies both to the momenta of fundamental fermions at the lines of generalized Feynman
diagrams and to the massive incoming and outcoming states identified as their composites.

1. A rather attractive way to overcome the problem at the level of fermions propagating along the
braid strands at the light-like orbits of partonic 2-surfaces relies on the assumption that generalized
Feynman diagrammatics effectively reduces to a form in which all fermions in the propagator lines
are massless although they can have non-physical helicity [10]. One can use ordinary M4 twistors.
This is consistent with the idea that space-time surfaces are quaternionic sub-manifolds of octonionic
imbedding space.

2. Incoming and outgoing states are composites of massless fermions and not massless. They are
however massless in 8-D sense. This suggests that they could be described using generalization of
twistor formalism from M4 to M8 and even betterm to M4 × CP2.

In the following two possible twistorializations are considered.

3.1 Two manners to twistorialize imbedding space

In the following the generalization of twistor formalism for M8 or M4 × CP2 will be considered in more
detail. There are two options to consider.

1. For the first option one assigns to M4 × CP2 twistor space as a product of corresponding twistor
spaces T (M4) = CP3 and the flag-manifold T (CP2) = SU(3)/U(1) × U(1) parameterizing the
choices of quantization axes for SU(3): TH = T (M4) × T (CP2). Quite remarkably, M4 and CP2

are the only 4-D manifolds allowing twistor space with Kähler structure. The twistor space is
12-dimensional. The choice of quantization axis is certainly a physically well-define operation so
that T (CP2) has physical interpretation. If all observable physical states are color singlets situation
becomes more complex. If one assumes QCC for color quantum numbers Y and I3, then also the
choice of color quantization axis is fixed at the level of Kähler action from the condition that Y and
I3 have classically their quantal values.
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2. For the second option one generalizes the usual construction for M8 regarded as tangent space of
M4 × CP2 (unless one takes M8 −H duality seriously).

The tangent space option looks like follows.

1. One can map the points of M8 to octonions. One can consider 2-component spinors with octonionic
components and map points of M8 light-cone to linear combinations of 2×2 Pauli sigma matrices but
with octonionic components. By the same arguments as in the deduction of ordinary twistor space
one finds that 7-D light-cone boundary is mapped to 7+8 D space since the octonionic 2-spinor/its
conjugate can be multiplied/divided by arbitrary octonion without changing the light-like point. By
standard argument this space extends to 8+8-D space. The points of M8 can be identified as 8-D
octonionic planes (analogs of complex sphere CP1 in this space. An attractive identification is as
octonionic projective space OP2. Remarkably, octonions do not allow higher dimensional projective
spaces.

2. If one assumes that the spinors are quaternionic the twistor space should have dimension 7+4+1=12.
This dimension is same as for M4 ×CP2. Does this mean that quaternionicity assumption reduces
T (M8) = OP2 to T (H) = CP3×SU(3)/U(1)×U(1)? Or does it yield 12-D space G2/U(1)×U(1),
which is also natural since G2 has 2-D Cartan algebra? Number theoretical compactification would
transform T (M8) = G2/U(1) × U(1) to T (H) = CP3 × SU(3)/U(1) × U(1). This would not
be surprising since in M8 − H-duality CP2 parametrizes (hyper)quaternionic planes containing
preferred plane M2.

Quaternionicity is certainly very natural in TGD framework. Quaternionicity for 8-momenta does
not in general imply that they reduce to the observed M4-momenta unless one identifies M4 as one
particular subspace of M8. In M8 − H duality one in principle allows all choices of M4: it is of
course unclear whether this makes any physical difference. Color confinement could be interpreted
as a reduction of M8 momenta to M4 momenta and would also allow the interpretational problems
caused by the fact that CP2 momenta are not possible.

3. Since octonions can be regarded as complexified quaternions with non-commuting imaginary unit,
one can say that quaternionic spinors in M8 are ”real” and thus analogous to Majorana spinors.
Similar interpretation applies at the level ofH. Could one can interpret the quaternionicity condition
for space-time surfaces and imbedding space spinors as TGD analog of Majorana condition crucial
in super string models? This would also be crucial for understanding supersymmetry in TGD sense.

3.2 Octotwistorialization of M8

Consider first the twistorialization in 4-D case. In M4 one can map light-like momoment to spinors
satisfying massless Dirac equation. General point m of M4 can be mapped to a pair of massless spinors
related by incidence relation defining the point m. The essential element of this association is that mass
squared can be defined as determinant of the 2 × 2 matrix resulting in the assignment. Light-likeness
is coded to the vanishing of the determinant implying that the spinors defining its rows are linearly
independent. The reduction of M4 inner product to determinant occurs because the 2 × 2 matrix can
be regarded as a matrix representation of complexified quaternion. Massless means that the norm of
a complexified quaternion defined as the product of q and its conjugate vanishes. Incidence relation
s1 = xs2 relating point of M4 and pair of spinors defining the corresponding twistor, can be interpreted
in terms of product for complexified quaternions.

The generalization to the 8-D situation is straightforward: replace quaternions with octonions.

1. The transition to M8 means the replacement of quaternions with octonions. Masslessness corre-
sponds to the vanishing norm for complexified octonion (hyper-octonion).
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2. One should assign to a massless 8-momentum an 8-dimensional spinor identifiable as octonion - or
more precisely as hyper-octonion obtained by multiplying the imaginary part of ordinary octonion
with commuting imaginary unit j and defining conjugation as a change of sign of j or that of
octonionic imaginar units.

3. This leads to a generalization of the notion of twistor consisting of pair of massless octonion valued
spinors (octonions) related by the incidence relation fixing the point of M8. The incidence relation
for Euclidian octonions says s1 = xs2 and can be interpreted in terms of triality for SO(8) relating
conjugate spinor octet to the product of vector octed and spinor octet. For Minkowskian subspace
of complexified octonions light-like vectors and s1 and s2 can be taken light-like as octonions. Light
like x can annihilate s2.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define the
8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma matrix algebra
which is not a matrix representation. The mapping of gamma matrices to this representation allows to
define a notion of hyper-quaternionicity in terms of the modified gamma matrices both in M8 and H.

3.3 Octonionicity, SO(1, 7), G2, and non-associative Malcev group

The symmetries assignable with octonions are rather intricate. First of all, octonions (their hyper-variants
defining M8) have SO(8) (SO(1,7)) as isometries. G2 ⊂ SO(7) acts as automorphisms of octonions and
SO(1, 7)→ G2 clearly means breaking of Lorentz invariance.

John Baez has described in a lucid manner G2 geometrically (http://math.ucr.edu/home/baez/
octonions/node14.html). The basic observation is that that quaternionic sub-space is generated by
two linearly independent imaginary units and by their product. By adding a fourth linearly independent
imaginary unit, one can generated all octonions. From this and the fact that G2 represents subgroup of
SO(7), one easily deduces that G2 is 14-dimensional. The Lie algebra of G2 corresponds to derivations of
octonionic algebra as follows infinitesimally from the condition that the image of product is the product
of images. The entire algebra SO(8) is direct sum of G2 and linear transformations generated by right
and left multiplication by imaginary octonion: this gives 14 + 14 = 28 = D(SO(8)). The subgroup SO(7)
acting on imaginary octonsions corresponds to the direct sum of derivations and adjoint transformations
defined by commutation with imaginary octonions, and has indeed dimension 14 + 7 = 21.

One can identify also a non-associative group-like structure.

1. In the case of octonionic spinors this group like structure is defined by the analog of phase multipli-
cation of spinor generalizing to a multiplication with octonionic unit expressible as linear combina-
tions of 8 octonionic imaginary units and defining 7-sphere plays appear as analog of automorphisms
o→ uou−1 = uou∗.

One can associate with these transformations a non-associative Lie group and Lie algebra like
structures by defining the commutators just as in the case of matrices that is as [a, b] = ab − ba.
One 7-D non-associative Lie group like structure with topology of 7-sphere S7 whereas G2 is 14-
dimensional exceptional Lie group (having S6 as coset space S6 = G2/SU(3)). This group like
object might be useful in the treatment of octonionic twistors. In the case of quaternions one has
genuine group acting as SO(3) rotations.

2. Octonionic gamma matrices allow to define as their commutators octonionic sigma matrices:

Σkl =
i

2
[γk, γl] . (3.1)

This algebra is 14-dimensional thanks to the fact that octonionic gamma matrices are of form
γ0 = σ1 ⊗ 1, γi = σ2 ⊗ ei. Due to the non-associativity of octonions this algebra does not satisfy
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Jacobi identity - as is easy to verify using Fano triangle - and is therefore not a genuine Lie-algebra.
Therefore these sigma matrices do not define a representation of G2 as I thought first.

This algebra has decomposition g = h+ t, [h, t] ⊂ t, [t, t] ⊂ h characterizing for symmetric spaces. h
is the 7-D algebra generated by Σij and identical with the non-associative Malcev algebra generated
by the commutators of octonionic units. The complement t corresponds to the generators Σ0i. The
algebra is clearly an octonionic non-associative analog fo SO(1, 7).

3.4 Octonionic spinors in M8 and real complexified-quaternionic spinors in
H?

This above observations about the octonionic sigma matrices raise the problem about the octonionic
representation of spinor connection. In M8 = M4×E4 the spinor connection is trivial but for M4×CP2

not. There are two options.

1. Assume that octonionic spinor structure makes sense for M8 only and spinor connection is trivial.

2. An alternative option is to identify M8 as tangent space of M4×CP2 possessing quaternionic struc-
ture defined in terms of octonionic variants of gamma matrices. Should one replace sigma matrices
appearing in spinor connection with their octonionic analogs to get a sigma matrix algebra which
is pseudo Lie algebra. Or should one map the holonomy algebra of CP2 spinor connection to a sub-
algebra of G2 ⊂ SO(7) and define the action of the sigma matrices as ordinary matrix multiplication
of octonions rather than octonionic multiplication? This seems to be possible formally.

The replacement of sigma matrices with their octonionic counterparts seems to lead to weird looking
results. Octonionic multiplication table implies that the electroweak sigma matrices associated with
CP2 tangent space reduce to M4 sigma matrices so that the spinor connection is quaternionic.
Furthermore, left-handed sigma matrices are mapped to zero so that only the neutral part of spinor
connection is non-vanishing. This supports the view that only M8 gamma matrices make sense
and that Dirac equation in M8 is just free massless Dirac equation leading naturally also to the
octonionic twistorialization.

One might think that distinction between different H-chiralities is difficult to make but it turns
out that quarks and leptons can be identified as different components of 2-component complexified
octonionic spinors.

The natural question is what associativization of octonions gives. This amounts to a condition putting
the associator a(bc)−(ab)c to zero. It is enough to consider octonionic imaginary units which are different.
By using the decomposition of the octonionic algebra to quaternionic sub-algebra and its complement
and general structure of structure constants, one finds that quaternionic sub-algebra remains as such
but the products of all imaginary units in the complement with different imaginary units vanish. This
means that the complement behaves effectively as 4-D flat space-gamma matrix algebra annihilated by
the quaternionic sub-algebra whose imaginary part acts like Lie algebra of SO(3).

3.5 What the replacement of SO(7, 1) sigma matrices with octonionic sigma
matrices could mean?

The basic implication of octonionization is the replacement of SO(7, 1) sigma matrices with octonionic
sigma matrices. For M8 this has no consequences since since spinor connection is trivial.

For M4 × CP2 situation would be different since CP2 spinor connection would be replaced with its
octonionic variant. This has some rather unexpected consequences and suggests that one should not try
to octonionize at the level of M4×CP2 but interepret gamma matrices as tensor products of quaternionic
gamma matrices, which can be replaced with their matrix representations. There are however some rather
intriguing observations which force to keep mind open.
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3.5.1 Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.

1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (3.2)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (3.3)

2. The octonionic representation is obtained as

γ0 = 1⊗ σ1 , γi = ei ⊗ σ2 . (3.4)

where ei are the octonionic units. e2i = −1 guarantees that the M4 signature of the metric comes
out correctly. Note that γ7 =

∏
γi is the counterpart for choosing the preferred octonionic unit and

plane M2.

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = jei × σ3 , Σij = jf k
ij ek ⊗ 1 . (3.5)

Here j is commuting imaginary unit. These matrices span G2 algebra having dimension 14 and
rank 2 and having imaginary octonion units and their conjugates as the fundamental representation
and its conjugate. The Cartan algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and
belong to a quaternionic sub-algebra.

4. The lower dimension D = 14 of the non-associative version of sigma matrix algebra algebra means
that some combinations of sigma matrices vanish. All left or right handed generators of the algebra
are mapped to zero: this explains why the dimension is halved from 28 to 14. From the octonionic
triangle expressing the multiplication rules for octonion units [1] one finds e4e5 = e1 and e6e7 = −e1
and analogous expressions for the cyclic permutations of e4, e5, e6, e7. From the expression of the
left handed sigma matrix I3L = σ23 + σ30 representing left handed weak isospin (see the Appendix
about the geometry of CP2 [5]) one can conclude that this particular sigma matrix and left handed
sigma matrices in general are mapped to zero. The quaternionic sub-algebra SU(2)L × SU(2)R is
mapped to that for the rotation group SO(3) since in the case of Lorentz group one cannot speak
of a decomposition to left and right handed subgroups. The elements of the complement of the
quaternionic sub-algebra are expressible in terms of Σij in the quaternionic sub-algebra.
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3.5.2 Some physical implications of the reduction of SO(7, 1) to its octonionic counterpart

The octonization of spinor connection of CP2 has some weird physical implications forcing to keep mind
to the possibility that the octonionic description even at the level of H might have something to do with
reality.

1. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive octo-
nionization. The right handed part is neutral containing only photon and Z0 so that the gauge field
becomes Abelian. Z0 and photon fields become proportional to each other (Z0 → sin2(θW )γ) so
that classical Z0 field disappears from the dynamics, and one would obtain just electrodynamics.

2. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to fields in
SO(2) ⊂ SU(2) × U(1) in quaternionic sub-algebra which in a well-defined sense corresponds to
M4 degrees of freedom and gauge group becomes SO(2) subgroup of rotation group of E3 ⊂
M4. This looks like catastrophe. One might say that electroweak interactions are transformed to
gravimagnetic interactions.

3. In very optimistic frame of mind one might ask whether this might be a deeper reason for why
electrodynamics is an excellent description of low energy physics and of classical physics. This
is consistent with the fact that CP2 coordinates define 4 field degrees of freedom so that single
Abelian gauge field should be enough to describe classical physics. This would remove also the
interpretational problems caused by the transitions changing the charge state of fermion induced
by the classical W boson fields.

4. Interestingly, the condition that electromagnetic charge is well-defined quantum number for the
modes of the induced spinor field for X4 ⊂ H leads to the proposal that the solutions of the
modified Dirac equation are localized to string world sheets in Minkowskian regions of space-time
surface at least. For CP2 type vacuum extremals one has massless Dirac and this allows only
covariantly constant right-handed neutrino as solution. One has however only a piece of CP2

(wormhole contact) so that holomorphic solutions annihilated by two complexified gamma matrices
are possible in accordance with the conformal symmetries.

Can one assume non-trivial spinor connection in M8

1. The simplest option encouraged by the requirement of maximal symmetries is that it is absent.
Massless 8-momenta would characterize spinor modes in M8 and this would give physical justifica-
tion for the octotwistors.

2. If spinor connection is present at all, it reduces essentially to Kähler connection having different
couplings to quarks and leptons identifiable as components of octonionic 2-spinors. It should be
SO(4) symmetric and since CP2 is instant one might argue that now one has also instanton that
is self-dual U(1) gauge field in E4 ⊂M4 ×E4 defining Kähler form. One can loosely say that that
one has of constant electric and magnetic fields which are parallel to each other. The rotational
symmetry in E4 would break down to SO(2).

3. Without spinor connection quarks and leptons are in completely symmetric position at the level
of M8: this is somewhat disturbing. The difference between quarks and leptons in H is made
possible by the fact that CP2 does not allow standard spinor structure. Now this problem is
absent. I have also consider the possibility that only leptonic spinor chirality is allowed and quarks
result via a kind of anyonization process allowing them to have fractional em charges (see http:

//www.tgdtheory.fi/public_html/articles/genesis.pdf).

4. If the solutions of the Kähler Dirac equation in Minkowskian regions are localized to two sur-
faces identifiable as integrable distributions of planes M2(x) and characterized by a local light-
like direction defining the direction of massless momentum, they are holomorphic (in the sense of

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.

http://www.tgdtheory.fi/public_html/articles/genesis.pdf
http://www.tgdtheory.fi/public_html/articles/genesis.pdf


Prespacetime Journal | April 2014 | Volume 5 | Issue 4 | pp. 255-284 277

Pitkänen, M., General Ideas about Octonions, Quaternions and Twistors

hyper-complex numbers) such that the second complexified modified gamma matrix annihilates the
solution. Same condition makes sense also at the level of M8 for solutions restricted to string world
sheets and the presence or absence of spinor connection does not affect the situation.

Does this mean that the difference between quarks and leptons becomes visible only at the imbedding
space level where ground states of super-conformal representations correspond to to imbedding space
spinor harmonics which in CP2 cm degrees are different for quarks and leptons?

3.5.3 Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (3.6)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons. Note
that octospinors can be seen as 2-dimensional spinors with components which have values in the space of
complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds naturally
to the two spin states of the right handed neutrino. In quark sector this would mean that right handed
U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3 as representations of
SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(3.7)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation is in
terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D type quarks
and those with ε = −1 as neutrinos and U type quarks. The interpretation would be that the states with
vanishing color isospin correspond to right handed fermions and the states with non-vanishing SU(3)
isospin (to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin to left
handed fermions.

The importance of this identification is that it allows a unique map of the candidates for the solutions
of the octonionic modified Dirac equation to those of ordinary one. There are some delicacies involved
due to the possibility to chose the preferred unit e1 so that the preferred subspace M2 can corresponds
to a sub-manifold M2 ⊂M4.

4 Abelian class field theory and TGD

The context leading to the discovery of adeles (http://en.wikipedia.org/wiki/Adele_ring) was so
called Abelian class field theory. Typically the extension of rationals means that the ordinary primes
decompose to the primes of the extension just like ordinary integers decompose to ordinary primes. Some
primes can appear several times in the decomposition of ordinary non-square-free integers and similar
phenomenon takes place for the integers of extension. If this takes place one says that the original prime
is ramified. The simplest example is provided Gaussian integers Q(i). All odd primes are unramified
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and primes p mod 4 = 1 they decompose as p = (a + ib)(a − ib) whereas primes p mos 4 = 3 do not
decompose at all. For p = 2 the decomposition is 2 = (1 + i)(1 − i) = −i(1 + i)2 = i(1 − i)2 and is not
unique {±1,±i} are the units of the extension. Hence p = 2 is ramified.

There goal of Abelian class field theory (http://en.wikipedia.org/wiki/Class_field_theory) is
to understand the complexities related to the factorization of primes of the original field. The existence
of the isomorphism between ideles modulo rationals - briefly ideles - and maximal Abelian Galois Group
of rationals (MAGG) is one of the great discoveries of Abelian class field theory. Also the maximal -
necessarily Abelian - extension of finite field Gp has Galois group isomorphic to the ideles. The Galois
group of Gp(n) with pn elements is actually the cyclic group Zn. The isomorphism opens up the way to
study the representations of Abelian Galois group and also those of the AGG. One can indeed see these
representations as special kind of representations for which the commutator group of AGG is represented
trivially playing a role analogous to that of gauge group.

This framework is extremely general. One can replace rationals with any algebraic extension of
rationals and study the maximal Abelian extension or algebraic numbers as its extension. One can consider
the maximal algebraic extension of finite fields consisting of union of all all finite fields associated with
given prime and corresponding adele. One can study function fields defined by the rational functions on
algebraic curve defined in finite field and its maximal extension to include Taylor series. The isomorphisms
applies in al these cases. One ends up with the idea that one can represent maximal Abelian Galois group
in function space of complex valued functions in GLe(A) right invariant under the action of GLe(Q). A
denotes here adeles.

In the following I will introduce basic facts about adeles and ideles and then consider a possible realiza-
tion of the number theoretical vision about quantum TGD as a Galois theory for the algebraic extensions
of classical number fields with associativity defining the dynamics. This picture leads automatically to the
adele defined by p-adic variants of quaternions and octonions, which can be defined by posing a suitable
restriction consistent with the basic physical picture provide by TGD.

4.1 Adeles and ideles

Adeles and ideles are structures obtained as products of real and p-adic number fields. The formula
expressing the real norm of rational numbers as the product of inverses of its p-adic norms inspires the
idea about a structure defined as produc of reals and various p-adic number fields.

Class field theory (http://en.wikipedia.org/wiki/Class_field_theory) studies Abelian exten-
sions of global fields (classical number fields or functions on curves over finite fields), which by definition
have Abelian Galois group acting as automorphisms. The basic result of class field theory is one-one
correspondence between Abelian extensions and appropriate classes of ideals of the global field or open
subgroups of the ideal class group of the field. For instance, Hilbert class field, which is maximal un-
ramied extension of global field corresponds to a unique class of ideals of the number field. More precisely,
reciprocity homomorphism generalizes the quadratic resiprocity for quadratic extensions of rationals. It
maps the idele class group of the global field defined as the quotient of the ideles by the multiplicative
group of the field - to the Galois group of the maximal Abelian extension of the global field. Each open
subgroup of the idele class group of a global field is the image with respect to the norm map from the
corresponding class field extension down to the global field.

The idea of number theoretic Langlands correspondence,[A1, 4, 3]. is that n-dimensional representa-
tions of Absolute Galois group correspond to infinite-D unitary representations of group Gln(A). Obvi-
ously this correspondence is extremely general but might be highly relevant for TGD, where imbedding
space is replaced with Cartesian product of real imbedding space and its p-adic variants - something
which might be related to octonionic and quaternionic variants of adeles. It seems however that the TGD
analogs for finite-D matrix groups are analogs of local gauge groups or Kac-Moody groups (in partic-
ular symplectic group of δM4

+ × CP2) so that quite heavy generalization of already extremely abstract
formalism is expected.

The following gives some more precise definitions for the basic notions.
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1. Prime ideals of global field, say that of rationals, are defined as ideals which do not decompose to
a product of ideals: this notion generalizes the notion of prime. For instance, for p-adic numbers
integers vanishing mod pn define an ideal and ideals can be multiplied. For Abelian extensions
of a global field the prime ideals in general decompose to prime ideals of the extension, and the
decompostion need not be unique: one speaks of ramification. One of the challenges of tjhe class
field theory is to provide information about the ramification. Hilbert class field is define as the
maximal unramified extension of global field.

2. The ring of integral adeles (see http://en.wikipedia.org/wiki/Adele_ring) is defined as AZ =
R×Ẑ, where Ẑ =

∏
p Zp is Cartesian product of rings of p-adic integers for all primes (prime ideals)

p of assignable to the global field. Multiplication of element of AZ by integer means multiplication
in all factors so that the structure is like direct sum from the point of view of physicist.

3. The ring of rational adeles can be defined as the tensor product AQ = Q ⊗Z AZ . Z means that
in the multiplication by element of Z the factors of the integer can be distributed freely among
the factors Ẑ. Using quantum physics language, the tensor product makes possible entanglement
between Q and AZ .

4. Another definition for rational adeles is as R ×
∏′
pQp: the rationals in tensor factor Q have been

absorbed to p-adic number fields: given prime power in Q has been absorbed to corresponding Qp.
Here all but finite number of Qp elements ar p-adic integers. Note that one can take out negative
powers of pi and if their number is not finite the resulting number vanishes.The multiplication by
integer makes sense but the multiplication by a rational does not smake sense since all factors Qp
would be multiplied.

5. Ideles are defined as invertible adeles (http://en.wikipedia.org/wiki/Idele_class_groupIdele
class group). The basic result of the class field theory is that the quotient of the multiplicative
group of ideles by number field is homomorphic to the maximal Abelian Galois group!

4.2 Questions about adeles, ideles and quantum TGD

The intriguing general result of class field theory (http://en.wikipedia.org/wiki/Class_field_theory)
is that the the maximal Abelian extension for rationals is homomorphic with the multiplicative group of
ideles. This correspondence plays a key role in Langlands correspondence.

Does this mean that it is not absolutely necessary to introduce p-adic numbers? This is actually not
so. The Galois group of the maximal abelian extension is rather complex objects (absolute Galois group,
AGG, defines as the Galois group of algebraic numbers is even more complex!). The ring Ẑ of adeles
defining the group of ideles as its invertible elements homeomorphic to the Galois group of maximal
Abelian extension is profinite group (http://en.wikipedia.org/wiki/Profinite_group). This means
that it is totally disconnected space as also p-adic integers and numbers are. What is intriguing that
p-dic integers are however a continuous structure in the sense that differential calculus is possible. A
concrete example is provided by 2-adic units consisting of bit sequences which can have literally infinite
non-vanishing bits. This space is formally discrete but one can construct differential calculus since the
situation is not democratic. The higher the pinary digit in the expansion is, the less significant it is, and
p-adic norm approaching to zero expresses the reduction of the insignificance.

1. Could TGD based physics reduce to a representation theory for the Galois groups of quaternions
and octonions?

Number theoretical vision about TGD raises questions about whether adeles and ideles could be
helpful in the formulation of TGD. I have already earlier considered the idea that quantum TGD could
reduce to a representation theory of appropriate Galois groups. I proceed to make questions.
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1. Could real physics and various p-adic physics on one hand, and number theoretic physics based on
maximal Abelian extension of rational octonions and quaternions on one hand, define equivalent
formulations of physics?

2. Besides various p-adic physics all classical number fields (reals, complex numbers, quaternions, and
octonions) are central in the number theoretical vision about TGD. The technical problem is that
p-adic quaternions and octonions exist only as a ring unless one poses some additional conditions.
Is it possible to pose such conditions so that one could define what might be called quaternionic
and octonionic adeles and ideles?

It will be found that this is the case: p-adic quaternions/octonions would be products of rational
quaternions/octonions with a p-adic unit. This definition applies also to algebraic extensions of
rationals and makes it possible to define the notion of derivative for corresponding adeles. Further-
more, the rational quaternions define non-commutative automorphisms of quaternions and rational
octonions at least formally define a non-associative analog of group of octonionic automorphisms
[12].

3. I have already earlier considered the idea about Galois group as the ultimate symmetry group
of physics. The representations of Galois group of maximal Abelian extension (or even that for
algebraic numbers) would define the quantum states. The representation space could be group
algebra of the Galois group and in Abelian case equivalently the group algebra of ideles or adeles.
One would have wave functions in the space of ideles.

The Galois group of maximal Abelian extension would be the Cartan subgroup of the absolute
Galois group of algebraic numbers associated with given extension of rationals and it would be
natural to classify the quantum states by the corresponding quantum numbers (number theoretic
observables).

If octonionic and quaternionic (associative) adeles make sense, the associativity condition would re-
duce the analogs of wave functions to those at 4-dimensional associative sub-manifolds of octonionic
adeles identifiable as space-time surfaces so that also space-time physics in various number fields
would result as representations of Galois group in the maximal Abelian Galois group of rational
octonions/quaternions. TGD would reduce to classical number theory! One can hope that WCW
spinor fields assignable to the associative and co-associative space-time surfaces provide the adelic
representations for super-conformal algebras replacing symmetries for point like objects.

This of course involves huge challenges: one should find an adelic formulation for WCWin terms
octonionic and quaternionic adeles, similar formulation for WCW spinor fields in terms of adelic
induced spinor fields or their octonionic variants is needed. Also zero energy ontology, causal
diamonds, light-like 3-surfaces at which the signature of the induced metric changes, space-like 3-
surfaces and partonic 2-surfaces at the boundaries of CDs, M8−H duality, possible representation of
space-time surfaces in terms of of Oc-real analytic functions (Oc denotes for complexified octonions),
etc. should be generalized to adelic framework.

4. Absolute Galois group is the Galois group of the maximal algebraic extension and as such a poorly
defined concept. One can however consider the hierarchy of all finite-dimensional algebraic exten-
sions (including non-Abelian ones) and maximal Abelian extensions associated with these and obtain
in this manner a hierarchy of physics defined as representations of these Galois groups homomorphic
with the corresponding idele groups.

5. In this approach the symmetries of the theory would have automatically adelic representations and
one might hope about connection with Langlands program [8],[A1, 4, 3].

2. Adelic variant of space-time dynamics and spinorial dynamics?
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As an innocent novice I can continue to pose stupid questions. Now about adelic variant of the
space-time dynamics based on the generalization of Kähler action discussed already earlier but without
mentioning adeles ([13]).

1. Could one think that adeles or ideles could extend reals in the formulation of the theory: note that
reals are included as Cartesian factor to adeles. Could one speak about adelic space-time surfaces
endowed with adelic coordinates? Could one formulate variational principle in terms of adeles so
that exponent of action would be product of actions exponents associated with various factors with
Neper number replaced by p for Zp. The minimal interpretation would be that in adelic picture one
collects under the same umbrella real physics and various p-adic physics.

2. Number theoretic vision suggests that 4:th/8:th Cartesian powers of adeles have interpretation
as adelic variants of quaternions/ octonions. If so, one can ask whether adelic quaternions and
octonions could have some number theoretical meaning. Adelic quaternions and octonions are
not number fields without additional assumptions since the moduli squared for a p-adic analog of
quaternion and octonion can vanish so that the inverse fails to exist at the light-cone boundary which
is 17-dimensional for complexified octonions and 7-dimensional for complexified quaternions. The
reason is that norm squared is difference N(o1)−N(o2) for o1⊕io2. This allows to define differential
calculus for Taylor series and one can consider even rational functions. Hence the restriction is not
fatal.

If one can pose a condition guaranteeing the existence of inverse for octonionic adel, one could
define the multiplicative group of ideles for quaternions. For octonions one would obtain non-
associative analog of the multiplicative group. If this kind of structures exist then four-dimensional
associative/co-associative sub-manifolds in the space of non-associative ideles define associative/co-
associative adeles in which ideles act. It is easy to find that octonionic ideles form 1-dimensional
objects so that one must accept octonions with arbitrary real or p-adic components.

3. What about equations for space-time surfaces. Do field equations reduce to separate field equations
for each factor? Can one pose as an additional condition the constraint that p-adic surfaces provide
in some sense cognitive representations of real space-time surfaces: this idea is formulated more
precisely in terms of p-adic manifold concept [13]. Or is this correspondence an outcome of evolution?

Physical intuition would suggest that in most p-adic factors space-time surface corresponds to a
point, or at least to a vacuum extremal. One can consider also the possibility that same algebraic
equation describes the surface in various factors of the adele. Could this hold true in the intersection
of real and p-adic worlds for which rationals appear in the polynomials defining the preferred
extremals.

4. To define field equations one must have the notion of derivative. Derivative is an operation involving
division and can be tricky since adeles are not number field. The above argument suggests this is
not actually a problem. Of course, if one can guarantee that the p-adic variants of octonions and
quaternions are number fields, there are good hopes about well-defined derivative. Derivative as
limiting value df/dx = lim(f(x+ dx)− f(x))/dx for a function decomposing to Cartesian product
of real function f(x) and p-adic valued functions fp(xp) would require that fp(x) is non-constant
only for a finite number of primes: this is in accordance with the physical picture that only finite
number of p-adic primes are active and define ”cognitive representations” of real space-time surface.
The second condition is that dx is proportional to product dx×

∏
dxp of differentials dx and dxp,

which are rational numbers. dx goes to xero as a real number but not p-adically for any of the
primes involved. dxp in turn goes to zero p-adically only for Qp.

5. The idea about rationals as points common to all number fields is central in number theoretical
vision. This vision is realized for adeles in the minimal sense that the action of rationals is well-
defined in all Cartesian factors of the adeles. Number theoretical vision allows also to talk about
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common rational points of real and various p-adic space-time surfaces in preferred coordinate choices
made possible by symmetries of the imbedding space, and one ends up to the vision about life as
something residing in the intersection of real and p-adic number fields. It is not clear whether and
how adeles could allow to formulate this idea.

6. For adelic variants of imbedding space spinors Cartesian product of real and p-adc variants of
imbedding spaces is mapped to their tensor product. This gives justification for the physical vision
that various p-adic physics appear as tensor factors. Does this mean that the generalized induced
spinors are infinite tensor products of real and various p-adic spinors and Clifford algebra generated
by induced gamma matrices is obtained by tensor product construction? Does the generalization
of massless Dirac equation reduce to a sum of d’Alembertians for the factors? Does each of them
annihilate the appropriate spinor? If only finite number of Cartesian factors corresponds to a space-
time surface which is not vacuum extremal vanishing induced Kähler form, Kähler Dirac equation
is non-trivial only in finite number of adelic factors.

3. Objections leading to the identification of octonionic adeles and ideles

The basic idea is that appropriately defined invertible quaternionic/octonionic adeles can be regarded
as elements of Galois group assignable to quaternions/octonions. The best manner to proceed is to invent
objections against this idea.

1. The first objection is that p-adic quaternions and octonions do not make sense since p-adic variants
of quaternions and octonions do not exist in general. The reason is that the p-adic norm squared∑
x2i for p-adic variant of quaternion, octonion, or even complex number can vanish so that its

inverse does not exist.

2. Second objection is that automorphisms of the ring of quaternions (octonions) in the maximal
Abelian extension are products of transformations of the subgroup of SO(3) (G2) represented by
matrices with elements in the extension and in the Galois group of the extension itself. Ideles
separate out as 1-dimensional Cartesian factor from this group so that one does not obtain 4-field
(8-fold) Cartesian power of this Galois group.

One can define quaternionic/octonionic ideles in terms of rational quaternions/octonions multiplied
by p-adic number. For adeles this condition produces non-sensical results.

1. This condition indeed allows to construct the inverse of p-adic quaternion/octonion as a product of
inverses for rational quaternion/octonion and p-adic number. The reason is that the solutions to∑
x2i = 0 involve always p-adic numbers with an infinite number of pinary digits - at least one and

the identification excludes this possibility. The ideles form also a group as required.

2. One can interpret also the quaternionicity/octonionicity in terms of Galois group. The 7-dimensional
non-associative counterparts for octonionic automorphisms act as transformations x → gxg−1.
Therefore octonions represent this group like structure and the p-adic octonions would have inter-
pretation as combination of octonionic automorphisms with those of rationals.

3. One cannot assign to ideles 4-D idelic surfaces. The reason is that the non-constant part of all
8-coordinates is proportional to the same p-adic valued function of space-time point so that space-
time surface would be a disjoint union of effectively 1-dimensional structures labelled by a subset
of rational points of M8. Induced metric would be 1-dimensional and induced Kähler and spinor
curvature would vanish identically.

4. One must allow p-adic octonions to have arbitrary p-adic components. The action of ideles repre-
senting Galois group on these surfaces is well-defined. Number field property is lost but this feature
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comes in play as poles only when one considers rational functions. Already the Minkowskian signa-
ture forces to consider complexified octonions and quaternions leading to the loss of field property.
It would not be surprising if p-adic poles would be associated with the light-like orbits of partonic
2-surfaces. Both p-adic and Minkowskian poles might therefore be highly relevant physically and
analogous to the poles of ordinary analytic functions. For instance, n-point functions could have
poles at the light-like boundaries of causal diamonds and at light-like partonic orbits and explain
their special physical role.

The action of ideles in the quaternionic tangent space of space-time surface would be analogous to
the action of of adelic linear group Gln(A) in n-dimensional space.

5. Adelic variants of octonions would be Cartesian products of ordinary and various p-adic octonions
and would define a ring. Quaternionic 4-surfaces would define associative local sub-rings of octonion-
adelic ring.
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