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Article

Physics as Generalized Number Theory I: p-Adic Physics
and Number Theoretic Universality

Matti Pitkänen1

Abstract

Physics as a generalized number theory program involves three threads: various p-adic physics and their

fusion together with real number based physics to a larger structure, the attempt to understand basic physics

in terms of classical number �elds (in particular, identifying associativity condition as the basic dynamical

principle), and in�nite primes whose construction is formally analogous to a repeated second quantization of an

arithmetic quantum �eld theory. In this article p-adic physics and the technical problems relates to the fusion

of p-adic physics and real physics to a larger structure are discussed.

The basic technical problems relate to the notion of de�nite integral both at space-time level, imbedding

space level and the level of WCW (the "world of classical worlds"). The expressibility of WCW as a union of

symmetric spaces leads to a proposal that harmonic analysis of symmetric spaces can be used to de�ne various

integrals as sums over Fourier components. This leads to the proposal the p-adic variant of symmetric space is

obtained by a algebraic continuation through a common intersection of these spaces, which basically reduces to

an algebraic variant of coset space involving algebraic extension of rationals by roots of unity. This brings in the

notion of angle measurement resolution coming as ∆φ = 2π/pn for given p-adic prime p. Also a proposal how

one can complete the discrete version of symmetric space to a continuous p-adic versions emerges and means

that each point is e�ectively replaced with the p-adic variant of the symmetric space identi�able as a p-adic

counterpart of the real discretization volume so that a fractal p-adic variant of symmetric space results.

If the Kähler geometry of WCW is expressible in terms of rational or algebraic functions, it can in principle

be continued the p-adic context. One can however consider the possibility that that the integrals over partonic

2-surfaces de�ning �ux Hamiltonians exist p-adically as Riemann sums. This requires that the geometries of

the partonic 2-surfaces e�ectively reduce to �nite sub-manifold geometries in the discretized version of δM4
+ ×

CP2. If Kähler action is required to exist p-adically same kind of condition applies to the space-time surfaces

themselves. These strong conditions might make sense in the intersection of the real and p-adic worlds assumed

to characterized living matter.

Keywords: p-Adic numbers, Kähler metric, p-adic integration, symmetric space, harmonic analysis, measure-
ment resolution.

1 Introduction

In this article basic facts about p-adic numbers [42] and the question about their relation to real numbers are
discussed. Also the basic technicalities related to the notion of p-adic physics are discussed. Also included is a
section about the physics in the intersection of real and p-adic worlds relevant to living systems in TGD Universe.

1.1 Problems

It is far from obvious what the p-adic counterpart of real physics could mean and how one could fuse together real
and p-adic physics. Therefore it is good to list the basic problems and proposals for their solution.

The �rst problem concerns the correspondence between real and p-adic numbers.

1. The success of p-adic mass calculations involves the notions of p-adic probability, thermodynamics, and the
mapping of p-adic propababilities to the real ones by a continuous correspondence x =

∑
xnp

n → Id(x) =∑
xnp

−n that I have christened canonical identi�cation. The problem is that I n does not respect symmetries
de�ned by isometries and also general coordinate invariance is possible only if one can identify preferred
imbedding space coordinates. The reason is that I does not commute with the basic arithmetic operations.
I allows several variants and it is possible to have correspondence which respects symmetries in arbitrary
accuracy in preferred coordinates. Thus I can play a role at space-time level only if one de�nes symmetries
modulo measurement resolution. I would make sense only in the interval de�ning the measurement resolution
for a given coordinate variable and the p-adic e�ective topology would make sense just because the �nite
measurement resolution does not allow to well-order the points.

2. The identi�cation of real and p-adic numbers via rationals common to all number �elds - or more generally
along algebraic extension of rationals- respects symmetries and algebra but is not continuous. At the imbedding
space level preferred coordinates are required also now. The maximal symmetries of the imbedding space allow
identi�cation of this kind of coordinates. They are not unique. For instance, M4 linear coordinates look very
natural but for CP2 trigonometric functions of angle like coordinates look more suitablel and Fourier analysis
suggests strongly the introduction of algebraic extensions involving roots of unity. Partly the non-uniqueness
has an interpretation as an imbedding space correlate for the selection of the quantization axes. The symmetric
space [30] property of WCW gives hopes that general coordinate invariance in quantal sense can be realized.
The existence of p-adic harmonic analysis suggests a discretization of the p-adic variant of imbedding space
and WCW based on roots of unity.
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3. One can consider a compromise between the two correspondences. Discretization via common algebraic points
can be completed to a p-adic continuum by assigning to each real discretizaton interval (say angle increment
2π/N) p-adic numbers with norm smaller than one.

Second problem relates to integration and Fourier analysis. Both these procedures are fundamental for physics
-be it classical or quantum. The p-adic variant of de�nite integral does not exist in the sense required by the action
principles of physics although classical partial di�erential equations assigned to a particular variational principle
make perfect sense. Fourier analysis is also possible only if one allows algebraic extension of p-adic numbers allowing
a su�cient number of roots of unity correlating with the measurement resolution of angle. The �nite number of
them has interpretation in terms of �nite angle resolution. Fourier analysis provides also an algebraic realization of
de�nite integral when one integrates over the entire manifold as one indeed does in the case of WCW. If the space in
question allows maximal symmetries as WCW and imbedding space do, there are excellent hopes of having p-adic
variants of both integration and harmonic analysis and the above described procedure allows a precise completion
of the discretized variant of real manifold to its continuous p-adic variant.

The third problem relates to the de�nitions of the p-adic variants of Riemannian, symplectic [34], and Kähler
[32] geometries. It is possible to generalize formally the notion of Riemann metric although non-local quanttiies like
areas and total curvatures do not make sense if de�ned in terms of integrals. If all relevant quantities assignable
to the geometry (family of Hamiltonians de�ning isometries, Killing vector �elds, components of metric and Kähler
form, Kähler function, etc...) are expressible in terms of rational functions involving only rational numbers as
coe�cients of polynomials, they allow an algebraic continuation to the p-adic context and the p-adic variant of the
geometry makes sense.

The fourth problem relates to the question what one means with p-adic quantum mechanics. In TGD framework
p-adic quantum theory utilizes p-adic Hilbert space. The motivation is that the notions of p-adic probability and
unitarity are well de�ned. From the beginning it was clear that the straightforward generalization of Schrödinger
equation is not very interesting physically and gradually the conviction has developed that the most realistic
approach must rely on the attempt to �nd the p-adic variant of the TGD inspired quantum physics in all its
complexity. The recent approach starts from a rather concrete view about generalized Feynman diagrams de�ning
the points of WCW and leads to a rather detailed view about what the p-adic variants of QM could be and how
they could be fused with real QM to a larger structure. Even more, just the requirement that this p-adicization
exists, gives very powerful constraints on the real variant of the quantum TGD.

The �fth problem relates to the notion of information in p-adic context. p-Adic thermodynamics leads naturally
to the question what p-adic entropy might mean and this in turn leads to the realization that for rational or even
algebraic probabilities p-adic variant of Shannon entropy can be negative and has minimum for a unique prime.
One can say that the entanglement in the intersection of real and p-adic worlds is negentropic. This leads to rather
fascinating vision about how negentropic entanglement makes it possible for living systems to overcome the second
law of thermodynamics. The formulation of quantum theory in the intersection of real and living worlds becomes
the basic challenge.

The proposed solutions to the technical problems could be rephrased in terms of the notion of algebraic univer-
sality. Various p-adic physics are obtained as algebraic continuation of real physics through the common algebraic
points of real and p-adic worlds and by performing completion in the sense that the interval corresponding to �nite
measurement resolution are replaced with their p-adic counterpart via canonical identi�cation. This allows to have
exact symmetries as their discrete variants and also a continuous correspondence if desired. Particular p-adicization
is characterized by a choice for preferred imbedding space coordinates, which has interpretation in terms of a partic-
ular cognitive representation. Hence one is forced to re�ne the view about general coordinate invariance. Di�erent
coordinate choices correspond to di�erent cognitive representations having delicate e�ects on physics if it is assumed
to include also the e�ects of cognition.

1.2 Program

These ideas lead to a reasonably well de�ned p-adicization program. Try to de�ne precisely the concepts of the
p-adic space-time and con�guration space (WCW), formulate the �nite-p p-adic versions of quantum TGD. Try to
fuse together real and various p-adic quantum TGDs are to form a full theory of physics and cognition.

The construction of the p-adic TGD necessitates the generalization of the basic tools of standard physics such as
di�erential and integral calculus, the concept of Hilbert space, Riemannian geometry, group theory, action principles,
and the notions of probability and unitarity to the p-adic context. Also new physical thinking and philosophy is
needed. The notions of zero energy ontology, hierarchy of Planck constants and the generalization of the notion of
imbedding space required by it are essential but not discussed in detail in this article.

In the following I try to describe the most central problems and ideas of the p-adicization program. Page number
of a readable article must be �nite and this has forced to leave away a lot of topics. p-Adic mass calculations, which
form the corner stone of the entire approach would require entire article series. The vision about how to de�ne
generalized Feynman diagrams and their p-adic variants by utilizing the assumption that WCW is symmetric space
allowing algebraization of integration crucial for the entire approach is discussed in the May issue of this Journal [29].
Negentropy Maximization Principle [25] relevant for understanding the profound implications of the negentropic
entanglement is not discussed. The applications of p-adic length scale hypothesis to the physics of living matter
[28] and the model of cognition and intentionality based on p-adic numbers [26] have been also left out.

2 Summary of the basic physical ideas

In the following various manners to end up with p-adic physics and with the idea about p-adic topology as an
e�ective topology of space-time surface are described.
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2.1 p-Adic mass calculations brie�y

p-Adic mass calculations based on p-adic thermodynamics with energy replaced with the generator L0 = zd/dz of
in�nitesimal scaling are described in the �rst part of [5].

1. p-Adic thermodynamics is justi�ed by the randomness of the motion of partonic 2-surfaces restricted only by
the light-likeness of the orbit.

2. It is essential that the conformal symmetries associated with the light-like coordinates of parton and light-
cone boundary are not gauge symmetries but dynamical symmetries. The point is that there are two kinds of
super-conformal symmetries [49, 51]: the super-symplectic conformal symmetries assignable to the light-like
boundaries of CD×CP2 and super Kac-Moody symmetries [52] assignable to light-like 3-surfaces de�ning fun-
damental dynamical objects. In so called coset construction [53] the di�erences of super-conformal generators
of these algebras annihilate the physical states. This leads to a generalization of Equivalence Principle since
one can assign four-momentum to the generators of both algebras identi�able as inertial resp. gravitational
four-momentum. A second important consequence is that the generators of either algebra do not act like
gauge transformations so that it makes sense to construct p-adic thermodynamics for them.

3. In p-adic thermodynamics scaling generator L0 having conformal weights as its eigen values replaces energy
and Boltzmann weight exp(H/T ) is replaced by pL0/Tp . The quantization Tp = 1/n of conformal temperature
and thus quantization of mass squared scale is implied by number theoretical existence of Boltzmann weights.
p-Adic length scale hypothesis states that primes p ' 2k, k integer. A stronger hypothesis is that k is prime
(in particular Mersenne prime or Gaussian Mersenne) makes the model very predictive and �ne tuning is not
possible.

Mersenne primes are very special number theoretically because bit as the unit of information unit corresponds
to log(2) and can be said to exists forMn-adic topology. The reason is that log(1+p) existing always p-adically
corresponds for Mn = 2n − 1 to log(2n) ≡ nlog(2) so that one has log(2 ≡ log(1 + Mn)/n. Since the powers
of 2 modulo p give all integers n ∈ {1, p − 1} by Fermat's theorem, one can say that the logarithms of all
integers modulo Mn exist in this sense and therefore the logarithms of all p-adic integers not divisible by p
exist. For other primes one must introduce a transcendental extension containing log(a) where are is so called
primitive root. One could criticize the identi�cation since log(1 + Mn) corresponding in the real sense to n
bits corresponds in p-adic sense to to a very small information content since the p-adic norm of the p-adic bit
is 1/Mn.

The basic mystery number of elementary particle physics de�ned by the ratio of Planck mass and proton mass
follows thus from number theory once CP2 radius is �xed to about 104 Planck lengths. Mass scale becomes additional
discrete variable of particle physics so that there is not more need to force top quark and neutrinos with mass scales
di�ering by 12 orders of magnitude to the same multiplet of gauge group. Electron, muon, and τ correspond
to Mersenne prime k = 127 (the largest non-super-astrophysical Mersenne), and Mersenne primes k = 113, 107.
Intermediate gauge bosons and photon correspond to Mersenne M89, and graviton to M127.

The value of k for quark can depend on hadronic environment [23] and this would produce precise mass formulas
for low energy hadrons. This kind of dependence conforms also with the indications that neutrino mass scale
depends on environment [66]. Amazingly, the biologically most relevant length scale range between 10 nm and 4 µm
contains four Gaussian Mersennes (1 + i)n − 1, n = 151, 157, 163, 167 and scaled copies of standard model physics
in cell length scale could be an essential aspect of macroscopic quantum coherence prevailing in cell length scale.

p-Adic mass thermodynamics is not quite enough: also Higgs boson is needed and wormhole contact carrying
fermion and anti-fermion quantum numbers at the light-like wormhole throats is excellent candidate for Higgs [22].
The coupling of Higgs to fermions can be small and induce only a small shift of fermion mass: this could explain why
Higgs has not been observed. Also the Higgs contribution to mass squared can be understood thermodynamically
if identi�ed as absolute value for the thermal expectation value of the eigenvalues of the modi�ed Dirac operator
having interpretation as complex square root of conformal weight.

The original belief was that only Higgs corresponds to wormhole contact. The assumption that fermion �elds are
free in the conformal �eld theory applying at parton level forces to identify all gauge bosons as wormhole contacts
connecting positive and negative energy space-time sheets [22]. Fermions correspond to topologically condensed CP2

type extremals with single light-like wormhole throat. Gravitons are identi�ed as string like structures involving pair
of fermions or gauge bosons connected by a �ux tube. Partonic 2-surfaces are characterized by genus which explains
family replication phenomenon and an explanation for why their number is three emerges [21]. Gauge bosons are
labeled by pairs (g1, g2) of handle numbers and can be arranged to octet and singlet representations of the resulting
dynamical SU(3) symmetry. Ordinary gauge bosons are SU(3) singlets and the heaviness of octet bosons explains
why higher boson families are e�ectively absent. The di�erent character of bosons could also explain why the p-adic
temperature for bosons is Tp = 1/n < 1 so that Higgs contribution to the mass dominates.

2.2 p-Adic length scale hypothesis, zero energy ontology, and hierarchy of Planck
constants

Zero energy ontology and the hierarchy of Planck constants realized in terms of the generalization of the imbedding
space lead to a deeper understanding of the origin of the p-adic length scale hypothesis.
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2.2.1 Zero energy ontology

In zero energy ontology one replaces positive energy states with zero energy states with positive and negative energy
parts of the state at the light-like boundaries of CD. All conserved quantum numbers of the positive and negative
energy states are of opposite sign so that these states can be created from vacuum. "Any physical state is creatable
from vacuum" becomes thus a basic principle of quantum TGD and together with the notion of quantum jump
resolves several philosophical problems (What was the initial state of universe?, What are the values of conserved
quantities for Universe?, Is theory building completely useless if only single solution of �eld equations is realized?).
At the level of elementary particle physics positive and negative energy parts of zero energy state are interpreted
as initial and �nal states of a particle reaction so that quantum states become physical events.

2.2.2 Does the �niteness of measurement resolution dictate the laws of physics?

The hypothesis that the mere �niteness of measurement resolution could determine the laws of quantum physics
[11] completely belongs to the category of not at all obvious �rst principles. The basic observation is that the
Cli�ord algebra [37] spanned by the gamma matrices of the "world of classical worlds" represents a von Neumann
algebra [60] known as hyper�nite factor of type II1 (HFF) [13, 12, 11]. HFF [61, 59] is an algebraic fractal having
in�nite hierarchy of included subalgebras isomorphic to the algebra itself [57]. The structure of HFF is closely
related to several notions of modern theoretical physics such as integrable statistical physical systems [62], anyons
[65], quantum groups and conformal �eld theories[64], and knots and topological quantum �eld theories [54, 55].

Zero energy ontology is second key element. In zero energy ontology these inclusions allow an interpretation in
terms of a �nite measurement resolution: in the standard positive energy ontology this interpretation is not possible.
Inclusion hierarchy de�nes in a natural manner the notion of coupling constant evolution and p-adic length scale
hypothesis follows as a prediction. In this framework the extremely heavy machinery of renormalized quantum
�eld theory involving the elimination of in�nities is replaced by a precisely de�ned mathematical framework. More
concretely, the included algebra creates states which are equivalent in the measurement resolution used. Zero energy
state can be modi�ed in a time scale shorter than the time scale of the zero energy state itself.

One can imagine two kinds of measurement resolutions. The element of the included algebra can leave the
quantum numbers of the positive and negative energy parts of the state invariant, which means that the action of
subalgebra leaves M-matrix invariant. The action of the included algebra can also modify the quantum numbers of
the positive and negative energy parts of the state such that the zero energy property is respected. In this case the
Hermitian operators subalgebra must commute with M -matrix.

The temporal distance between the tips of CD corresponds to the secondary p-adic time scale Tp,2 =
√
pTp

by a simple argument based on the observation that light-like randomness of light-like 3-surface is analogous to
Brownian motion. This gives the relationship Tp = L2

p/Rc, where R is CP2 size. The action of the included algebra
corresponds to an addition of zero energy parts to either positive or negative energy part of the state and is like
addition of quantum �uctuation below the time scale of the measurement resolution. The natural hierarchy of
time scales is obtained as Tn = 2−nT since these insertions must belong to either upper or lower half of the causal
diamond. This implies that preferred p-adic primes are near powers of 2. For electron the time scale in question is
.1 seconds de�ning the fundamental biorhythm of 10 Hz.

M-matrix representing a generalization of S-matrix and expressible as a product of a positive square root of
the density matrix and unitary S-matrix would de�ne the dynamics of quantum theory [11]. The notion of ther-
modynamical state would cease to be a theoretical �ction and in a well-de�ned sense quantum theory could be
regarded as a square root of thermodynamics. Connes tensor product [59] provides a mathematical description of
the �nite measurement resolution but does not �x the M -matrix as was the original hope. The remaining challenge
is the calculation of M-matrix and the progress induced by zero energy ontology during last years has led to rather
concrete proposal for the construction of M -matrix.

It turns out however that the mathematical representation for the notion of �nite resolution for angle measure-
ment serves as a common denominator for all basic approaches to quantum TGD: the Kähler geometry [32] of WCW
identi�ed as a union of in�nite-dimensional symmetric spaces, inclusions of hyper �nite factors as representation
of �nite measurement resolution, p-adicization program, the role of classical number �elds [39, 40, 41], and in�nite
primes so that it is fair to say that all approaches to TGD which originally seemed almost independent, converge
to a coherent mathematical structure.

2.2.3 How do p-adic coupling constant evolution and p-adic length scale hypothesis emerge?

Zero energy ontology in which zero energy states have as imbedding space correlates CDs for which the distance
between the tips of future and past directed light-cones are power of 2 multiples of fundamental time scale (Tn =
2nT0) implies in a natural manner coupling constant evolution. A weaker condition would be Tp = pT0, p prime,
and would assign all p-adic time scales to the size scale hierarchy of CDs.

Could the coupling constant evolution in powers of 2 implying time scale hierarchy Tn = 2nT0 (or Tp = pT0)
induce p-adic coupling constant evolution and explain why p-adic length scales correspond to Lp ∝

√
pR, p ' 2k, R

CP2 length scale? This looks attractive but there is a problem. p-Adic length scales come as powers of
√

2 rather
than 2 and the strongly favored values of k are primes and thus odd so that n = k/2 would be half odd integer.
This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satis�es r2 = Dt suggests
a solution to the problem. p-Adic thermodynamics applies because the partonic 3-surfaces X2 are as 2-D
dynamical systems random apart from light-likeness of their orbit. For CP2 type vacuum extremals the
situation reduces to that for a one-dimensional random light-like curve inM4. The orbits of Brownian particle
would now correspond to light-like geodesics γ3 at X3. The projection of γ3 to a time=constant section
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X2 ⊂ X3 would de�ne the 2-D path γ2 of the Brownian particle. The M4 distance r between the end points
of γ2 would be given r2 = Dt. The favored values of t would correspond to Tn = 2nT0 (the full light-like
geodesic). p-Adic length scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale
is available as a fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate to the p-adic
length scale via Tp = Lp/c as assumed implicitly earlier but via Tp = L2

p/R0 =
√
pLp, which corresponds to

secondary p-adic length scale. For instance, in the case of electron with p = M127 one would have T127 = .1
second which de�nes a fundamental biological rhythm. Neutrinos with mass around .1 eV would correspond
to L(169) ' 5 µm (size of a small cell) and T (169) ' 1.× 104 years. A deep connection between elementary
particle physics and biology becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of the random motion
of light-like geodesics of X3 so that p-adic prime p would indeed be an inherent property of X3. For Tp = pT0

the above argument is not enough for p-adic length scale hypothesis and p-adic length scale hypothesis might
be seen as an outcome of a process analogous to natural selection. Resonance like e�ect favoring octaves
of a fundamental frequency might be in question. In this case, p would a property of CD and all light-like
3-surfaces inside it and also that corresponding sector of con�guration space.

2.2.4 Mersenne primes and Gaussian Mersennes

The generalization of the imbedding space required by the postulated hierarchy of Planck constants [13] means a
book like structure for which the pages are products of singular coverings or factor spaces of CD (causal diamond
de�ned as intersection of future and past directed light-cones) and of CP2 [13]. This predicts that Planck constants
are rationals and that a given value of Planck constant corresponds to an in�nite number of di�erent pages of the
Big Book, which might be seen as a drawback. If only singular covering spaces are allowed the values of Planck
constant are products of integers and given value of Planck constant corresponds to a �nite number of pages given
by the number of decompositions of the integer to two di�erent integers. The de�nition of the book like structure
assigns to a given CD preferred quantization axes and so that quantum measurement has direct correlate at the
level of moduli space of CDs.

TGD inspired quantum biology and number theoretical considerations suggest preferred values for r = ~/~0.
For the most general option the values of ~ are products and ratios of two integers na and nb. Ruler and compass
integers de�ned by the products of distinct Fermat primes and power of two are number theoretically favored values
for these integers because the phases exp(i2π/ni), i ∈ {a, b}, in this case are number theoretically very simple and
should have emerged �rst in the number theoretical evolution via algebraic extensions of p-adics and of rationals.
p-Adic length scale hypothesis favors powers of two as values of r.

One can however ask whether a more precise characterization of preferred Mersennes could exist and whether
there could exists a stronger correlation between hierarchies of p-adic length scales and Planck constants. Mersenne
primesMk = 2k−1, k ∈ {89, 107, 127}, and Gaussian MersennesMG,k = (1+i)k−1, k ∈ {113, 151, 157, 163, 167, 239, 241..}
are expected to be physically highly interesting and up to k = 127 indeed correspond to elementary particles. The
number theoretical miracle is that all the four p-adic length scales with k ∈ {151, 157, 163, 167} are in the bio-
logically highly interesting range 10 nm-2.5 µm). The question has been whether these de�ne scaled up copies of
electro-weak and QCD type physics with ordinary value of ~. The proposal that this is the case and that these
physics are in a well-de�ned sense induced by the dark scaled up variants of corresponding lower level physics leads
to a prediction for the preferred values of r = 2kd , kd = ki − kj.

What induction means is that dark variant of exotic nuclear physics induces exotic physics with ordinary value
of Planck constant in the new scale in a resonant manner: dark gauge bosons transform to their ordinary variants
with the same Compton length. This transformation is natural since in length scales below the Compton length the
gauge bosons behave as massless and free particles. As a consequence, lighter variants of weak bosons emerge and
QCD con�nement scale becomes longer.

This proposal will be referred to as Mersenne hypothesis. It leads to strong predictions about EEG [28] since
it predicts a spectrum of preferred Josephson frequencies for a given value of membrane potential and also assigns
to a given value of ~ a �xed size scale having interpretation as the size scale of the body part or magnetic body.
Also a vision about evolution of life emerges. Mersenne hypothesis is especially interesting as far as new physics in
condensed matter length scales is considered: this includes exotic scaled up variants of the ordinary nuclear physics
and their dark variants. Even dark nucleons are possible and this gives justi�cation for the model of dark nucleons
predicting the counterparts of DNA,RNA, tRNa, and aminoacids as well as realization of vertebrate genetic code
[27].

These exotic nuclear physics with ordinary value of Planck constant could correspond to ground states that
are almost vacuum extremals corresponding to homologically trivial geodesic sphere of CP2 near criticality to
a phase transition changing Planck constant. Ordinary nuclear physics would correspond to homologically non-
trivial geodesic sphere and far from vacuum extremal property. For vacuum extremals of this kind classical Z0

�eld proportional to electromagnetic �eld is present and this modi�es dramatically the view about cell membrane
as Josephson junction. The model for cell membrane as almost vacuum extremal indeed led to a quantitative
breakthrough in TGD inspired model of EEG and is therefore something to be taken seriously. The safest option
concerning empirical facts is that the copies of electro-weak and color physics with ordinary value of Planck constant
are possible only for almost vacuum extremals - that is at criticality against phase transition changing Planck
constant.
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2.3 p-Adic physics and the notion of �nite measurement resolution

Canonical identi�cation mapping p-adic numbers to reals in a continuous manner plays a key role in some ap-
plications of TGD and together with the discretization necessary to de�ne the p-adic variants of integration and
harmonic analysis suggests that p-adic topology identi�ed as an e�ective topology could provide an elegant manner
to characterize �nite measurement resolution.

1. Finite measurement resolution can be characterized as an interval of minimum length. Below this length
scale one cannot distinguish points from each other. A natural de�nition for this inability could be as an
inability to well-order the points. The real topology is too strong in the modeling in kind of situation since it
brings in large amount of processing of pseudo information whereas p-adic topology which lacks the notion of
well-ordering could be more appropriate as e�ective topology and together with a pinary cuto� could allow
to get rid of the irrelevant information.

2. This suggest that canonical identi�cation applies only inside the intervals de�ning �nite measurement resolu-
tion in a given discretization of the space considered by say small cubes. The canonical identi�cation is unique
only modulo di�eomorphism applied on both real and p-adic side but this is not a problem since this would
only re�ect the absence of the well-ordering lost by �nite measurement resolution. Also the fact that the map
makes sense only at positive real axis would be natural if one accepts this identi�cation.

This interpretation would suggest that there is an in�nite hierarchy of measurement resolutions characterized
by the value of the p-adic prime. This would mean quite interesting re�nement of the notion of �nite measurement
resolution. At the level of quantum theory it could be interpreted as a maximization of p-adic entanglement
negentropy as a function of the p-adic prime. Perhaps one might say that there is a unique p-adic e�ective topology
allowing to maximize the information content of the theory relying on �nite measurement resolution.

2.4 p-Adic numbers and the analogy of TGD with spin-glass

The vacuum degeneracy of the Kähler action leads to a precise spin glass analogy at the level of the con�guration
space geometry and the generalization of the energy landscape concept to TGD context leads to the hypothesis
about how p-adicity could be realized at the level of the con�guration space. Also the concept of p-adic space-time
surface emerges rather naturally.

2.4.1 Spin glass brie�y

The basic characteristic of the spin glass phase [47] is that the direction of the magnetization varies spatially, being
constant inside a given spatial region, but does not depend on time. In the real context this usually leads to large
surface energies on the surfaces at which the magnetization direction changes. Regions with di�erent direction of
magnetization clearly correspond non-vacuum regions separated by almost vacuum regions. Amusingly, if 3-space
is e�ectively p-adic and if magnetization direction is p-adic pseudo constant, no surface energies are generated so
that p-adics might be useful even in the context of the ordinary spin glasses.

Spin glass phase allows a great number of di�erent ground states minimizing the free energy. For the ordinary
spin glass, the partition function is the average over a probability distribution of the coupling constants for the
partition function with Hamiltonian depending on the coupling constants. Free energy as a function of the coupling
constants de�nes 'energy landscape' and the set of free energy minima can be endowed with an ultra-metric distance
function using a standard construction [46].

2.4.2 Vacuum degeneracy of Kähler action

The Kähler action de�ning con�guration space geometry allows enormous vacuum degeneracy: any four-surface for
which the induced Kähler form vanishes, is an extremal of the Kähler action. Induced Kähler form vanishes if the CP2

projection of the space-time surface is Lagrangian manifold [36] of CP2: these manifolds are at most two-dimensional
and any canonical transformation of CP2 creates a new Lagrangian sub-manifold [36]. An explicit representation
for Lagrangian sub-manifolds is obtained using some canonical coordinates Pi, Qi for CP2: by assuming

Pi = ∂if(Q1, Q2) , i = 1, 2 ,

where f arbitrary function of its arguments. One obtains a 2-dimensional sub-manifold of CP2 for which the induced
Kähler form proportional to dPi ∧ dQi vanishes. The roles of Pi and Qi can obviously be interchanged. A familiar
example of Lagrange manifolds are pi = constant surfaces of the ordinary (pi, qi) phase space.

Since vacuum degeneracy is removed only by the classical gravitational interaction there are good reasons to
expect large ground state degeneracy, when the system corresponds to a small deformation of a vacuum extremal.
This degeneracy is very much analogous to the ground state degeneracy of spin glass but is 4-dimensional.

2.4.3 Vacuum degeneracy of the Kähler action and physical spin glass analogy

Quite generally, the dynamical reason for the physical spin glass degeneracy is the fact that Kähler action has a
huge vacuum degeneracy. Any 4-surface with CP2 projection, which is a Lagrangian sub-manifold (generically two-
dimensional), is vacuum extremal. This implies that space-time decomposes into non-vacuum regions characterized
by non-vanishing Kähler magnetic and electric �elds such that the (presumably thin) regions between the the non-
vacuum regions are vacuum extremals. Therefore no surface energies are generated. Also the fact that various
charges and momentum and energy can �ow to larger space-time sheets via wormholes is an important factor
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making possible strong �eld gradients without introducing large surfaces energies. From a given preferred extremal
of Kähler action one obtains a new one by adding arbitrary space-time surfaces which is vacuum extremal and
deforming them.

The symplectic invariance of the Kähler action for vacuum extremals allows a further understanding of the
vacuum degeneracy. The presence of the classical gravitational interaction spoils the canonical group Can(CP2) as
gauge symmetries of the action and transforms it to the isometry group of CH. As a consequence, the U(1) gauge
degeneracy is transformed to a spin glass type degeneracy and several, perhaps even in�nite number of maxima of
Kähler function become possible. Given sheet has naturally as its boundary the 3-surfaces for which two maxima
of the Kähler function coalesce or are created from single maximum by a cusp catastrophe [56]. In catastrophe
regions there are several sheets and the value of the maximum Kähler function determines which give a measure
for the importance of various sheets. The quantum jumps selecting one of these sheets can be regarded as phase
transitions.

In TGD framework classical non-determinism forces to generalize the notion of the 3-surface by replacing it with
a sequence of space like 3-surfaces having time like separations such that the sequence characterizes uniquely one
branch of multifurcation. This characterization works when non-determinism has discrete nature. For CP2 type
extremals which are bosonic vacua, basic objects are essentially four-dimensional since M4

+ projection of CP2 type
extremal is random light like curve. This e�ective four-dimensionality of the basic objects makes it possible to
topologize Feynman diagrammatics of quantum �eld theories by replacing the lines of Feynman diagrams with CP2

type extremals.
In TGD framework spin glass analogy holds true also in the time direction, which re�ects the fact that the vacuum

extremals are non-deterministic. For instance, by gluing vacuum extremals with a �nite space-time extension (also
in time direction!) to a non-vacuum extremal and deforming slightly, one obtains good candidates for the degenerate
preferred extremals. This non-determinism is expected to make the preferred extremals of the Kähler action highly
degenerate. The construction of S-matrix at the high energy limit suggests that since a localization selecting
one degenerate maximum occurs, one must accept as a fact that each choice of the parameters corresponds to a
particular S-matrix and one must average over these choices to get scattering rates. This averaging for scattering
rates corresponds to the averaging over the thermodynamical partition functions for spin glass. A more general is
that one allows �nal state wave functions to depend on the zero modes which a�ect S-matrix elements: in the limit
that wave functions are completely localized, one ends up with the simpler scenario.

2.4.4 p-Adic non-determinism and spin glass analogy

One must carefully distinguish between cognitive and physical spin-glass analogy. Cognitive spin-glass analogy is
due to the p-adic non-determinism. p-Adic pseudo constants induce a non-determinism which essentially means
that p-adic extrema depend on the p-adic pseudo constants which depend on a �nite number of positive pinary
digits of their arguments only. Thus p-adic extremals are glued from pieces for which the values of the integration
constants are genuine constants. Obviously, an optimal cognitive representation is achieved if pseudo constants
reduce to ordinary constants.

More precisely, any function

f(x) = f(xN) ,

xN =
∑
k≤N

xkp
k , (2.1)

which does not depend on the pinary digits xn, n > N has a vanishing p-adic derivative and is thus a pseudo
constant. These functions are piecewise constant below some length scale, which in principle can be arbitrary small
but �nite. The result means that the constants appearing in the solutions the p-adic �eld equations are constants
functions only below some length scale. For instance, for linear di�erential equations integration constants are
arbitrary pseudo constants. In particular, the p-adic counterparts of the preferred extremals are highly degenerate
because of the presence of the pseudo constants. This in turn means a characteristic randomness of the spin glass
also in the time direction since the surfaces at which the pseudo constants change their values do not give rise to
in�nite surface energy densities as they would do in the real context.

The basic character of cognition would be spin glass like nature making possible 'engineering' at the level of
thoughts (planning) whereas classical non-determinism of the Kähler action would make possible 'engineering' at
the level of the real world.

2.5 Life as islands of rational/algebraic numbers in the seas of real and p-adic con-
tinua?

The possibility to de�ne entropy di�erently for rational/algebraic entanglement and the fact that number theoretic
entanglement entropy can be negative raises the question about which kind of systems can possess this kind of
entanglement. I have considered several identi�cations but the most elegant interpretation is based on the idea
that living matter resides in the intersection of real and p-adic worlds, somewhat like rational numbers live in the
intersection of real and p-adic number �elds.

The observation that Shannon entropy allows an in�nite number of number theoretic variants for which the
entropy can be negative in the case that probabilities are algebraic numbers leads to the idea that living matter in a
well-de�ned sense corresponds to the intersection of real and p-adic worlds. This would mean that the mathematical
expressions for the space-time surfaces (or at least 3-surfaces or partonic 2-surfaces and their 4-D tangent planes)
make sense in both real and p-adic sense for some primes p. Same would apply to the expressions de�ning quantum
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states. In particular, entanglement probabilities would be rationals or algebraic numbers so that entanglement can
be negentropic and the formation of bound states in the intersection of real and p-adic worlds generates information
and is thus favored by NMP.

This picture has also a direct connection with consciousness.

1. Algebraic entanglement is a prerequisite for the realization of intentions as transformations of p-adic space-
time sheets to real space-time sheets representing actions. Essentially a leakage between p-adic and real worlds
is in question and makes sense only in zero energy ontology. since various quantum numbers in real and p-adic
sectors are not in general comparable in positive energy ontology so that conservation laws would be broken.
Algebraic entanglement could be also called cognitive. The transformation can occur if the partonic 2-surfaces
and their 4-D tangent space-distributions are representable using rational functions with rational coe�cients
in preferred coordinates for the imbedding space dictated by symmetry considerations. Intentional systems
must live in the intersection of real and p-adic worlds. For the minimal option life would be also e�ectively
2-dimensional phenomenon and essentially a boundary phenomenon as also number theoretical criticality
suggests.

2. The generation of non-rational (non-algebraic) bound state entanglement between the system and external
world means that the system loses consciousness during the state function reduction process following the U -
process generating the entanglement. What happens that the Universe corresponding to given CD decomposes
to two un-entangled subsystems, which in turn decompose, and the process continues until all subsystems have
only entropic bound state entanglement or negentropic algebraic entanglement with the external world.

3. If the sub-system generates entropic bound state entanglement in the the process, it loses consciousness. Note
that the entanglement entropy of the sub-system is a sum over entanglement entropies over all subsystems
involved. This hierarchy of subsystems corresponds to the hierarchy if sub-CDs so that the survival without
a loss of consciousness depends on what happens at all levels below the highest level for a given self. In more
concrete terms, ability to stay conscious depends on what happens at cellular level too. The stable evolution
of systems having algebraic entanglement is expected to be a process proceeding from short to long length
scales as the evolution of life indeed is.

4. U -process generates a superposition of states in which any sub-system can have both real and algebraic
entanglement with the external world. This would suggest that the choice of the type of entanglement is a
volitional selection. A possible interpretation is as a choice between good and evil. The hedonistic complete
freedom resulting as the entanglement entropy is reduced to zero on one hand, and the algebraic bound state
entanglement implying correlations with the external world and meaning giving up the maximal freedom on
the other hand. The hedonistic option is risky since it can lead to non-algebraic bound state entanglement
implying a loss of consciousness. The second option means expansion of consciousness - a fusion to the ocean
of consciousness as described by spiritual practices.

5. This formulation means a sharpening of the earlier statement "Everything is conscious and consciousness can
be only lost" with the additional statement "This happens when non-algebraic bound state entanglement is
generated and the system does not remain in the intersection of real and p-adic worlds anymore". Clearly,
the quantum criticality of TGD Universe seems has very many aspects and life as a critical phenomenon in
the number theoretical sense is only one of them besides the criticality of the space-time dynamics and the
criticality with respect to phase transitions changing the value of Planck constant and other more familiar
criticalities. How closely these criticalities relate remains an open question.

A good guess is that algebraic entanglement is essential for quantum computation, which therefore might cor-
respond to a conscious process. Hence cognition could be seen as a quantum computation like process, a more
approriate term being quantum problem solving. Living-dead dichotomy could correspond to rational-irrational or
to algebraic-transcendental dichotomy: this at least when life is interpreted as intelligent life. Life would in a well
de�ned sense correspond to islands of rationality/algebraicity in the seas of real and p-adic continua.

The view about the crucial role of rational and algebraic numbers as far as intelligent life is considered, could
have been guessed on very general grounds from the analogy with the orbits of a dynamical system. Rational
numbers allow a predictable periodic decimal/pinary expansion and are analogous to one-dimensional periodic
orbits. Algebraic numbers are related to rationals by a �nite number of algebraic operations and are intermediate
between periodic and chaotic orbits allowing an interpretation as an element in an algebraic extension of any p-adic
number �eld. The projections of the orbit to various coordinate directions of the algebraic extension represent now
periodic orbits. The decimal/pinary expansions of transcendentals are un-predictable being analogous to chaotic
orbits. The special role of rational and algebraic numbers was realized already by Pythagoras, and the fact that
the ratios for the frequencies of the musical scale are rationals supports the special nature of rational and algebraic
numbers. The special nature of the Golden Mean, which involves

√
5, conforms the view that algebraic numbers

rather than only rationals are essential for life.

2.6 p-Adic physics as physics of cognition and intention

The vision about p-adic physics as physics of cognition has gradually established itself as one of the key idea of
TGD inspired theory of consciousness. There are several motivations for this idea.

The strongest motivation is the vision about living matter as something residing in the intersection of real and
p-adic worlds. One of the earliest motivations was p-adic non-determinism identi�ed tentatively as a space-time
correlate for the non-determinism of imagination. p-Adic non-determinism follows from the fact that functions with
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vanishing derivatives are piecewise constant functions in the p-adic context. More precisely, p-adic pseudo constants
depend on the pinary cuto� of their arguments and replace integration constants in p-adic di�erential equations. In
the case of �eld equations this means roughly that the initial data are replaced with initial data given for a discrete
set of time values chosen in such a manner that unique solution of �eld equations results. Solution can be �xed also
in a discrete subset of rational points of the imbedding space. Presumably the uniqueness requirement implies some
unique pinary cuto�. Thus the space-time surfaces representing solutions of p-adic �eld equations are analogous
to space-time surfaces consisting of pieces of solutions of the real �eld equations. p-Adic reality is much like the
dream reality consisting of rational fragments glued together in illogical manner or pieces of child's drawing of body
containing body parts in more or less chaotic order.

The obvious looking interpretation for the solutions of the p-adic �eld equations is as a geometric correlate of
imagination. Plans, intentions, expectations, dreams, and cognition in general are expected to have p-adic space-
time sheets as their geometric correlates. This in the sense that p-adic spacetime sheets somehow initiate the real
neural processes providing symbolic counterparts for the cognitive representations provided by p-adic spacetime
sheets and p-adic fermions. A deep principle seems to be involved: incompleteness is characteristic feature of p-adic
physics but the �exibility made possible by this incompleteness is absolutely essential for imagination and cognitive
consciousness in general.

p-Adic space-time regions can su�er topological phase transitions to real topology and vice versa in quantum
jumps replacing space-time surface with a new one. This process has interpretation as a topological correlate for
the mind-matter interaction in the sense of transformation of intention to action and symbolic representation to
cognitive representation. p-Adic cognitive representations could provide the physical correlates for the notions of
memes [67] and morphic �elds [68]. p-Adic real entanglement makes possible makes possible cognitive measurements
and cognitive quantum computation like processes, and provides correlates for the experiences of understanding and
confusion.

At the level of brain the fundamental sensory-motor loop could be seen as a loop in which real-to-p-adic phase
transition occurs at the sensory step and its reverse at the motor step. Nerve pulse patterns would correspond to
temporal sequences of quark like sub-CDs of duration 1 millisecond inside electronic sub-CD of duration .1 s with
the states of sub-CDs allowing interpretation as a bit (this would give rise to memetic code). The real space-time
sheets assignable to these sub-CDs are transformed to p-adic ones as sensory input transforms to thought. Intention
in transforms to action in the reverse process in motor action. One can speak about creation of matter from vacuum
in these time scales.

Although p-adic space-time sheets as such are not conscious, p-adic physics would provide beautiful mathematical
realization for the intuitions of Descartes. The formidable challenge is to develop experimental tests for p-adic
physics. The basic problem is that we can perceive p-adic reality only as 'thoughts' unlike the 'real' reality which
represents itself to us as sensory experiences. Thus it would seem that we should be able generalize the physics of
sensory experiences to physics of cognitive experiences.

3 p-Adic numbers

3.1 Basic properties of p-adic numbers

p-Adic numbers (p is prime: 2,3,5,... ) can be regarded as a completion of the rational numbers using a norm, which
is di�erent from the ordinary norm of real numbers [44]. p-Adic numbers are representable as power expansion of
the prime number p of form:

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (3.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (3.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm di�ers drastically from the norm
of the ordinary real numbers since it depends on the lowest pinary digit of the p-adic number only. Arbitrarily
high powers in the expansion are possible since the norm of the p-adic number is �nite also for numbers, which are
in�nite with respect to the ordinary norm. A convenient representation for p-adic numbers is in the form

x = pk0ε(x) , (3.3)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase factor exp(iφ)
of a complex number.

The distance function d(x, y) = |x − y|p de�ned by the p-adic norm possesses a very general property called
ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (3.4)

The properties of the distance function make it possible to decompose Rp into a union of disjoint sets using the
criterion that x and y belong to same class if the distance between x and y satis�es the condition
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d(x, y) ≤ D . (3.5)

This division of the metric space into classes has following properties:

1. Distances between the members of two di�erent classes X and Y do not depend on the choice of points x and
y inside classes. One can therefore speak about distance function between classes.

2. Distances of points x and y inside single class are smaller than distances between di�erent classes.

3. Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin glasses and is believed to
have also applications in biology [45]. The emergence of p-adic topology as the topology of the e�ective space-time
would make ultra-metricity property basic feature of physics.

3.2 Extensions of p-adic numbers

Algebraic democracy suggests that all possible real algebraic extensions of the p-adic numbers are possible. This
conclusion is also suggested by various physical requirements, say the fact that the eigenvalues of a Hamiltonian
representable as a rational or p-adic N×N -matrix, being roots of N:th order polynomial equation, in general belong
to an algebraic extension of rationals or p-adics. The dimension of the algebraic extension cannot be interpreted as
physical dimension. Algebraic extensions are characteristic for cognitive physics and provide a new manner to code
information. A possible interpretation for the algebraic dimension is as a dimension for a cognitive representation of
space and might explain how it is possible to mathematically imagine spaces with all possible dimensions although
physical space-time dimension is four. The idea of algebraic hologram and other ideas related to the physical
interpretation of the algebraic extensions of p-adic numbers are discussed in [15].

It seems however that algebraic democracy must be extended to include also transcendentals in the sense that
�nite-dimensional extensions involving also transcendental numbers are possible: for instance, Neper number e
de�nes a p-dimensional extension. It has become clear that these extensions fundamental for understanding how
p-adic physics as physics of cognition is able to mimick real physics. The evolution of mathematical cognition can
be seen as a process in which p-adic space-time sheets involving increasing value of p-adic prime p and increasing
dimension of algebraic extension appear in quantum jumps.

3.2.1 Recipe for constructing algebraic extensions

Real numbers allow only complex numbers as an algebraic extension. For p-adic numbers algebraic extensions of
arbitrary dimension are possible
[44]. The simplest manner to construct (n+1)-dimensional extensions is to consider irreducible polynomials Pn(t)
in Rp assumed to have rational coe�cients: irreducibility means that the polynomial does not possess roots in Rp

so that one cannot decompose it into a product of lower order Rp valued polynomials. This condition is equivalent
with the condition with irreducibility in the �nite �eld G(p, 1), that is modulo p in Rp.

Denoting one of the roots of Pn(t) by θ and de�ning θ0 = 1 the general form of the extension is given by

Z =
∑

k=0,..,n−1

xkθ
k . (3.6)

Since θ is root of the polynomial in Rp it follows that θ
n is expressible as a sum of lower powers of θ so that these

numbers indeed form an n-dimensional linear space with respect to the p-adic topology.
Especially simple odd-dimensional extensions are cyclic extensions obtained by considering the roots of the

polynomial

Pn(t) = tn + εd ,

ε = ±1 . (3.7)

For n = 2m+ 1 and (n = 2m, ε = +1) the irreducibility of Pn(t) is guaranteed if d does not possess n:th root in Rp.
For (n = 2m, ε = −1) one must assume that d1/2 does not exist p-adically. In this case θ is one of the roots of the
equation

tn = ±d , (3.8)

where d is a p-adic integer with a �nite number of pinary digits. It is possible although not necessary to identify the
roots as complex numbers. There exists n complex roots of d and θ can be chosen to be one of the real or complex
roots satisfying the condition θn = ±d. The roots can be written in the general form

θ = d1/nexp(iφ(m)), m = 0, 1, ...., n− 1 ,

φ(m) =
m2π

n
or

mπ

n
. (3.9)

Here d1/n denotes the real root of the equation θn = d. Each of the phase factors φ(m) gives rise to an algebraically
equivalent extension: only the representation is di�erent. Physically these extensions need not be equivalent since
the identi�cation of the algebraically extended p-adic numbers with the complex numbers plays a fundamental role
in the applications. The cases θn = ±d are physically and mathematically quite di�erent.
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3.2.2 p-Adic valued norm for numbers in algebraic extension

The p-adic valued norm of an algebraically extended p-adic number x can be de�ned as some power of the ordinary
p-adic norm of the determinant of the linear map x :e Rn

p →e Rn
p de�ned by the multiplication with x: y → xy

N(x) = det(x)α , α > 0 .

(3.10)

Real valued norm can be de�ned as the p-adic norm of N(x). The requirement that the norm is homogenous
function of degree one in the components of the algebraically extended 2-adic number (like also the standard norm
of Rn ) implies the condition α = 1/n, where n is the dimension of the algebraic extension.

The canonical correspondence between the points of R+ and Rp generalizes in obvious manner: the point∑
k xkθ

k of algebraic extension is identi�ed as the point (x0
R, x

1
R, ..., x

k
R, .., ) of R

n using the pinary expansions of the
components of p-adic number. The p-adic linear structure of the algebraic extension induces a linear structure in
Rn

+ and p-adic multiplication induces a multiplication for the vectors of Rn
+.

3.2.3 Algebraic extension allowing square root of ordinary p-adic numbers

The existence of a square root of an ordinary p-adic number is a common theme in various applications of the p-adic
numbers and for long time I erratically believed that only this extension is involved with p-adic physics. Despite
this square root allowing extension is of central importance and deserves a more detailed discussion.

1. The p-adic generalization of the representation theory of the ordinary groups and Super Kac Moody and Super
Virasoro algebras exists provided an extension of the p-adic numbers allowing square roots of the 'real' p-adic
numbers is used. The reason is that the matrix elements of the raising and lowering operators in Lie-algebras
as well as of oscillator operators typically involve square roots. The existence of square root might play a key
role in various p-adic considerations.

2. The existence of a square root of a real p-adic number is also a necessary ingredient in the de�nition of the
p-adic unitarity and probability concepts since the solution of the requirement that pmn = SmnS̄mn is ordinary
p-adic number leads to expressions involving square roots.

3. p-Adic length scales hypothesis states that the p-adic length scale is proportional to the square root of p-adic
prime.

4. Simple metric geometry of polygons involves square roots basically via the theorem of Pythagoras. p-Adic
Riemannian geometry necessitates the existence of square root since the de�nition of the in�nitesimal length ds
involves square root. Note however that p-adic Riemannian geometry can be formulated as a mere di�erential
geometry without any reference to global concepts like lengths, areas, or volumes.

The original belief that square root allowing extensions of p-adic numbers are exceptional seems to be wrong
in light of TGD as a generalized number theory vision. All algebraic extensions of p-adic numbers a possible
and the interpretation of algebraic dimension of the extension as a physical dimension is not the correct thing to
do. Rather, the possibility of arbitrarily high algebraic dimension re�ects the ability of mathematical cognition
to imagine higher-dimensional spaces. Square root allowing extension of the p-adic numbers is the simplest one
imaginable, and it is fascinating that it indeed is the dimension of space-time surface for p > 2 and dimension of
imbedding space for p = 2. Thus the square root allowing extensions deserve to be discussed.

The results can be summarized as follows.

1. In p > 2 case the general form of extension is

Z = (x+ θy) +
√
p(u+ θv) , (3.11)

where the condition θ2 = x for some p-adic number x not allowing square root as a p-adic number. For
p mod 4 = 3 θ can be taken to be imaginary unit. This extension is natural for p-adication of space-time
surface so that space-time can be regarded as a number �eld locally. Imbedding space can be regarded as a
cartesian product of two 4-dimensional extensions locally.

2. In p = 2 case 8-dimensional extension is needed to de�ne square roots. The extension is de�ned by adding
θ1 =

√
−1 ≡ i, θ2 =

√
2, θ3 =

√
3 and the products of these so that the extension can be written in the form

Z = x0 +
∑
k

xkθk +
∑
k<l

xklθkl + x123θ1θ2θ3 . (3.12)

Clearly, p = 2 case is exceptional as far as the construction of the conformal �eld theory limit is considered
since the structure of the representations of Virasoro algebra and groups in general changes drastically in p = 2
case. The result suggest that in p = 2 limit space-time surface and H are in same relation as real numbers and
complex numbers: space-time surfaces de�ned as the absolute minima of 2-adiced Kähler action are perhaps
identi�able as surfaces for which the imaginary part of 2-adically analytic function in H vanishes.

The physically interesting feature of p-adic group representations is that if one doesn't use
√
p in the extension the

number of allowed spins for representations of SU(2) is �nite: only spins j < p are allowed. In p = 3 case just the
spins j ≤ 2 are possible. If 4-dimensional extension is used for p = 2 rather than 8-dimensional then one gets the
same restriction for allowed spins.
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3.2.4 Is e an exceptional transcendental?

One can consider also the possibility of transcental extensions of p-adic numbers and an open problem is whether
the in�nite-dimensional extensions involving powers of π and logarithms of primes make sense and whether they
should be allowed. For instance, it is not clear whether the allowance of powers of π is consistent with the extensions
based on roots of unity. This question is not academic since Feynman amplitudes in real context involve powers of
π and algebraic universality forces the consider that also they p-adic variants might involve powers of π.

Neper number obviously de�nes the simplest transcendental extension since only the powers ek, k = 1, ..., p− 1
of e are needed to de�ne p-adic counterpart of ex for x = n so that the extension is �nite-dimensional. In the case
of trigonometric functions deriving from eix, also ei and its p− 1 powers must belong to the extension.

An interesting question is whether e is a number theoretically exceptional transcendental or whether it could be
easy to �nd also other transcendentals de�ning �nite-dimensional extensions of p-adic numbers.

1. Consider functions f(x), which are analytic functions with rational Taylor coe�cients, when expanded around
origin for x > 0. The values of f(n), n = 1, ..., p − 1 should belong to an extension, which should be
�nite-dimensional.

2. The expansion of these functions to Taylor series generalizes to the p-adic context if also the higher derivatives
of f at x = n belong to the extension. This is achieved if the higher derivatives are expressible in terms of
the lower derivatives using rational coe�cients and rational functions or functions, which are de�ned at
integer points (such as exponential and logarithm) by construction. A di�erential equation of some �nite
order involving only rational functions with rational coe�cients must therefore be satis�ed (ex satisfying the
di�erential equation df/dx = f is the optimal case in this sense). The higher derivatives could also reduce to
rational functions at some step (log(x) satisfying the di�erential equation df/dx = 1/x).

3. The di�erential equation allows to develop f(x) in power series, say in origin

f(x) =
∑

fn
xn

n!

such that fn+m is expressible as a rational function of the m lower derivatives and is therefore a rational
number.

The series converges when the p-adic norm of x satis�es |x|p ≤ pk for some k. For de�niteness one can assume
k = 1. For x = 1, ..., p − 1 the series does not converge in this case, and one can introduce and extension
containing the values f(k) and hope that a �nite-dimensional extension results.

Finite-dimensionality requires that the values are related to each other algebraically although they need not be
algebraic numbers. This means symmetry. In the case of exponent function this relationship is exceptionally simple.
The algebraic relationship re�ects the fact that exponential map represents translation and exponent function is an
eigen function of a translation operator. The necessary presence of symmetry might mean that the situation reduces
always to either exponential action. Also the phase factors exp(iqπ) could be interpreted in terms of exponential
symmetry. Hence the reason for the exceptional role of exponent function reduces to group theory.

Also other extensions than those de�ned by roots of e are possible. Any polynomial has n roots and for
transcendental coe�cients the roots de�ne a �nite-dimensional extension of rationals. It would seem that one could
allow the coe�cients of the polynomial to be functions in an extension of rationals by powers of a root of e and
algebraic numbers so that one would obtain in�nite hierarchy of transcendental extensions.

3.3 p-Adic Numbers and �nite �elds

Finite �elds (Galois �elds) consists of �nite number of elements and allow sum, multiplication and division. A
convenient representation for the elements of a �nite �eld is as the roots of the polynomial equation tp

m−t = 0 mod p
, where p is prime, m an arbitrary integer and t is element of a �eld of characteristic p (pt = 0 for each t). The
number of elements in a �nite �eld is pm, that is power of prime number and the multiplicative group of a �nite
�eld is group of order pm− 1. G(p, 1) is just cyclic group Zp with respect to addition and G(p,m) is in rough sense
m:th Cartesian power of G(p, 1) .

The elements of the �nite �eld G(p, 1) can be identi�ed as the p-adic numbers 0, ..., p−1 with p-adic arithmetics
replaced with modulo p arithmetics. The �nite �elds G(p,m) can be obtained from m-dimensional algebraic exten-
sions of the p-adic numbers by replacing the p-adic arithmetics with the modulo p arithmetics. In TGD context
only the �nite �elds G(p > 2, 2) , p mod 4 = 3 and G(p = 2, 4) appear naturally. For p > 2, p mod 4 = 3 one has:
x+ iy +

√
p(u+ iv)→ x0 + iy0 ∈ G(p, 2).

An interesting observation is that the unitary representations of the p-adic scalings x→ pkx k ∈ Z lead naturally
to �nite �eld structures. These representations reduce to representations of a �nite cyclic group Zm if x→ pmx acts
trivially on representation functions for some value of m, m = 1, 2, ... Representation functions, or equivalently the
scaling momenta k = 0, 1, ...,m − 1 labelling them, have a structure of cyclic group. If m 6= p is prime the scaling
momenta form �nite �eld G(m, 1) = Zm with respect to the summation and multiplication modulo m. Also the
p-adic counterparts of the ordinary plane waves carrying p-adic momenta k = 0, 1..., p−1 can be given the structure
of Finite Field G(p, 1): one can also de�ne complexi�ed plane waves as square roots of the real p-adic plane waves
to obtain Finite Field G(p, 2).
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4 What is the correspondence between p-adic and real numbers?

There must be some kind of correspondence between reals and p-adic numbers. This correspondence can depend
on context. In p-adic mass calculations one must map p-adic mass squared values to real numbers in a continuous
manner and canonical identi�cation x =

∑
xnp

n → Id(x) =
∑
xnp

−n is a natural �rst guess. Also p-adic proba-
bilities could be mapped to their real counterparts by a suitable normalization. One can wonder whether p-adic
valued S-matrices have any physical meaning and whether they could be obtained as algebraic continuation from a
number theoretically universal S-matrix whose matrix elements are algebraic numbers allowing an interpretation as
real or p-adic numbers in suitable algebraic extension: this would pose extremely strong constraints on S-matrix.
If one wants to introduce p-adic physics at space-time level one must be able to relate p-adic and real space-time
regions to each other and the identi�cation along common rational points of real and various p-adic variants of the
imbedding space suggests itself here.

4.1 Generalization of the number concept

The recent view about the uni�cation of real and p-adic physics is based on the generalization of number concept
obtained by fusing together real and p-adic number �elds along common rationals.

4.1.1 Rational numbers as numbers common to all number �elds

The uni�cation of real physics of material work and p-adic physics of cognition and intentionality leads to the
generalization of the notion of number �eld. Reals and various p-adic number �elds are glued along their common
rationals (and common algebraic numbers appearing in the extension of p-adic numbers too) to form a fractal
book like structure. Allowing all possible �nite-dimensional algebraic and perhaps even transcendental extensions
of p-adic numbers adds additional pages to this "Big Book".

This leads to a generalization of the notion of manifold as a collection of a real manifold and its p-adic variants
glued together along common points. The outcome of experimentation is that this generalization makes sense under
very high symmetries and that it is safest to lean strongly on the physical picture provided by quantum TGD.

1. The most natural guess is that the coordinates of common points are rational or in some algebraic extension of
rational numbers. General coordinate invariance and preservation of symmetries require preferred coordinates
existing when the manifold has maximal number of isometries. This approach is especially natural in the case
of linear spaces- in particular Minkowski space M4. The natural coordinates are in this case linear Minkowski
coordinates. The choice of coordinates is not completely unique and has interpretation as a geometric correlate
for the choice of quantization axes for a given CD.

2. As will be found, the need to have a well-de�ned integration based on Fourier analysis (or its generalization to
harmonic analysis [31] in symmetric spaces) poses very strong constraints and allows p-adicization only if the
space has maximal symmetries. Fourier analysis requires the introduction of an algebraic extension of p-adic
numbers containing su�ciently many roots of unity.

(a) This approach is especially natural in the case of compact symmetric spaces such as CP2 [33].

(b) Also symmetric spaces such the 3-D proper time a = constant hyperboloid of M4-call it H(a) -allowing
Lorentz group as isometries allows a p-adic variant utilizing the hyperbolic counterparts for the roots of
unity. M4 ×H(a = 2na0) appears as a part of the moduli space of CDs.

(c) For light-cone boundaries associated with CDs SO(3) invariant radial coordinate rM de�ning the radius
of sphere S2 de�nes the hyperbolic coordinate and angle coordinates of S2 would correspond to phase
angles and M4

± projections for the common points of real and p-adic variants of partonic 2-surfaces
would be this kind of points. Same applies to CP2 projections. In the "intersection of real and p-adic
worlds" real and p-adic partonic 2-surfaces would obey same algebraic equations and would be obtained
by an algebraic continuation from the corresponding equations making sense in the discrete variant of
M4
± × CP2. This connection with discrete sub-manifolds geometries means very powerful constraints on

the partonic 2-surfaces in the intersection.

3. The common algebraic points of real and p-adic variant of the manifold form a discrete space but one could
identify the p-adic counterpart of the real discretization intervals (0, 2π/N) for angle like variables as p-adic
numbers of norm smaller than 1 using canonical identi�cation or some variant of it. Same applies to the
the hyperbolic counterpart of this interval. The non-uniqueness of this map could be interpreted in terms
of a �nite measurement resolution. In particular, the condition that WCW allows Kähler geometry requires
a decomposition to a union of symmetric spaces so that there are good hopes that p-adic counterpart is
analogous to that assigned to CP2.

4.1.2 How large p-adic space-time sheets can be?

Space-time region having �nite size in the real sense can have arbitrarily large size in p-adic sense and vice versa.
This raises a rather thought provoking questions. Could the p-adic space-time sheets have cosmological or even
in�nite size with respect to the real metric but have be p-adically �nite? How large space-time surface is responsible
for the p-adic representation of my body? Could the large or even in�nite size of the cognitive space-time sheets
explain why creatures of a �nite physical size can invent the notion of in�nity and construct cosmological theories?
Could it be that pinary cuto� O(pn) de�ning the resolution of a p-adic cognitive representation would de�ne the
size of the space-time region needed to realize the cognitive representation?
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In fact, the mere requirement that the neighborhood of a point of the p-adic space-time sheet contains points,
which are p-adically in�nitesimally near to it can mean that points in�nitely distant from this point in the real
sense are involved. A good example is provided by an integer valued point x = n < p and the point y = x + pm,
m > 0: the p-adic distance of these points is p−m whereas at the limit m → ∞ the real distance goes as pm and
becomes in�nite for in�nitesimally near points. The points n + y, y =

∑
k>0 xkp

k, 0 < n < p, form a p-adically
continuous set around x = n. In the real topology this point set is discrete set with a minimum distance ∆x = p
between neighboring points whereas in the p-adic topology every point has arbitrary nearby points. There are also
rationals, which are arbitrarily near to each other both p-adically and in the real sense. Consider points x = m/n,
m and n not divisible by p, and y = (m/n)× (1 + pkr)/(1 + pks), s = r+ 1 such that neither r or s is divisible by p
and k >> 1 and r >> p. The p-adic and real distances are |x− y|p = p−k and |x− y| ' (m/n)/(r+ 1) respectively.
By choosing k and r large enough the points can be made arbitrarily close to each other both in the real and p-adic
senses.

The idea about astrophysical size of the p-adic cognitive space-time sheets providing representation of body and
brain is consistent with TGD inspired theory of consciousness, which forces to take very seriously the idea that even
human consciousness involves astrophysical length scales.

4.1.3 Generalizing complex analysis by replacing complex numbers by generalized numbers

One general idea which results as an outcome of the generalized notion of number is the idea of a universal function
continuable from a function mapping rationals to rationals or to a �nite extension of rationals to a function in any
number �eld. This algebraic continuation is analogous to the analytical continuation of a real analytic function to the
complex plane. Rational functions for which polynomials have rational coe�cients are obviously functions satisfying
this constraint. Algebraic functions for which polynomials have rational coe�cients satisfy this requirement if
appropriate �nite-dimensional algebraic extensions of p-adic numbers are allowed.

For instance, one can ask whether residue calculus might be generalized so that the value of an integral along the
real axis could be calculated by continuing it instead of the complex plane to any number �eld via its values in the
subset of rational numbers forming the back of the book like structure (in very metaphoral sense) having number
�elds as its pages. If the poles of the continued function in the �nitely extended number �eld allow interpretation
as real numbers it might be possible to generalize the residue formula. One can also imagine of extending residue
calculus to any algebraic extension. An interesting situation arises when the poles correspond to extended p-adic
rationals common to di�erent pages of the "Big Book". Could this mean that the integral could be calculated at any
page having the pole common. In particular, could a p-adic residue integral be calculated in the ordinary complex
plane by utilizing the fact that in this case numerical approach makes sense. Contrary to the �rst expectations the
algebraically continued residue calculus does not seem to have obvious applications in quantum TGD.

4.2 Canonical identi�cation

Canonical There exists a natural continuous map Id : Rp → R+ from p-adic numbers to non-negative real numbers
given by the "pinary" expansion of the real number for x ∈ R and y ∈ Rp this correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (4.1)

This map is continuous as one easily �nds out. There is however a little di�culty associated with the de�nition
of the inverse map since the pinary expansion like also desimal expansion is not unique (1 = 0.999...) for the real
numbers x, which allow pinary expansion with �nite number of pinary digits

x =
N∑

k=N0

xkp
−k ,

x =
N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(4.2)

The p-adic images associated with these expansions are di�erent

y1 =
N∑

k=N0

xkp
k ,

y2 =
N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (4.3)

so that the inverse map is either two-valued for p-adic numbers having expansion with �nite number of pinary digits
or single valued and discontinuous and non-surjective if one makes pinary expansion unique by choosing the one
with �nite number of pinary digits. The �nite number of pinary digits expansion is a natural choice since in the
numerical work one always must use a pinary cuto� on the real axis.
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Figure 1: The real norm induced by canonical identi�cation from 2-adic norm.

4.2.1 Canonical identi�cation is a continuous map of non-negative reals to p-adics

The topology induced by the inverse of the canonical identi�cation map in the set of positive real numbers di�ers
from the ordinary topology. The di�erence is easily understood by interpreting the p-adic norm as a norm in the
set of the real numbers. The norm is constant in each interval [pk, pk+1) (see Fig. 4.2.1) and is equal to the usual
real norm at the points x = pk: the usual linear norm is replaced with a piecewise constant norm. This means that
p-adic topology is coarser than the usual real topology and the higher the value of p is, the coarser the resulting
topology is above a given length scale. This hierarchical ordering of the p-adic topologies will be a central feature
as far as the proposed applications of the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topology is rougher than
the ordinary norm. This allows two alternative interpretations. Either p-adic image of a physical systems provides
a good representation of the system above some pinary cuto� or the physical system can be genuinely p-adic below
certain length scale Lp and become in good approximation real, when a length scale resolution Lp is used in its
description. The �rst interpretation is correct if canonical identi�cation is interpreted as a cognitive map. p-Adic
continuity implies ordinary continuity from right as is clear already from the properties of the p-adic norm (the
graph of the norm is indeed continuous from right). This feature is one clear signature of the p-adic topology.

If one considers seriously the application of canonical identi�cation to basic quantum TGD one cannot avoid
the question about the p-adic counterparts of the negative real numbers. There is no satisfactory manner to
circumvent the fact that canonical images of p-adic numbers are naturally non-negative. This is not a problem if
canonical identi�cation applies only to the coordinate interval (0, 2π/N) or its hyperbolic variant de�ning the �nite
measurement resolution. That p-adicization program works only for highly symmetric spaces is not a problem from
the point of view of TGD.

4.2.2 Canonical identi�cation maps the predictions of the p-adic probability calculus and statistical

physics to real numbers

p-Adic mass calculations based on p-adic thermodynamics were the �rst and rather successful application of the
p-adic physics (see the four chapters in [5]. The essential element of the approach was the replacement of the
Boltzmann weight e−E/T with its p-adic generalization pL0/Tp , where L0 is the Virasoro generator corresponding
to scaling and representing essentially mass squared operator instead of energy. Tp is inverse integer valued p-adic
temperature. The predicted mass squared averages were mapped to real numbers by canonical identi�cation.

One could also construct a real variant of this approach by considering instead of the ordinary Boltzman weights
the weights p−L0/Tp . The quantization of temperature to Tp = log(p)/n would be a completely ad hoc assumption.
In the case of real thermodynamics all particles are predicted to be light whereas in case of p-adic thermodynamics
particle is light only if the ratio for the degeneracy of the lowest massive state to the degeneracy of the ground state
is integer. Immense number of particles disappear from the spectrum of light particles by this criterion. For light
particles the predictions are same as of p-adic thermodynamics in the lowest non-trivial order but in the next order
deviations are possible.

Also p-adic probabilities and the p-adic entropy can be mapped to real numbers by canonical identi�cation. The
general idea is that a faithful enough cognitive representation of the real physics can by the number theoretical
constraints involved make predictions, which would be extremely di�cult to deduce from real physics.

4.2.3 The variant of canonical identi�cation commuting with division of integers

The basic problems of canonical identi�cation is that it does not respect unitarity. For this reason it is not well
suited for relating p-adic and real scattering amplitudes. The problem of the correspondence via direct rationals or
roots of unity is that it does not respect continuity. The restriction of S-matrix to a discrete intersection of real and
p-adic worlds is one manner to solve this di�culty.

One can also consider alternative approach to achieve a compromise between algebra and topology achieved by
using a modi�cation of canonical identi�cation IRp→R de�ned as I1(r/s) = I(r)/I(s). If the conditions r � p and
s � p hold true, the map respects algebraic operations and also unitarity and various symmetries. It seems that
this option must be used to relate p-adic transition amplitudes to real ones and vice versa [24]. In particular, real
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and p-adic coupling constants are related by this map. Also some problems related to p-adic mass calculations �nd
a nice resolution when I1 is used.

This variant of canonical identi�cation is not equivalent with the original one using the in�nite expansion of q
in powers of p since canonical identi�cation does not commute with product and division. The variant is however
unique in the recent context when r and s in q = r/s have no common factors. For integers n < p it reduces to
direct correspondence.

Generalized numbers would be regarded in this picture as a generalized manifold obtained by gluing di�erent
number �elds together along rationals. Instead of a direct identi�cation of real and p-adic rationals, the p-adic
rationals in Rp are mapped to real rationals (or vice versa) using a variant of the canonical identi�cation IR→Rp

in which the expansion of rational number q = r/s =
∑
rnp

n/
∑
snp

n is replaced with the rational number
q1 = r1/s1 =

∑
rnp
−n/

∑
snp

−n interpreted as a p-adic number:

q =
r

s
=

∑
n rnp

n∑
m snp

n
→ q1 =

∑
n rnp

−n∑
m snp

−n . (4.4)

Rp1 and Rp2 are glued together along common rationals by an the composite map IR→Rp2
IRp1→R.

This variant of canonical identi�cation seems to be an excellent candidate for mapping the predictions of p-adic
mass calculations to real numbers and also for relating p-adic and real scattering amplitudes to each other [24]. The
deviations of predictions from those for standard form of canonical identi�cation are however small.

The cautious conclusion of this section is that symmetric space approach involving both the identi�cation along
common rationals of roots of unity in large and canonical identi�cation below the measurement resolution provide the
safest approach to the p-adicization of quantum TGD. The impossibility to well-order the points below measurement
resolution explains why e�ective p-adic topology works in real context. The discussion of integration and Fourier
analysis will provide further support for the conclusion.

5 p-Adic variants of the basic mathematical structures relevant to physics

The basic existential questions worrying a person planning to become a p-adic quantum physicist are rather obvious.
How to de�ne p-adic probabilities, p-adic thermodynamics, and p-adic unitarity and perhaps even p-adic Hilbert
space? Is it possible to de�ne the p-adic variant of the manifold concept? As already noticed for symmetric spaces
p-adic variants might exist but what about space-time surfaces: could it be enough to consider only the p-adic
variants of the partonic 2-surfaces in the manner already discussed? Can one somehow circumvent the di�culties
related to the de�nition of the p-adic variant of de�nite integral? Perhaps by using Fourier analysis? How can one
circumvent the fact that the basic variational principle involves integral over space-time surface which is p-adically
notoriously di�cult to de�ne? Is all this just a waste of time or could it be that the enormous constraints from
p-adicization could provide information about real physics not achievable otherwise (as in the case of p-adic mass
calculations)?

5.1 p-Adic probabilities

p-Adic super conformal representations necessitate p-adic QM based on the p-adic unitarity and p-adic probability
concepts. The concept of a p-adic probability indeed makes sense as shown by [43]. p-Adic probabilities can be
de�ned as relative frequencies Ni/N in a long series consisting of total number N of observations and Ni outcomes
of type i. Probability conservation corresponds to

∑
i

Ni = N , (5.1)

and the only di�erence as compared to the usual probability is that the frequencies are interpreted as p-adic numbers.
The interpretation as p-adic numbers means that the relative frequencies converge to probabilities in a p-adic

rather than real sense in the limit of a large number N of observations. If one requires that probabilities are
limiting values of the frequency ratios in p-adic sense one must pose restrictions on the possible numbers of the
observations N if N is larger than p. For N smaller than p, the situation is similar to the real case. This means that
for p = M127 ' 1038, appropriate for the particle physics experiments, p-adic probability di�ers in no observable
manner from the ordinary probability.

If the number of observations is larger than p, the situation changes. IfN1 andN2 are two numbers of observations
they are near to each other in the p-adic sense if they di�er by a large power of p. A possible interpretation of this
restriction is that the observer at the p:th level of the condensate cannot choose the number of the observations freely.
The restrictions to this freedom come from the requirement that the sensible statistical questions in a p-adically
conformally invariant world must respect p-adic conformal invariance [49].

The most important application of the p-adic probability is the description of the particle massivation based on
p-adic thermodynamics. Instead of energy, Virasoro generator l is thermalized and in the low temperature phase
temperature is quantized in the sense that the counterpart of the Boltzmann weight exp(H/T ) is pL0/T , where
T = 1/n from the requirement that Boltzmann weight exists (L0 has integer spectrum). The surprising success of
the mass calculations shows that p-adic probability theory is much more than a formal possibility.

In particle physics context coupling constant evolution is replaced with a discrete p-adic coupling constant
evolution and the renormalization is related to the the change of the reduction of the p-adic length scale Lp in the
length scale hierarchy rather than p-adic fractality for a �xed value of p. In zero energy ontology the evolution
corresponds to the hierarchy of CDs with scales coming as powers of 2 in accordance with p-adic length scale
hypothesis.
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5.1.1 p-Adic probabilities and p-adic fractals

p-Adic probalities are natural in the statistical description of the fractal structures, which can contain same structural
detail with all possible sizes.

1. The concept of a structural detail in a fractal seems to be reasonably well de�ned concept. The structural
detail is clearly �xed by its topology and p-adic conformal invariants associated with it. Clearly, a �nite
resolution de�ned by some power of p of the p-adic cuto� scale must be present in the de�nition. For example,
p-adic angles are conformal invariants in the p-adic case, too. The overall size of the detail doesn't matter.
Let us therefore assume that it is possible to make a list, possibly in�nite, of the structural details appearing
in the p-adic fractal.

2. What kind of questions related to the structural details of the p-adic fractal one can ask? The �rst thing one
can ask is how many times i:th structural detail appears in a �nite region of the fractal structure: although
this number is in�nite as a real number it might possess (and probably does so!) �nite norm as a p-adic
number and provides a useful p-adic invariant of the fractal. If a complete list about the structural details
of the fractal is at use one can calculate also the total number of structural details de�ned as N =

∑
iNi.

This means that one can also de�ne p-adic probability for the appearance of i:th structural detail as a relative
frequency pi = Ni/N .

3. One can consider conditional probabilities, too. It is natural to ask what is the probability for the occurrence
of the structural detail subject to the condition that part of the structural detail is �xed (apart from the
p-adic conformal transformations). In order to evaluate these probalities as relative frequencies one needs to
look only for those structural details containing the substructure in question.

4. The evaluation of the p-adic probalities of occurrence can be done by evaluating the required numbers Ni and
N in a given resolution. A better estimate is obtained by increasing the resolution and counting the numbers
of the hitherto unobserved structural details. The increase in the resolution greatly increases the number of
the observations in case of p-adic fractal and the �uctuations in the values of Ni and N increase with the
resolution so that Ni/N has no well de�ned limit as a real number although one can de�ne the probabilities
of occurrence as a resolution dependent concept. In the p-adic sense the increase in the values of Ni and
�uctuations are small and the procedure should converge rapidly so that reliable estimates should result with
quite a reasonable resolution. Notice that the increase of the �uctuations in the real sense, when resolution is
increased is in accordance with the criticality of the system.

5. p-Adic frequencies and probabilities de�ne via the canonical correspondence real valued invariants of the
fractal structure.

p-Adic fractality in this sense could have practical applications only for small values of p. They could be
important in the macroscopic length scales if the hierarchy of Planck constants meaning scaling up Lp →

√
rLp,

r = ~/~0, of the p-adic length scales. In elementary particle physics Lp is of the order of the Compton length
associated with the particle for r = 1 and already in the �rst downward step CP2 length scale R is achieved whereas
upward step gives astrophysical length scale in the case of electron (p = M127 = 2127 − 1) for instance. For large
enough values of Planck constant and for small p-adic primes p the situation changes.

5.1.2 Relationship between p-adic and real probabilities

There are uniqueness problems related to the mapping of p-adic probabilities to real ones. These problems �nd a
nice resolution from the requirement that the map respects probability conservation. The implied modi�cation of
the original mapping does not change measurably the predictions for the masses of light particles.

1. How unique the map of p-adic probabilities and mass squared values are mapped to real numbers is?

The mapping of p-adic thermodynamical probabilities and mass squared values to real numbers is not completely
unique.

1. The canonical identi�cation Id :
∑
xnp

n →
∑
xnp

−n takes care of this mapping but does not respect the sum
of probabilities so that the real images I(pn) of the probabilities must be normalized. This is a somewhat
alarming feature.

2. The modi�cation of the canonical identi�cation mapping rationals by the formula I(r/s) = I(r)/I(s) has
appeared naturally in various applications, in particular because it respects unitarity of unitary matrices
with rational elements with r < p, s < p. In the case of p-adic thermodynamic the formula I(g(n)pn/Z) →
I(g(n)pn)/I(Z) would be very natural although Z need not be rational anymore. For g(n) < p the real
counterparts of the p-adic probabilities would sum up to one automatically for this option. One cannot deny
that this option is more convincing than the original one. The generalization of this formula to map p-adic
mass squared to a real one is obvious.

3. Options 1) and 2) di�er dramatically when the n = 0 massless ground state has ground state degeneracy
D > 1. For option 1) the real mass is predicted to be of order CP2 mass whereas for option 2) it would be
by a factor 1/D smaller than the minimum mass predicted by the option 1). Thus option 2) would predict a
large number of additional exotic states. For those states which are light for option 1), the two options make
identical predictions as far as the signi�cant two lowest order terms are considered. Hence this interpretation
would not change the predictions of the p-adic mass calculations in this respect. Option 2) is de�nitely
more in accord with the real physics based intuitions and the main role of p-adic thermodynamics would be to
guarantee the quantization of the temperature and �x practically uniquely the spectrum of the "Hamiltonian".
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2. Under what conditions the mapping of p-adic ensemble probabilities to real probabilities respects probability

conservation?

One can consider also a more general situation. Assume that one has an ensemble consisting of independent
elementary events such that the number of events of type i is Ni. The probabilities are given by pi = Ni/N
and N =

∑
Ni is the total number of elementary events. Even in the case that N is in�nite as a real number

it is natural to map the p-adic probabilities to their real counterparts using the rational canonical identi�cation
I(pi) = I(Ni)/I(N). Of course, Ni and N exist as well de�ned p-adic numbers under very stringent conditions only.

The question is under what conditions this map respects probability conservation. The answer becomes obvious
by looking at the pinary expansions of Ni and N . If the integers Ni (possibly in�nite as real integers) have pinary
expansions having no common pinary digits, the sum of probabilities is conserved in the map. Note that this
condition can assign also to a �nite ensemble with �nite number of a unique value of p.

This means that the selection of a basis for independent events corresponds to a decomposition of the set of
integers labelling pinary digits to disjoint sets and brings in mind the selection of orthonormalized basis of quantum
states in quantum theory. What is physically highly non-trivial that this "orthogonalization" alone puts strong
constraints on probabilities of the allowed elementary events. One can say that the probabilities de�ne distributions
of pinary digits analogous to non-negative probability amplitudes in the space of integers labelling pinary digits, and
the probabilities of independent events must be orthogonal with respect to the inner product de�ned by point-wise
multiplication in the space of pinary digits.

p-Adic thermodynamics for which Boltzman weights g(E)exp(−E/T ) are replaced by g(E)pE/T such that one
has g(E) < p and E/T is integer valued, satis�es this constraint. The quantization of E/T to integer values implies
quantization of both T and "energy" spectrum and forces so called super conformal invariance [49, 51] in TGD
applications, which is indeed a basic symmetry of the theory.

There are in�nitely many ways to choose the elementary events and each choice corresponds to a decomposition
of the in�nite set of integers n labelling the powers of p to disjoint subsets. These subsets can be also in�nite. One
can assign to this kind of decomposition a resolution which is the poorer the larger the subsets involved are. p-Adic
thermodynamics would represent the situation in which the resolution is maximal since each set contains only single
pinary digit. Note the analogy with the basis of completely localized wave functions in a lattice.

3. How to map p-adic transition probabilities to real ones?

p-Adic variants of TGD, if they exist, give rise to S-matrices and transition probabilities Pij, which are p-adic
numbers.

1. The p-adic probabilities de�ned by rows of S-matrix mapped to real numbers using canonical identi�cation
respecting the q = r/s decomposition of rational number or its appropriate generalization should de�ne real
probabilities.

2. The simplest example would simple renormalization for the real counterparts of the p-adic probabilities (Pij)R
obtained by canonical identi�cation (or more probably its appropriate modi�cation).

Pij =
∑
k≥0

P k
ijp

k ,

Pij →
∑
k≥0

P k
ijp
−k ≡ (Pij)R ,

(Pij)R → (Pij)R∑
j(Pij)R

≡ PR
ij .

(5.2)

The procedure converges rapidly in powers of p and resembles renormalization procedure of quantum �eld
theories. The procedure automatically divides away one four-momentum delta function from the square of
S-matrix element containing the square of delta function with no well de�ned mathematical meaning. Usually
one gets rid of the delta function interpreting it as the inverse of the four-dimensional measurement volume so
that transition rate instead of transition probability is obtained. Of course, also now same procedure should
work either as a discrete or a continuous version.

3. Probability interpretation would suggest that the real counterparts of p-adic probabilities sum up to unity.
This condition is rather strong since it would hold separately for each row and column of the S-matrix.

4. A further condition would be that the real counterparts of the p-adic probabilities for a given prime p are
identical with the transition probabilities de�ned by the real S-matrix for real space-time sheets with e�ective
p-adic topology characterized by p. This condition might allow to deduce all relevant phase information about
real and corresponding p-adic S-matrices using as an input only the observable transition probabilities.

4. What it means that p-adically independent events are not independent in real sense?

A further condition would be that p-adic quantum transitions represent also in the real sense independent
elementary events so that the real counterpart for a sum of the p-adic probabilities for a �nite number of transitions
equals to the sum of corresponding real probabilities. This condition is de�nitely too strong in the generl case since
only a single transition could correspond to a given p-adic norm of transition probability Pij with i �xed. In p-adic
thermodynamics it can be satis�ed if the degeneracy for an energy eigenstate for a given eigen value L0 = n is

ISSN: 2153-8301

Prespacetime Journal
Published by QuantumDream, Inc.

www.prespacetime.com



Prespacetime Journal July 2010 Vol. 1 Issue 4 Page 628-664
Pitkänen, M. Physics as Generalized Number Theory I: p-Adic Physics and Number Theoretic Universality 646

not larger than p. This condition fails for large values of n for super Virasoro representations since the degeneracy
grows exponentially. This has not practical implications for the large values of p considered.

The crucial question concerns the physical di�erence between the real counterpart for the sum of the p-adic
transition probabilities and for the sum of the real counterparts of these probabilities, which are in general di�erent:

(
∑
j

Pij)R 6=
∑
j

(Pij)R . (5.3)

The suggestion is that p-adic sum of the transition probabilities corresponds to the experimental situation, when
one does not monitor individual transitions but using some common experimental signature only looks whether
the transition leads to this set of the �nal states or not. When one looks each transition separately or e�ectively
performs di�erent experiment by considering only one transition channel in each experiment one must use the sum
of the real probabilities. More precisely, the choice of the experimental signatures divides the set U of the �nal
states to a disjoint union U = ∪iUi and one must de�ne the real counterparts for the transition probabilities PiUk

as

PiUk
=

∑
j∈Uk

Pij ,

PiUk
→ (PiUk

)R ,

(PiUk
)R → (PiUk

)R∑
l(PiUl

)R
≡ PR

iUk
.

(5.4)

The assumption means deep a departure from the ordinary probability theory. If p-adic physics is the physics
of cognitive systems, there need not be anything mysterious in the dependence of the behavior of system on how
it is monitored. At least half-jokingly one might argue that the behavior of an intelligent system indeed depends
strongly on whether the boss is nearby or not. The precise de�nition for the monitoring could be based on the
decomposition of the density matrix representing the entangled subsystem into a direct sum over the subspaces
associated with the degenerate eigenvalues of the density matrix. This decomposition provides a natural de�nition
for the notions of the monitoring and resolution.

The renormalization procedure is in fact familiar from standard physics. Assume that the labels j correspond to
momenta. The division of momentum space to cells of a given size so that the individual momenta inside cells are
not monitored separately means that momentum resolution is �nite. Therefore one must perform p-adic summation
over the cells and de�ne the real probabilities in the proposed manner. p-Adic e�ects resulting from the di�erence
between p-adic and real summations could be the counterpart of the renormalization e�ects in QFT. It should be
added that similar resolution can be de�ned also for the initial states by decomposing them into a union of disjoint
subsets.

5.1.3 p-Adic thermodynamics

The p-adic �eld theory limit as such is not expected to give a realistic theory at elementary particle physics level.
The point is that particles are expected to be either massless or possess mass of order 10−4 Planck mass. The
p-adic description of particle massivation described in [5] shows that p-adic thermodynamics provides the proper
formulation of the problem. What is thermalized is Virasoro generator L0 (mass squared contribution is not included
to L0 so that states do not have a �xed conformal weight). Temperature is quantized purely number theoretically
in low temperature limit (exp(H/kT )→ pL0/T , T = 1/n): in fact, the partition function does not even exist in high
temperature phase. The extremely small mixing of massless states with Planck mass states implies massivation and
predictions of the p-adic thermodynamics for the fermionic masses are in excellent agreement with experimental
masses. Thermodynamic approach also explains the emergence of the length scale Lp for a given p-adic condensation
level and one can develop arguments explaining why primes near prime powers of two are favored.

It should be noticed that rational p-adic temperatures 1/T = k/n are possible, if one poses the restriction that
thermal probabilities are non-vanishing only for some subalgebra of the Super Virasoro algebra isomorphic to the
Super Virasoro algebra itself. The generators Lkn,Gkn, where k is a positive integer, indeed span this kind of a
subalgebra by the fractality of the Super Virasoro algebra and pL0/T is integer valued with this restriction.

One might apply thermodynamics approach should also in the calculation of S-matrix. What is is needed is
thermodynamical expectation value for the transition amplitudes squared over incoming and outgoing states. In
this expectation value 3-momenta are �xed and only mass squared varies.

5.1.4 Generalization of the notion of information

TGD inspired theory of consciousness, in particular the formulation of Negentropy Maximization Principle (NMP)
in p-adic context, has forced to rethink the notion of the information concept. In TGD state preparation process
is realized as a sequence of self measurements. Each self measurement means a decomposition of the sub-system
involved to two unentangled parts. The decomposition is �xed highly uniquely from the requirement that the
reduction of the entanglement entropy is maximal.

The additional assumption is that bound state entanglement is stable against self measurement. This assumption
is somewhat ad hoc and it would be nice to get rid of it. The only manner to achieve this seems to be a generalized
de�nition of entanglement entropy allowing to assign a negative value of entanglement entropy to the bound state
entanglement, so that bound state entanglement would actually carry information, in fact conscious information
(experience of understanding). This would be very natural since macro-temporal quantum coherence corresponds to
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a generation of bound state entanglement, and is indeed crucial for ability to have long lasting non-entropic mental
images.

The generalization of the notion of number concept leads immediately to the basic problem. How to generalize
the notion of entanglement entropy that it makes sense for a genuinely p-adic entanglement? What about the
number-theoretically universal entanglement with entanglement probabilities, which correspond to �nite extension
of rational numbers? One can also ask whether the generalized notion of information could make sense at the level
of the space-time as suggested by quantum-classical correspondence.

In the real context Shannon entropy is de�ned for an ensemble with probabilities pn as

S = −
∑
n

pnlog(pn) . (5.5)

As far as theory of consciousness is considered, the basic problem is that Shannon entropy is always non-negative
so that as such it does not de�ne a genuine information measure. One could de�ne information as a change of
Shannon entropy and this de�nition is indeed attractive in the sense that quantum jump is the basic element of
conscious experience and involves a change. One can however argue that the mere ability to transfer entropy to
environment (say by aggressive behavior) is not all that is involved with conscious information, and even less so
with the experience of understanding or moment of heureka. One should somehow generalize the Shannon entropy
without losing the fundamental additivity property.

1. p-Adic entropies

The key observation is that in the p-adic context the logarithm function log(x) appearing in the Shannon
entropy is not de�ned if the argument of logarithm has p-adic norm di�erent from 1. Situation changes if one uses
an extension of p-adic numbers containing log(p): the conjecture is that this extension is �nite-dimensional. One
might however argue that Shannon entropy should be well de�ned even without the extension.

p-Adic thermodynamics inspires a manner to achieve this. One can replace log(x) with the logarithm logp(|x|p)
of the p-adic norm of x, where logp denotes p-based logarithm. This logarithm is integer valued (logp(p

n) = n), and
is interpreted as a p-adic integer. The resulting p-adic entropy

Sp =
∑
n

pnk(pn) ,

k(pn) = −logp(|pn|) . (5.6)

is additive: that is the entropy for two non-interacting systems is the sum of the entropies of composites. Note
that this de�nition di�ers from Shannon's entropy by the factor log(p). This entropy vanishes identically in the
case that the p-adic norms of the probabilities are equal to one. This means that it is possible to have non-entropic
entanglement for this entropy.

One can consider a modi�cation of Sp using p-adic logarithm if the extension of the p-adic numbers contains
log(p). In this case the entropy is formally identical with the Shannon entropy:

Sp = −
∑
n

pnlog(pn) = −
∑
n

pn
[
−k(pn)log(p) + pknlog(pn/p

kn
]
. (5.7)

It seems that this entropy cannot vanish.
One must map the p-adic value entropy to a real number and here canonical identi�cation can be used:

Sp,R = (Sp)R × log(p)) ,

(
∑
n

xnp
n)R =

∑
n

xnp
−n . (5.8)

The real counterpart of the p-adic entropy is non-negative.

2. Number theoretic entropies and metabolic energy

In the case that the probabilities are rational or belong to a �nite-dimensional extension of rationals, it is
possible to regard them as real numbers or p-adic numbers in some extension of p-adic numbers for any p. The
visions that rationals and their �nite extensions correspond to islands of order in the seas of chaos of real and p-
adic transcendentals suggests that states having entanglement coe�cients in �nite-dimensional extensions of rational
numbers are somehow very special. This is indeed the case. The p-adic entropy entropy Sp = −

∑
n pnlogp(|pn|)log(p)

can be interpreted in this case as an ordinary rational number in an extension containing log(p).
What makes this entropy so interesting is that it can have also negative values in which case the interpretation

as an information measure is natural. In the real context one can �x the value of the value of the prime p by
requiring that Sp is maximally negative, so that the information content of the ensemble could be de�ned as

I ≡ Max{−Sp, p prime} . (5.9)

This information measure is positive when the entanglement probabilities belong to a �nite-dimensional extension
of rational numbers. Thus kind of entanglement is stable against NMP [25], and has a natural interpretation as a
negentropic entanglement.
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There is no need to interpret negentropic entanglement as bound state entanglement as was the original proposal.
This together with the vision about life as something in the intersection of the real and p-adic worlds inspires the
idea about a connection between information and metabolism in living matter. Metabolic energy could be carried
by negentropic entanglement and the feed of metabolic energy would be also feed of negentropy. In particular, the
poorly understood high energy phosphate bond could be identi�ed as a bond involving negentropic entanglement
[20]. The prediction would be that the negentropic states of real systems form a number theoretical hierarchy
according to the prime p and and dimension of algebraic extension characterizing the entanglement.

Number theoretically state function reduction and state preparation could be seen as information generating
processes in the intersection of real and p-adic worlds. p-Adic↔ real transitions make sense in the intersection with
interpretation asa realization of intentional action and build-up of cognitive representations. Later an argument that
these processes have a purely number theoretical interpretation will be developed based on the generalized notion
of unitarity allowing the U -matrix to have matrix elements between the sectors of the state space corresponding to
di�erent number �elds.

5.2 How to de�ne integration and p-adic Fourier analysis, integral calculus, and
p-adic counterparts of geometric objects?

p-Adic di�erential calculus exists and obeys essentially the same rules as ordinary di�erental calculus. The only
di�erence from real context is the existence of p-adic pseudoconstants: any function which depends on �nite number
of pinary digits has vanishing p-adic derivative. This implies non-determinism of p-adic di�ererential equations.
One can de�ned p-adic integral functions using the fact that inde�nite integral is the inverse of di�erentiation. The
basis problem with the de�nite integrals is that p-adic numbers are not well-ordered so that the crucial ordering
of the points of real axis in de�nite integral is not unique. Also p-adic Fourier analysis is problematic since direct
counterparts of ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails to converse exponentially
since it has p-adic norm equal to 1. Note also that these functions exists only when the p-adic norm of x is smaller
than 1.

The following considerations support the view that the p-adic variant of a geometric objects, integration and
p-adic Fourier analysis exists but only when one considers highly symmetric geometric objects such as symmetric
spaces. This is wellcome news from the point of view of physics. At the level of space-time surfaces this is
problematic. The �eld equations associated with Kähler action and modi�ed Dirac equation make sense. Kähler
action de�ned as integral over p-adic space-time surface fails to exist. If however the Kähler function identi�ed as
Kähler for a preferred extremal of Kähler action is rational or algebraic function of preferred complex coordinates
of WCW with ratonal coe�cients, its p-adic continuation is expected to exist.

5.2.1 Circle with rotational symmetries and its hyperbolic counterparts

Consider �rst circle with emphasis on symmetries and Fourier analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such p-adically
and one must consider either trigonometric functions or the phase exp(iφ) instead. If one wants to do Fourier
analysis on circle one must introduce roots Un,N = exp(in2π/N) of unity. This means discretization of the
circle. Introducing all roots Un,p = exp(i2πn/p), such that p divides N , one can represent all Uk,n up to n = N .
Integration is naturally replaced with sum by using discrete Fourier analysis on circle. Note that the roots of
unity can be expressed as products of powers of roots of unity exp(in2π/pk), where pk divides N .

2. There is a number theoretical delicacy involved. By Fermat's theorem ap−1 mod p = 1 for a = 1, ...p − 1 for
a given p-adic prime so that for any integer M divisible by a factor of p− 1 the M :th roots of unity exist as
ordinary p-adic numbers. The problem disappears if these values of M are excluded from the discretization
for a given value of the p-adic prime. The manner to achieve this is to assume that N contains no divisors of
p− 1 and is consistent with the notion of �nite measurement resolution. For instance, N = pn is an especially
natural choice guaranteing this.

3. The p-adic integral de�ned as a Fourier sum does not reduce to a mere discretization of the real integral. In
the real case the Fourier coe�cients must approach to zero as the wave vector k = n2π/N increases. In the
p-adic case the condition consistent with the notion of �nite measurement resolution for angles is that the
p-adic valued Fourier coe�cients approach to zero as n increases. This guarantees the p-adic convergence of
the discrete approximation of the integral for large values of N as n increases. The map of p-adic Fourier
coe�cients to real ones by canonical identi�cation could be used to relate p-adic and real variants of the
function to each other.

This �nding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2, are discrete.
Variables which have the character of a radial coordinate are in natural manner p-adically continuous whereas
phase angles are naturally discrete and described in terms of algebraic extensions. The conclusion is disappoing
since one can quite well argue that the discrete structures can be regarded as real. Is there any manner to escape
this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides representation of p-
adic variant of circle as group U(1). One obtains actually a hierarchy of groups U(1)p,n corresponding to |x|p ≤
1/pn. One could consider a generalization of phases as products Expp(N, n2π/N+x) = exp(in2πn/N)exp(ix)
of roots of unity and exponent functions with an imaginary exponent. This would assign to each root of unity
p-adic continuum interpreted as the analog of the interval between two subsequent roots of unity at circle.
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The hierarchies of measurement resolutions coming as 2π/pn would be naturally accompanied by increasingly
smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-adic variant of
discretization interval. The summation over the roots of unity implies that the integral of

∫
exp(inx)dx

would appear for n = 0. Whatever the value of this integral is, it is compensated by a normalization factor
guaranteing orthonormality.

3. If one interprets the p-adic coordinate as p-adic integer without the identi�cation of points di�ering by a
multiple of n as di�erent points the question whether one should require p-adic continuity arises. Continuity
is obtained if Un(x+mpm) = Un(x) for large values of m. This is obtained if one has n = pk. In the spherical
geometry this condition is not needed and would mean quantization of angular momentum as L = pk, which
does not look natural. If representations of translation group are considered the condition is natural and
conforms with the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in two 2-D Minkowski
space. Plane waves are replaced with exponentially decaying functions of the coordinate η replacing phase angle.
Ordinary exponent function exp(x) has unit p-adic norm when it exists so that it is not a suitable choice. The powers
pn existing for p-adic integers however approach to zero for large values of x = n. This forces discretization of η or
rather the hyperbolic phase as powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) =
pnexp(x) to achieve a p-adic continuum. Also now the integral over the discretization interval is compensated by
orthonormalization and can be forgotten. The integral of exponential function would reduce to a sum

∫
Exppdx =∑

k p
k = 1/(1 − p). One can also introduce �nite-dimensional but non-algebraic extensions of p-adic numbers

allowing e and its roots e1/n since ep exists p-adically.

5.2.2 Plane with translational and rotational symmetries

Consider �rst the situation by taking translational symmetries as a starting point. In this case Cartesian coordinates
are natural and Fourier analysis based on plane waves is what one wants to de�ne. As in the previous case, this can
be done using roots of unity and one can also introduce p-adic continuum by using the p-adic variant of the exponent
function. This would e�ectively reduce the plane to a box. As already noticed, in this case the quantization of wave
vectors as multiples of 1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates (ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2 with the

Cartesian picture square root allowing extension is natural. Also the values of radial coordinate proportional
to odd power of p are problematic since one should introduce

√
p: is this extension internally consistent? Does

this mean that the points ρ ∝ p2n+1 are excluded so that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of unity and one could
obtain continuum by allowing also phases de�ned by p-adic exponent functions.

3. In radial direction one should de�ne the p-adic variants for the integrals of Bessel functions and they indeed
might make sense by algebraic continuation if one consistently de�nes all functions as Fourier expansions.
Delta-function renormalization causes technical problems for a continuum of radial wave vectors. One could
avoid the problem by using expontentially decaying variants of Bessel function in the regions far from origin,
and here the already proposed description of the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere this is
achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean phases are rational
phases (orthogonal triangles for which all sides are integer valued) and form a dense set on circle. Complex
rationals (orthogonal triangles with integer valued short sides) de�ne a more general dense subset of circle.
In both cases it is di�cult to imagine a discretized version of integration over angles since discretization with
constant angle increrement is not possible.

5.2.3 The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical coordinates sin(θ)
is analogous to the radial coordinate of plane. Legedre polynomials expressible as polynomials of sin(θ) and cos(θ)
are expressible in terms of phases and the integration measure sin2(θ)dθdφ reduces the integral of S2 to summation.
As before one can introduce also p-adic continuum. Algebraic cuto�s in both angular momentum l and m appear
naturally. Similar cuto�s appear in the representations of quantum groups and there are good reasons to expect
that these phenomena are correlated.

Exponent of Kähler function appears in the integration over con�guration space. From the expression of Kähler
gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and Jθφ = sin(θ) the expression exp(K) =
sin(θ). Hence the exponent of Kähler function is expressible in terms of spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric space- could be
performed purely group theoretically.

1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe generalizes to
arbitrary symmetric space G/H by using the Cartan decomposition g = t + h, [h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h.
The exponentiation of t maps t to G/H in this case. The exponential map has a p-adic generalization obtained
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by considering Lie algebra with coe�cients with p-adic norm smaller than one so that the p-adic exponent
function exists. As a matter fact, one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of
the p-adic norm coming as p−k and this hierarchy naturally corresponds to the hierarchy of angle resolutions
coming as 2π/pk. By introducing �nite-dimensional transcendental extensions containing roots of e one obtains
also a hierarchy of p-adic Lie-algebras associated with transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-algebra in p-
adic sense to obtain a p-adic completion of the discrete sphere. Each point of the discretized sphere would
correspond to a p-adic continuous variant of sphere as a symmetric space. Similar construction applies in the
case of CP2. Quite generally, a kind of fractal or holographic symmetric space is obtained from a discrete
variant of the symmetric space by replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N − 1)M discretization volumes
which is the number of points with non-vanishing t-coordinates. It would be nice if one could map the p-adic
discretization volumes with non-vanishing t-coordinates to their positive valued real counterparts by applying
canonical identi�cation. By group invariance it is enough to show that this works for a discretization volume
assignable to the origin. Since the p-adic numbers with norm smaller than one are mapped to the real unit
interval, the p-adic Lie algebra is mapped to the unit cell of the discretization lattice of the real variant of t.
Hence by a proper normalization this mapping is possible.

The above considerations suggests that the hierarchies of measurement resolutions coming as ∆φ = 2π/pn are in
a preferred role. One must be however cautious in order to avoid too strong assumptions. The above considerations
suggest that the hierarchies of measurement resolutions coming as ∆φ = 2π/pn are in a preferred role. One must
be however cautious in order to avoid too strong assumptions. The following arguments however support this
identi�cation.

1. The vision about p-adicization characterizes �nite measurement resolution for angle measurement in the most
general case as ∆φ = 2πM/N , where M and N are positive integers having no common factors. The powers
of the phases exp(i2πM/N) de�ne identical Fourier basis irrespective of the value of M unless one allows only
the powers exp(i2πkM/N) for which kM < N holds true: in the latter case the measurement resolutions with
di�erent values of M correspond to di�erent numbers of Fourier components. Otherwise the measurement
resolution is just ∆φ = 2π/pn. If one regards N as an ordinary integer, one must have N = pn by the p-adic
continuity requirement.

2. One can also interpret N as a p-adic integer and assume that state function reduction selects one particular
prime (no superposition of quantum states with di�erent p-adic topologies). For N = pnM , where M is
not divisible by p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k, which is in�nite as a real

integer but e�ectively reduces to a �nite integer K(p) =
∑N−1

k=0 Mkp
k. As a root of unity the entire phase

exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M mod pn. The phase would non-trivial only for
p-adic primes appearing as factors in N . The corresponding measurement resolution would be ∆φ = R2π/N .
One could assign to a given measurement resolution all the p-adic primes appearing as factors in N so that
the notion of multi-p p-adicity would make sense. One can also consider the identi�cation of the measurement
resolution as ∆φ = |N/M |p = 2π/pk. This interpretation is supported by the approach based on in�nite
primes [17, A6].

5.2.4 What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time surface could be p-adicized
by using the proposed method of discretization. Consider �rst the p-adic counterparts of the integrals over the
partonic 2-surface X2.

1. WCW Hamiltonians and Kähler form are expressible using �ux Hamiltonians de�ned in terms of X2 integrals
of JHA, where HA is δCD×CP2 Hamiltonian, which is a rational function of the preferred coordinates de�ned
by the exponentials of the coordinates of the sub-space t in the appropriate Cartan algebra decomposition.
The �ux factor J = εαβJαβ

√
g2 is scalar and does not actually depend on the induced metric.

2. The notion of �nite measurement resolution would suggest that the discretization of X2 is somehow induced
by the discretization of δCD × CP2. The coordinates of X2 could be taken to be the coordinates of the
projection of X2 to the sphere S2 associated with δM4

± or to the homologically non-trivial geodesic sphere of
CP2 so that the discretization of the integral would reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional conditions guar-
anteing that both HA and J are algebraic numbers at the points of discretization (recall that roots of unity
are involved). Assume for de�niteness that S2 is rM = constant sphere. If the remaining preferred coordi-
nates are functions of the preferred S2 coordinates mapping phases to phases at discretization points, one
obtains the desired outcome. These conditions are rather strong and mean that the various angles de�ning
CP2 coordinates -at least the two cyclic angle coordinates- are integer multiples of those assignable to S2 at
the points of discretization. This would be achieved if the preferred complex coordinates of CP2 are powers
of the preferred complex coordinate of S2 at these points. One could say that X2 is algebraically continued
from a rational surface in the discretized variant of δCD×CP2. Furthermore, if the measurement resolutions
come as 2π/pn as p-adic continuity actually requires and if they correspond to the p-adic group Gp,n for which
group parameters satisfy |t|p ≤ p−n, one can precisely characterize how a p-adic prime characterizes the real
partonic 2-surface. This would be a ful�llment of one of the oldest dreams related to the p-adic vision.
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A even more ambitious dream would be that even the integral of the Kähler action for preferred extremals could
be de�ned using a similar procedure. The conjectured slicing of Minkowskian space-time sheets by string world
sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates ofH at both ends of CD by introducing a continuous slicing ofM4×CP2

by the translates of δM4
±×CP2 in the direction of the time-like vector connecting the tips of CD. As space-time

coordinates one could select four of the eight coordinates de�ning this slicing. For instance, for the regions of
the space-time sheet representable as maps M4 → CP2 one could use the preferred M4 time coordinate, the
radial coordinate of δM4

+, and the angle coordinates of rM = constant sphere.

2. Kähler action density should have algebraic values and this would require the strengthening of the proposed
conditions for X2 to apply to the entire slicing meaning that the discretized space-time surface is a rational
surface in the discretized CD × CP2. If this condition applies to the entire space-time surface it would
e�ectively mean the discretization of the classical physics to the level of �nite geometries. This seems quite
strong implication but is consistent with the preferred extremal property implying the generalized Bohr rules.

5.2.5 Tentative conclusions

These �ndings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since exponent
functions play a fundamental role in group theory and p-adic variants of real geometries exist only under
symmetries- possibly maximal possible symmetries- since otherwise the notion of Fourier analysis making
possible integration does not exist. The inner product de�ned in terms of integration reduce for functions
representable in Fourier basis to sums and can be carried out by using orthogonality conditions. Convolution
involving integration reduces to a product for Fourier components. In the case of imbedding space and WCW
these conditions are satis�ed but for space-time surfaces this is not possible.

2. There are several manners to choose the Cartan algebra already in the case of sphere. In the case of plane
one can consider either translations or rotations and this leads to di�erent p-adic variants of plane. Also the
realization of the hierarchy of Planck constants leads to the conclusion that the extended imbedding space
and therefore also WCW contains sectors corresponding to di�erent choices of quantization axes meaning that
quantum measurement has a direct geometric correlate. One an imagine also other discretizations and choices
of preferred coordinates and the interpretation is that they correspond to di�erent cognitive representations
and to to di�erent p-adic physics. This means a re�nement of General Coordinate Invariance taking into
account cognition.

3. The above described 2-D examples represent symplectic geometries for which one has natural decomposition
of coordinates to canonical pairs of cyclic coordinate (phase angle) and corresponding canonical conjugate co-
ordinate. p-Adicization depends on whether the conjugate corresponds to an angle or noncompact coordinate.
In both cases it is however possible to de�ne integration. For instance, in the case of CP2 one would have two
canonically conjugate pairs and one can de�ne the p-adic counterparts of CP2 partial waves by generalizing
the procedure applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated. In particular
inner products can be de�ned as integrals. The Hamiltonians generating isometries are rational functions
of phases: this inspires the hope that also WCW Hamiltonians also rational functions of preferred WCW
coordinates and thus allow p-adic variants.

4. Discretization by introducing algebraic extensions seems unavoidable in the p-adicization of geometrical objects
but one can have p-adic continuum as the analog of the discretization interval and in the function basis
expressible in terms of phase factors and p-adic counterparts of exponent functions. As already described,
the exponential map for Lie group provide an elegant manner to realize this. This would give a precise
meaning for the p-adic counterparts of the imbedding space and WCW if the latter is a symmetric space
allowing coordinatization in terms of phase angles and conjugate coordinates. The intersection of p-adic and
real worlds in a given measurement resolution would be unique and correspond to the points de�ning the
discretization.

5.3 p-Adic imbedding space

The construction of both quantum TGD and p-adic QFT limit requires p-adicization of the imbedding space
geometry. Also the fact that p-adic Poincare invariance throws considerable light to the p-adic length scale hypothesis
suggests that p-adic geometry is really needed. The construction of the p-adic version of the imbedding space
geometry and spinor structure relies on the symmetry arguments and to the generalization of the analytic formulas
of the real case almost. The essential element is the notion of �nite measurement resolution leading to discretization
in large and to p-adicization below the resolution scale. This approach leads to a highly nontrivial generalization
of the symmetry concept and p-adic Poincare invariance throws light to the p-adic length scale hypothesis. An
important delicacy is related to the identi�cation of the fundamental p-adic length scale, which corresponds to the
unit element of the p-adic number �eld and is mapped to the unit element of the real number �eld in the canonical
identi�cation mapping p-adic mass squared to its real counterpart.
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5.3.1 p-Adic Riemannian geometry depends on cognitive representation

p-Adic Riemann geometry is a direct formal generalization of the ordinary Riemann geometry. In the minimal
purely algebraic generalization one does not try to de�ne concepts like arch length and volume involving de�nite
integrals but simply de�nes the p-adic geometry via the metric identi�ed as a quadratic form in the tangent space
of the p-adic manifold. Canonical identi�cation would make it possible to de�ne p-adic variant of Riemann integral
formally allowing to calculate arc lengths and similar quantities but looks like a trick. The realization that the
p-adic variant of harmonic analysis makes it possible to de�ne de�nite integrals in the case of symmetric space
became possible only after a detailed vision about what quantum TGD is [10] had emerged.

Symmetry considerations dictate the p-adic counterpart of the Riemann geometry forM4
+×CP2 to a high degree

but not uniquely. This non-uniqueness might relate to the distinction between di�erent cognitive representations.
For instance, in the case of Euclidian plane one can introduce linear or cylindrical coordinates and the manifest
symmetries dictating the preferred coordinates correspond to translational and rotational symmetries in these two
cases and give rise to di�erent p-adic variants of the plane. Both linear and cylindrical coordinates are �xed only
modulo the action of group consisting of translations and rotations and the degeneracy of choices can be interpreted
in terms of a choice of quantization axies of angular momentum and momenta.

The most natural looking manner to de�ne the p-adic counterpart of M4 is by using a p-adic completion for
a subset of rational points in coordinates which are preferred on physical basis. In case of M4 linear Minkowski
coordinates are an obvious choice but also the counterparts of Robertson-Walker coordinates for M4

+ de�ned as
[t, (z, x, y)] = a × [cosh(η), sinh(η)(cos(θ), sin(θ)cos(φ), sin(θ)sin(φ))] expressible in terms of phases and their
hyperbolic counterparts and transforming nicely under the Cartan algebra of Lorentz group are possible. p-Adic
variant is obtained by introducing �nite measurement resolution for angle and replacing angle range by �nite number
of roots of unity. Same applies to hyperbolic angles.

Rational CP2 could be de�ned as a coset space SU(3, Q)/U(2, Q) associated with complex rational unitary
3 × 3-matrices. CP2 could be de�ned as coset space of complex rational matrices by choosing one point in each
coset SU(3, Q)/U(2, Q) as a complex rational 3× 3-matrix representable in terms of Pythagorean phases [48] and
performing a completion for the elements of this matrix by multiplying the elements with the p-adic exponentials
exp(iu), |u|p < 1 such that one obtains p-adically unitary matrix.

This option is not very natural as far as integration is considered. CP2 however allows the analog of spherical
coordinates for S2 expressible in terms of angle variables alone and this suggests the introduction of the variant
of CP2 for which the coordinate values correspond to roots of unity. Completion would be performed in the same
manner as for rational CP2. This non-uniqueness need not be a drawback but could re�ect the fact that the p-adic
cognitive representation of real geometry are geometrically non-equivalent. This means a re�nement of the principle
of General Coordinate Invariance taking into account the fact that the cognitive representation of the real world
a�ects the world with cognition included in a delicate manner.

5.3.2 The identi�cation of the fundamental p-adic length scale

The fundamental p-adic length scale correponds to the p-adic unit e = 1 and is mapped to the unit of the real
numbers in the canonical identi�cation. The correct physical identi�cation of the fundamental p-adic length scale
is of crucial importance since the predictions of the theory for p-adic masses depend on the choice of this scale.

In TGD the 'radius' R of CP2 is the fundamental length scale (2πR is by de�nition the length of the CP2

geodesics). In accordance with the idea that p-adic QFT limit makes sense only above length scales larger than
the radius of CP2 R is of same order of magnitude as the p-adic length scale de�ned as l = π/m0, where m0 is the
fundamental mass scale and related to the 'cosmological constant' Λ (Rij = Λsij) of CP2 by

m2
0 = 2Λ . (5.10)

The relationship between R and l is uniquely �xed:

R2 =
3

m3
0

=
3

2Λ
=

3l2

π2
. (5.11)

Consider now the identi�cation of the fundamental length scale.

1. One must use R2 or its integer multiple, rather than l2, as the fundamental p-adic length scale squared in
order to avoid the appearance of the p-adically ill de�ned π:s in various formulas of CP2 geometry.

2. The identi�cation for the fundamental length scale as 1/m0 leads to di�culties.

(a) The p-adic length for the CP2 geodesic is proportional to
√

3/m0. For the physically most interesting p-
adic primes satisfying p mod 4 = 3 so that

√
−1 does not exist as an ordinary p-adic number,

√
3 = i

√
−3

belongs to the complex extension of the p-adic numbers. Hence one has troubles in getting real length
for the CP2 geodesic.

(b) Ifm2
0 is the fundamental mass squared scale then general quark states have mass squared, which is integer

multiple of 1/3 rather than integer valued as in string models.

3. These arguments suggest that the correct choice for the fundamental length scale is as 1/R so thatM2 = 3/R2

appearing in the mass squared formulas is p-adically real and all values of the mass squared are integer multiples
of 1/R2. This does not a�ect the real counterparts of the thermal expectation values of the mass squared in
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the lowest p-adic order but the e�ects, which are due to the modulo arithmetics, are seen in the higher order
contributions to the mass squared. As a consequence, one must identify the p-adic length scale l as

l ≡ πR ,

rather than l = π/m0. This is indeed a very natural identi�cation. What is especially nice is that this
identi�cation also leads to a solution of some longstanding problems related to the p-adic mass calculations.
It would be highly desirable to have the same p-adic temperature Tp = 1 for both the bosons and fermions
rather than Tp = 1/2 for bosons and Tp = 1 for fermions. For instance, black hole elementary particle analogy
as well as the need to get rid of light boson exotics suggests this strongly. It indeed turns out possible to
achieve this with the proposed identi�cation of the fundamental mass squared scale.

5.3.3 p-Adic counterpart of M4
+

The construction of the p-adic counterpart of M4
+ seems a relatively straightforward task and should reduce to

the construction of the p-adic counter part of the real axis with the standard metric. As already noticed, linear
Minkowksi coordinates are physically and mathematically preferred coordinates and it is natural to construct the
metric in these coordinates.

There are some quite interesting delicacies related to the p-adic version of the Poincare invariance. Consider
�rst translations. In order to have imaginary unit needed in the construction of the ordinary representations of the
Poincare group one must have p mod 4 = 3 to guarantee that

√
−1 does not exist as an ordinary p-adic number. It

however seems that the construction of the representations is at least formally possible by replacing imaginary unit
with the square root of some other p-adic number not existing as a p-adic number.

It seems that only the discrete group of translations allows representations consisting of orthogonal planewaves.
p-Adic plane waves can be de�ned in the lattice consisting of the multiples of x0 = m/n consisting of points with
p-adic norm not larger that |x0|p and the points pnx0 de�ne fractally scaled-down versions of this set. In canonical
identi�cation these sets corresponds to volumes scaled by factors p−n.

A physically interesting question is whether the Lorentz group should contain only the elements obtained by
exponentiating the Lie-algebra generators of the Lorentz group or whether also large Lorentz transformations,
containing as a subgroup the group of the rational Lorentz transformations, should be allowed. If the group
contains only small Lorentz transformations, the quantization volume of M4

+ (say the points with coordinates mk

having p-adic norm not larger than one) is also invariant under Lorentz transformations. This means that the
quantization of the theory in the p-adic cube |mk| < pn is a Poincare invariant procedure unlike in the real case.

The appearance of the square root of p, rather than the naively expected p, in the expression of the p-adic length
scale can be undertood if the p-adic version of M4 metric contains p as a scaling factor:

ds2 = pR2mkldm
kdml ,

R ↔ 1 , (5.12)

wheremkl is the standardM
4 metric (1,−1,−1,−1). The p-adic distance function is obtained by integrating the line

element using p-adic integral calculus and this gives for the distance along the k:th coordinate axis the expression

s = R
√
pmk . (5.13)

The map from p-adic M4 to real M4 is canonical identi�cation plus a scaling determined from the requirement
that the real counterpart of an in�nitesimal p-adic geodesic segment is same as the length of the corresponding real
geodesic segment:

mk → π(mk)R . (5.14)

The p-adic distance along the k:th coordinate axis from the origin to the point mk = (p− 1)(1 + p+ p2 + ...) = −1
on the boundary of the set of the p-adic numbers with norm not larger than one, corresponds to the fundamental
p-adic length scale Lp =

√
pl =

√
pπR:

√
p((p− 1)(1 + p+ ...))R → πR

(p− 1)(1 + p−1 + p−2 + ...)
√
p

= Lp .

(5.15)

What is remarkable is that the shortest distance in the range mk = 1, ..m− 1 is actually L/
√
p rather than l so that

p-adic numbers in range span the entire R+ at the limit p → ∞. Hence p-adic topology approaches real topology
in the limit p→∞ in the sense that the length of the discretization step approaches to zero.

5.3.4 The two variants of CP2

As noticed, CP2 allows two variants based on rational discretization and on the discretization based on roots of unity.
The root of unity option corresponds to the phases associated with 1/(1+r2) = tan2(u/2) = (1−cos(u))/(1+cos(u))
and implies that integrals of spherical harmonics can be reduced to summations when angular resolution ∆u = 2π/N
is introduced. In the p-adic context, one can replace distances with trigonometric functions of distances along zig
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zag curves connecting the points of the discretization. Physically this notion of distance is quite reasonable since
distances are often measured using interferometer.

In the case of rtional variant of CP2 one can proceed by de�ning the p-adic counterparts of SU(3) and U(2)
and using the identi�cation CP2 = SU(3)/U(2). The p-adic counterpart of SU(3) consists of all 3 × 3 unitary
matrices satisfying p-adic unitarity conditions (rows/colums are mutually orthogonal unit vectors) or its suitable
subgroup: the minimal subgroup corresponds to the exponentials of the Lie-algebra generators. If one allows
algebraic extensions of the p-adic numbers, one obtains several extensions of the group. The extension allowing the
square root of a p-adically real number is the most interesting one in this respect since the general solution of the
unitarity conditions involves square roots.

The subgroup of SU(3) obtained by exponentiating the Lie-algebra generators of SU(3) normalized so that their
non-vanishing elements have unit p-adic norm, is of the form

SU(3)0 = {x = exp(
∑
k

itkXk) ; |tk|p < 1} = {x = 1 + iy ; |y|p < 1} . (5.16)

The diagonal elements of the matrices in this group are of the form 1 + O(p). In order O(p) these matrices reduce
to unit matrices.

Rational SU(3) matrices do not in general allow a representation as an exponential. In the real case all SU(3)
matrices can be obtained from diagonalized matrices of the form

h = diag{exp(iφ1), exp(iφ2), exp(exp(−i(φ1 + φ2)} . (5.17)

The exponentials are well de�ned provided that one has |φi|p < 1 and in this case the diagonal elements are of form
1 +O(p). For p mod 4 = 3 one can however consider much more general diagonal matrices

h = diag{z1, z2, z3} ,
for which the diagonal elements are rational complex numbers

zi =
(mi + ini)√
m2
i + n2

i

,

satisfying z1z2z3 = 1 such that the components of zi are integers in the range (0, p − 1) and the square roots
appearing in the denominators exist as ordinary p-adic numbers. These matrices indeed form a group as is easy to
see. By acting with SU(3)0 to each element of this group and by applying all possible automorphisms h → ghg−1

using rational SU(3) matrices one obtains entire SU(3) as a union of an in�nite number of disjoint components.
The simplest (unfortunately not physical) possibility is that the 'physical' SU(3) corresponds to the connected

component of SU(3) represented by the matrices, which are unit matrices in order O(p). In this case the construction
of CP2 is relatively straightforward and the real formalism should generalize as such. In particular, for p mod 4 = 3
it is possible to introduce complex coordinates ξ1, ξ2 using the complexi�cation for the Lie-algebra complement of
su(2) × u(1). The real counterparts of these coordinates vary in the range [0, 1) and the end points correspond to
the values of ti equal to ti = 0 and ti = −p. The p-adic sphere S2 appearing in the de�nition of the p-adic light
cone is obtained as a geodesic submanifold of CP2 (ξ1 = ξ2 is one possibility). From the requirement that real CP2

can be mapped to its p-adic counterpart it is clear that one must allow all connected components of CP2 obtained
by applying discrete unitary matrices having no exponential representation to the basic connected component. In
practice this corresponds to the allowance of all possible values of the p-adic norm for the components of the complex
coordinates ξi of CP2.

The simplest approach to the de�nition of the CP2 metric is to replace the expression of the Kähler function in
the real context with its p-adic counterpart. In standard complex coordinates for which the action of U(2) subgroup
is linear, the expression of the Kähler function reads as

K = log(1 + r2) ,

r2 =
∑
i

ξ̄iξi . (5.18)

p-Adic logarithm exists provided r2 is of order O(p). This is the case when ξi is of order O(p). The de�nition of
the Kähler function in a more general case, when all possible values of the p-adic norm are allowed for r, is based
on the introduction of a p-adic pseudo constant C to the argument of the Kähler function

K = log(
1 + r2

C
) .

C guarantees that the argument is of the form 1+r2

C
= 1 + O(p) allowing a well-de�ned p-adic logarithm. This

modi�cation of the Kähler function leaves the de�nition of Kähler metric, Kähler form and spinor connection
invariant.

A more elegant manner to avoid the di�culty is to use the exponent Ω = exp(K) = 1+r2 of the Kähler function
instead of Kähler function, which indeed well de�ned for all coordinate values. In terms of Ω one can express the
Kähler metric as

gkl̄ =
∂k∂l̄Ω

Ω
− ∂kΩ∂l̄Ω

Ω2
. (5.19)
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The p-adic metric can be de�ned as

sij̄ = R2∂i∂j̄K = R2 (δij̄r
2 − ξ̄iξj)

(1 + r2)2
.

(5.20)

The expression for the Kähler form is the same as in the real case and the components of the Kähler form in the
complex coordinates are numerically equal to those of the metric apart from the factor of i. The components in
arbitrary coordinates can be deduced from these by the standard transformation formulas.

6 Quantum physics in the intersection of p-adic and real worlds

The p-adicization of quantum TGD means several challenges. One should de�ne the notions of Riemann geometry
and its variants such as Kähler geometry in the p-adic context. The notion of the p-adic space-time surface and its
relationship to its real counterpart should be understood. Also the construction of Kähler geometry of "world of
classical worlds" (WCW) in p-adic context should be carried out and the notion of WCW spinor �elds should be
de�ned in the p-adic context. The crucial technical problems relate to the notion of integral and Fourier analysis,
which are the central elements of any physical theory. The basic challenge is to overcome the fact that although the
�eld equations assignable to a given variational principle make sense p-adically, the action de�ned as an integral over
arbitrary space-time surface has no natural p-adic counterpart as such in the generic case. What raises hopes that
these challenges could be overcome is the symmetric space property of WCW and the idea of algebraic continuation.
If WCW geometry is expressible in terms of rational functions with rational coe�cients it allows a generalization
to the p-adic context. Also integration can be reduced to Fourier analysis in the case of symmetric spaces. I have
discussed the p-adicization and fusion of real and p-adic physics in earlier article [29] and will not go to it here
anymore. Su�ce it to say that the notion of symmetric space allowing to algebraize the integration is central element
of the approach.

The intersection of real and p-adic worlds is especially interesting as far as the physics of living system is
considered in TGD framework and is discussed in this section.

6.1 What it means to be in the intersection of real and p-adic worlds?

The �rst question is what one really means when one speaks about a partonic 2-surface in the intersection of real
and p-adic worlds or in the intersection of two p-adic worlds.

1. Many algebraic numbers can be regarded also as ordinary p-adic numbers: square roots of roughly one half
of integers provide a simple example about this. Should one assume that all algebraic numbers representable
as ordinary p-adic numbers belong to the intersection of the real and p-adic variants of partonic 2-surface (or
to the intersection of two di�erent p-adic number �elds)? Is there any hope that the listing of the points in
the intersection is possible without a complete knowledge of the number theoretic anatomy of p-adic number
�elds in this kind of situation? And is the set of common algebraic points for real and p-adic variants of the
partonic 2-surface X2 quite too large- say a dense sub-set of X2?

This hopeless looking complexity is simpli�ed considerably if one reduces the considerations to algebraic
extensions of rationals since these induce the algebraic extensions of p-adic numbers. For instance, if the
p-adic number �eld contains some n:th roots of integers in the range (1, p − 1) as ordinary p-adic numbers
they are identi�ed with their real counterparts. In principle one should be able to characterize the -probably
in�nite-dimensional- algebraic extension of rationals which is representable by a given p-adic number �eld as
p-adic numbers of unit norm. This does not look very practical.

2. At the level WCW one must direct the attention to the function spaces used to de�ne partonic 2-surfaces.
That is the spaces of rational functions or even algebraic functions with coe�cients of polynomials in algebraic
extensions of rational numbers making sense with arguments in all number �elds so that algebraic extensions
of rationals provide a neat hierarchy de�ning also the points of partonic 2-surfaces to be considered. If one
considers only the algebraic points of X2 belonging to the extension appearing in the de�nition the function
space as common to various number �elds one has good hopes that the number of common points is �nite.

3. Already the ratios of polynomials with rational coe�cients lead to algebraic extensions of rationals via their
roots. One can replace the coe�cients of polynomials with numbers in algebraic extensions of rationals. Also
algebraic functions involving roots of rational functions can be considered and force to introduce the algebraic
extensions of p-adic numbers. For instance, an n:th root of a polynomial with rational coe�cients is well
de�ned if n:th roots of p-adic integers in the range (1, p − 1) are well well-de�ned. One clearly obtains an
in�nite hierarchy of function spaces. This would give rise to a natural hierarchy in which one introduces n:th
roots for a minimum number of p-adic integers in the range (1, p− 1) in the range 1 ≤ n ≤ N . Note that also
the roots of unity would be introduced in a natural manner.

The situation is made more complex because the partonic 2-surface is in general de�ned by the vanishing of six
rational functions so that algebraic extensions are needed. An exception occurs when six preferred imbedding
space coordinates are expressible as rational functions of the remaining two preferred coordinates. In this
case the number of common rational points consists of all rational points associated with the remaining two
coordinates. This situation is clearly non-generic. Usually the number of common points is much smaller
(the set of rational points satisfying xn + yn = zn for n > 2 is a good example). This however suggests that
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these surfaces are of special importance since the naive expectation is that the amplitude for transformation
of intention to action or its reversal is especially large in this case. This might also explain why these surfaces
are easy to understand mathematically.

4. These considerations suggest that the numbers common to reals and p-adics must be de�ned as rationals and
algebraic numbers appearing explicitly in the algebraic extension or rationals associated with the function
spaces used to de�ne partonic 2-surfaces. This would make the deduction of the common points of partonic
2-surface a task possible at least in principle. Algebraic extensions of rationals rather than those of p-adic
numbers would be in the fundamental role and induce the extensions of p-adic numbers.

6.2 Braids and number theoretic braids

Braids -not necessary number theoretical- provide a realization discretization as a space-time correlate for the �nite
measurement resolution. The notion of braid was inspired by the idea about quantum TGD as almost topological
quantum �eld theory. Although the original form of this idea has been buried, the notion of braid has survived: in
the decomposition of space-time sheets to string world sheets, the ends of strings de�ne representatives for braid
strands at light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number theoretic braid
requiring that the points in the intersection of the braid with the partonic 2-surface correspond to rational or at
most algebraic points of H in preferred coordinates �xed by symmetry considerations. The challenge has been to
�nd a unique identi�cation of the number theoretic braid or at least of the end points of the braid. The following
consideration suggest that the number theoretic braids are not a useful notion in the generic case but make sense
and are needed in the intersection of real and p-adic worlds which is in crucial role in TGD based vision about living
matter [25].

It is only the braiding that matters in topological quantum �eld theories used to classify braids. Hence braid
should require only the �xing of the end points of the braids at the intersection of the braid at the light-like
boundaries of CDs and the braiding equivalence class of the braid itself. Therefore it is enough is to specify the
topology of the braid and the end points of the braid in accordance with the attribute "number theoretic". Of
course, the condition that all points of the strand of the number theoretic braid are algebraic is impossible to
satisfy.

The situation in which the equations de�ningX2 make sense both in real sense and p-adic sense using appropriate
algebraic extension of p-adic number �eld is central in the TGD based vision about living matter [25]. The reason
is that in this case the notion of number entanglement theoretic entropy having negative values makes sense and
entanglement becomes information carrying. This motivates the identi�cation of life as something in the intersection
of real and p-adic worlds. In this situation the identi�cation of the ends of the number theoretic braid as points
belonging to the intersection of real and p-adic worlds is natural. These points -call them brie�y algebraic points-
belong to the algebraic extension of rationals needed to de�ne the algebraic extension of p-adic numbers. This
de�nition however makes sense also when the equations de�ning the partonic 2-surfaces fail to make sense in both
real and p-adic sense. In the generic case the set of points satisfying the conditions is discrete. For instance,
according to Fermat's theorem the set of rational points satisfying Xn + Y n = Zn reduces to the point (0, 0, 0) for
n = 3, 4, .... Hence the constraint might be quite enough in the intersection of real and p-adic worlds where the
choice of the algebraic extension is unique.

One can however criticize this proposal.

1. One must �x the the number of points of the braid and outside the intersection and the non-uniquencess of
the algebraic extension makes the situation problematic. Physical intuition suggests that the points of braid
de�ne carriers of quantum numbers assignable to second quantized induced spinor �elds so that the total
number of fermions antifermions would de�ne the number of braids. In the intersection the highly non-trivial
implication is that this number cannot exceed the number of algebraic points.

2. In the generic case one expects that even the smallest deformation of the partonic 2-surface can change the
number of algebraic points and also the character of the algebraic extension of rational numbers needed. The
restriction to rational points is not expected to help in the generic case. If the notion of number theoretical
braid is meant to be practical, must be able to decompose WCW to open sets inside which the numbers of
algebraic points of braid at its ends are constant. For real topology this is expected to be impossible and
it does not make sense to use p-adic topology for WCW whose points do not allow interpretation as p-adic
partonic surfaces.

3. In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW, the situation is
di�erent. Since the coe�cients of polynomials involved with the de�nition of the partonic 2-surface must be
rational or at most algebraic, continuous deformations are not possible so that one avoids the problem.

4. This forces to ask the reason why for the number theoretic braids. In the generic case they seem to produce
only troubles. In the intersection of real and p-adic worlds they could however allow the construction of
the elements of M -matrix describing quantum transitions changing p-adic to real surfaces and vice versa as
realizations of intentions and generation of cognitions. In this the case it is natural that only the data from
the intersection of the two worlds are used. In [25] I have sketched the idea about number theoretic quantum
�eld theory as a description of intentional action and cognition.

There is also the the problem of �xing the interior points of the braid modulo deformations not a�ecting the
topology of the braid.
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1. In�nite number of non-equivalent braidings are possible. Should one allow all possible braidings for a �xed
light-like 3-surface and say that their existence is what makes the dynamics essentially three-dimensional even
in the topological sense? In this case there would be no problems with the condition that the points at both
ends of braid are algebraic.

2. Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces and corresponding 4-D
tangent space distributions? The slicing of the space-time sheet by partonic 2-surfaces and string word sheets
suggests that the ends of string world sheets could de�ne the braid strands in the generic context when there
is no algebraicity condition involved. This could be taken as a very natural manner to �x the topology of braid
but leave the freedom to choose the representative for the braid. In the intersection of real and p-adic worlds
there is no good reason for the end points of strands in this case to be algebraic at both ends of the string
world sheet. One can however start from the braid de�ned by the end points of string world sheets, restrict
the end points to be algebraic at the end with a smaller number of algebraic points and and then perform
a topologically non-trivial deformation of the braid so that also the points at the other end are algebraic?
Non-trivial deformations need not be possible for all possible choices of algebraic braid points at the other end
of braid and di�erent choices of the set of algebraic points would give rise to di�erent braidings. A further
constraint is that only the algebraic points at which one has assign fermion or antifermion are used so that
the number of braid points is not always maximal.

3. One can also ask whether one should perform the gauge �xing for the strands of the number theoretic braid
using algebraic functions making sense both in real and p-adic context. This question does not seem terribly
relevant since since it is only the topology of the braid that matters.

6.3 Number theoretical Quantum Mechanics

The vision about life as something in the intersection of the p-adic and real worlds requires a generalization of quan-
tum theory to describe the U -process properly. One must answer several questions. What it means mathematically
to be in this intersection? What the leakage between di�erent sectors does mean? Is it really possible to formally
extend quantum theory so that direct sums of Hilbert spaces in di�erent number �elds make sense? Or should one
consider the possibility of using only complex, algebraic, or rational Hilbert spaces also in p-adic sectors so that
p-adicization would take place only at the level of geometry?

6.3.1 What it means to be in the intersection of real and p-adic worlds?

The �rst question is what one really means when one speaks about a partonic 2-surface in the intersection of real
and p-adic worlds or in the intersection of two p-adic worlds.

1. Many algebraic numbers can be regarded also as ordinary p-adic numbers: square roots of roughly one half
of integers provide a simple example about this. Should one assume that all algebraic numbers representable
as ordinary p-adic numbers belong to the intersection of the real and p-adic variants of partonic 2-surface (or
to the intersection of two di�erent p-adic number �elds)? Is there any hope that the listing of the points in
the intersection is possible without a complete knowledge of the number theoretic anatomy of p-adic number
�elds in this kind of situation? And is the set of common algebraic points for real and p-adic variants of the
partonic 2-surface X2 quite too large- say a dense sub-set of X2?

This hopeless looking complexity is simpli�ed considerably if one reduces the considerations to algebraic
extensions of rationals since these induce the algebraic extensions of p-adic numbers. For instance, if the
p-adic number �eld contains some n:th roots of integers in the range (1, p − 1) as ordinary p-adic numbers
they are identi�ed with their real counterparts. In principle one should be able to characterize the -probably
in�nite-dimensional- algebraic extension of rationals which is representable by a given p-adic number �eld as
p-adic numbers of unit norm. This does not look very practical.

2. At the level WCW one must direct the attention to the function spaces used to de�ne partonic 2-surfaces.
That is the spaces of rational functions or even algebraic functions with coe�cients of polynomials in algebraic
extensions of rational numbers making sense with arguments in all number �elds so that algebraic extensions
of rationals provide a neat hierarchy de�ning also the points of partonic 2-surfaces to be considered. If one
considers only the algebraic points of X2 belonging to the extension appearing in the de�nition the function
space as common to various number �elds one has good hopes that the number of common points is �nite.

3. Already the ratios of polynomials with rational coe�cients lead to algebraic extensions of rationals via their
roots. One can replace the coe�cients of polynomials with numbers in algebraic extensions of rationals. Also
algebraic functions involving roots of rational functions can be considered and force to introduce the algebraic
extensions of p-adic numbers. For instance, an n:th root of a polynomial with rational coe�cients is well
de�ned if n:th roots of p-adic integers in the range (1, p − 1) are well well-de�ned. One clearly obtains an
in�nite hierarchy of function spaces. This would give rise to a natural hierarchy in which one introduces n:th
roots for a minimum number of p-adic integers in the range (1, p− 1) in the range 1 ≤ n ≤ N . Note that also
the roots of unity would be introduced in a natural manner.

The situation is made more complex because the partonic 2-surface is in general de�ned by the vanishing of six
rational functions so that algebraic extensions are needed. An exception occurs when six preferred imbedding
space coordinates are expressible as rational functions of the remaining two preferred coordinates. In this
case the number of common rational points consists of all rational points associated with the remaining two
coordinates. This situation is clearly non-generic. Usually the number of common points is much smaller
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(the set of rational points satisfying xn + yn = zn for n > 2 is a good example). This however suggests that
these surfaces are of special importance since the naive expectation is that the amplitude for transformation
of intention to action or its reversal is especially large in this case. This might also explain why these surfaces
are easy to understand mathematically.

4. These considerations suggest that the numbers common to reals and p-adics must be de�ned as rationals and
algebraic numbers appearing explicitly in the algebraic extension or rationals associated with the function
spaces used to de�ne partonic 2-surfaces. This would make the deduction of the common points of partonic
2-surface a task possible at least in principle. Algebraic extensions of rationals rather than those of p-adic
numbers would be in the fundamental role and induce the extensions of p-adic numbers.

Let us next try to summarize the geometrical picture at the level of WCW and WCW spinor �elds.

1. WCW decomposes into WCWs associated with CDs and there unions. For the unions one has Cartesian
product of WCWs associated with CDs. At the level of WCW spinor �elds one has tensor product.

2. TheWCW for a given CD decomposes into a union of sectors corresponding to various number �elds and their
algebraic extensions. The sub-WCW corresponding to the intersection consists of partonic 2-surfaces X2 (plus
distribution of 4-D tangent spaces T (X4) at X2 - a complication which will not be considered in the sequel),
whose mathematical representation makes sense in real number �eld and in some algebraic extensions of p-adic
number �elds. The extension of p-adic number �elds needed for algebraic extension of rationals depends on
p and is in general sub-extension of the extension of rationals. This sub-WCW is a sub-manifold of WCW
itself. It has also a �ltering by sub-manifolds of QCW. For instance, partonic 2-surfaces representabable using
ratios of polynomials with degree below �xed number N de�nes an inclusion hierarchy with levels labelled by
N .

3. The spaces of WCW spinors associated with these sectors are dictated by the second quantization of induced
spinor �elds with dynamics dictated by the modi�ed Dirac action in more or less one-one correspondence. The
dimension for the modes of induced spinor �eld (solutions of the modi�ed Dirac equation at the space-time
surface holographically assigned with X2 plus the 4-D tangent space-space distribution) in general depends
on the partonic 2-surface and the classical criticality of space-time surface suggests an inclusion hierarchy of
super-conformal algebras corresponding to a hierarchy of criticalities. For instance, the partonic 2-surfaces
X2 having polynomial representations in referred coordinates could correspond to simplest possible surfaces
nearest to the vacuum extremals and having in a well de�ne sense smallest (but possibly in�nite) dimension
for the space of spinor modes.

4. For each CD one can decompose the Hilbert space to a formal direct sum of orthogonal state spaces associated
with various number �elds

H = ⊕FHF . (6.1)

Here F serves as a label for number �elds. For the sake of simplicity and to get idea about what is involved,
all complications due to algebraic extensions are neglected in the sequel so that only rational surfaces are
regarded as being common to various sectors of WCW.

5. The states in the direct sum make sense only formally since the formal inner product of these states would
be a sum of numbers in di�erent number �elds unless one assigns complex Hilbert space with each sector or
restricts the coe�cients to be rational which is of course also possible. This problem is avoided if the state
function reduction process induces inside each CD a choice of the number �eld. One could say that state
function is a number theoretical necessity at least in this sense.

(a) Should the state function reduction in this sense involve a reduction of entanglement between distinct
CDs is not clear. One could indeed consider the possibility of a purely number theoretical reduction not
induced by NMP and taking place in the absence of entanglement with reduction probabilities determined
by the probabilities assignable to various number �elds which should be rational or at most algebraic.
Hard experience however suggests that one should not make exceptions from principles.

(b) The alternative is to allow the Hilbert spaces in question to have rational or at most algebraic coe�cients
in the intersection of real and various p-adic worlds. This means that the entanglement is algebraic
and NMP need not lead to a pure state: the superposition of pairs of entangled states is however
mathematically well de�ned since inner products give algebraic numbers. Cognitive entanglement stable
under NMP would become possible. The experience of understanding could be a correlate for it. The
pairs in the sum de�ning the entangled state de�ned the instances of a concept as a mapping of real
world state to its symbol structurally analogous to a Boolean rule. The entangled states between di�erent
p-adic number �elds would de�ne maps between symbolic representations.

6. Assume that each HF allows a decomposition to a direct sum of two orthogonal parts corresponding to WCW
spinor �elds localized to the intersection of number �elds and to the complements of the intersection:

H = Hnm ⊕Hm ,

Hnm = ⊕FHnm,F , Hm = ⊕FHm,F . (6.2)
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Here nm stands for 'no mixing' (no mixing between di�erent number �elds and localization to the complement
of the intersection) and m for 'mixing' (mixing between di�erent number �elds in the intersection). F labels
the number �elds. Orthogonal direct sum might be mathematically rather singular and un-necessarily strong
assumption but the notion of number theoretical criticality favors it.

6.3.2 The general structure of U-matrix neglecting the complexities due to algebraic extensions

M -matrix is diagonal with respect to the number �eld for obvious reasons. U -matrix can however induce a leakage
between di�erent number �elds as well as entanglement between di�erent number �elds when unions of CDs are
considered. The simplest assumption is that this entanglement is induced by the leakage between di�erent number
�elds for single CD but not directly. For instance, the members of entangled pair of real states associated with two
CDs leak to various p-adic sectors and induce in this manner entanglement beween di�erent number �elds. One
must however notice that the part of U-matrix acting in the tensor product of Hilbert spaces assignable to separate
CDs must be considered separately: it seems that the entanglement inducing part of U is diagonal with respect to
number �eld except in the intersection.

To simplify the rather complex situation consider �rst the U matrix for a given CD by neglecting the possibility
of algebraic extensions of the p-adic number �elds. Restrict also the consideration to single CD.

1. The unitarity conditions do not make sense in a completely general sense since one cannot add numbers
belonging to di�erent number �elds. The problem can be circumvented if the U -matrix decomposes into a
product of U -matrices, which both are such that unitarity conditions make sense for them. Here an essential
assumption is that unit matrix and projection operators are number theoretically universal. In this spirit
assume that for a given CD U decomposes to a product of two U -matrices Unm inducing no mixing between
di�erent number �elds and Um inducing the mixing in the intersection:

U = UnmUm . (6.3)

Here the subscript 'nm' (no mixing) having nothing to do with the induces of U as a matrix means that
the action is restricted to a dispersion in a sector of WCW characterized by particular number �eld. The
subscript 'm' (mixing) in turn means that the action corresponds to a leakage between di�erent number �elds
possible in the intersection of worlds corresponding to di�erent number �elds and that Um acts non-trivially
in this intersection.

2. Assume that Unm decomposes into a formal direct sum of U -matrices associated with various number �elds
F :

Unm = ⊕FUnm,F . (6.4)

Unm,F acts inside HF in both WCW and spin degrees of freedom, does not mix states belonging to di�erent
number �elds, and creates a state which is always mathematically completely well de�ned in particular number
�eld although the direct sum over number �elds is only formally de�ned. Unitarity condition gives a direct
sum of projection operators to Hilbert spaces associated with various number �elds. One can assume that
this object is number theoretically universal.

3. Um acts in the intersection of the real and p-adic worlds identi�ed in the simplied picture in terms of surfaces
representable using ratios of polynomials with rational coe�cients. The resulting superposition of con�guration
space spinor �elds in di�erent number �elds is as such not mathematical sensible although the expression of
Um is mathematically well-de�ned. If the leakage takes place with same probability amplitude irrespective
of the quantum state, Um is a unitary operator, not a�ecting at all the spinor indices of WCW spinor �elds
characterizing quantum numbers of the state and whose action is analogous to unitary mixing of the identical
copies of the state in various number �elds.

The probability with which the intention is realized as action would not therefore depend at all on the quantum
number �elds, but only on the data at points common to the variants of the partonic 2-surface in various
number �elds. Intention would reduce completely to the algebraic geometry of partonic 2-surfaces. This
assumption allows to write U in the form

U = UnmUm , (6.5)

where Um acts as an identity operator in Hnm.

6.3.3 The general structure of U-matrix when algebraic extensions of rationals are allowed

Consider now the generalization of the previous argument allowing also algebraic extensions.

1. For each algebraic extension of rationals one can express WCW as a union of two parts. The �rst one
corresponds to to 2-surfaces, which belong to the intersection of real and p-adic worlds. The second one
corresponds to 2-surfaces in the algebraic extension of genuine p-adic numbers and having necessarily in�nite
size in real sense. Thefore the decomposition of U to a product U = UnmUm makes sense also now.
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2. It is natural to assume that Um decomposes to a product of two operators: Um = UHUQ. The strictly horizontal
operator UH connects only same algebraic extensions of rationals assigned to di�erent number �elds. Here one
must think that p-adic number �elds represent a large number of algebraic extensions of rationals without need
for an algebraic extension in the p-adic sense. The second unitary operator UQ describes the leakage between
di�erent algebraic extensions of rationals. Number theoretical universality encourages the assumption that
this unitary operator reduces to an operator UQ acting on algebraic extensions of rationals regarded e�ectively
as quantum states so that it would be same for all number �elds. One can even consider the possibility that
UQ depends on the extensions of rationals only and not at all on partonic 2-surfaces. One cannot assume
that UQ corresponds just to an inclusion to a larger state space since this would give an in�nite number of
identical copies of same state and imply a non-normalizable state. Physically UQ would de�ne dispersion in the
space of algebraic extension of rationals de�ning the rational function space giving rise to the sub-WCW. The
simplest possibility is that UQ between di�erent algebraic extensions is just the projection operator to their
intersection multiplied by a numerical constant determined number theoretical in terms of ratios of dimensions
of the algebraic extensions so that the di�usion between extensions products unit norm states.

One must take into account the consistency conditions from the web of inclusions for the algebraic extensions
of rationals inducing extensions of p-adic numbers.

1. There is an in�nite inverted pyramide-like web of natural inclusions of WCW s associated with algebraic
extensions of ratonal numbers and one can assign a copy of this web to all number �elds if a given p-adic
number �eld is characterized by a web de�ned by algebraic extensions of rationals numbers, which it is able to
represent without explicit introduction of the algebraic extension, so that the pyramide is same for all number
�elds. For instance, the WCW corresponding to p-adic numbers proper is included to the WCW s associated
with any of its genuine algebraic extensions and de�nes the lower tip of the inverted pyramide. From this tip
an arrow emerges connecting it to every algebraic extension de�ning a node of this web. Besides these arrows
there are arrows from a given extension to all extensions containing it.

2. These geometric inclusions induce inclusions of the corresponding Hilbert spaces de�ned by rational functions
and possibly by algebraic functions in which case sub-web must be considered (all n:th roots of integers in
the range (1, p− 1) must be introduced simultaneously). Leakage can occur between di�erent extensions only
through WCW spinor �elds located in the common intersection of these spaces containing always the rational
surfaces. The intersections of WCW s associated with various extensions of p-adic number �elds correspond
to WCW s assignable to rational functions with coe��cients in various algebraic extensions of rationals using
preferred coordinates of CD and CP2.

Together with unitarity conditions this web poses strong constraints on the unitary matrices Um and UQ ex-
pressible conveniently in terms of commuting diagrams. There are two kinds of webs. The vertical webs are de�ned
by the algebraic extensions of rationals. These form a larger web in which lines connect the nodes of identical webs
associated with various p-adic number �elds and represent algebraic extensions of rationals.

1. One has the general product decomposition U = UnmUQUm, where Unm does not induce mixing between
number �elds, and Um does it purely horizontally but without a�ecting quantum states inWCW spin degreees
of freedom, and P (Hnm) projects to the complement of the intersection of number �elds holds true also now.

2. Each algebraic extension of rationals gives unitary conditions for the corresponding Unm,F for each p-adic
number �eld with extensions included. These conditions are relatively simple and no commuting diagrams are
needed.

3. In the horizontal web Um mixes the states in the intersections of two number �elds but connects only same
algebraic extensions so that the lines are strictly horizontal. UQ acts strictly vertically in the web formed by
algebraic extension of rationals and its action is unitary. One has in�nite number of commuting diagrams
involving Um and UQ since the actions along all routes connecting given points between p1 and p2 must be
identical.

4. If algebraic universality holds in the sense that Um is expressible using only the data about the common points
of 2-surfaces in the intersection de�ned by particular extensions using some universal functions, and UQ is
purely number theoretical unitary matrix having no dependence on partonic 2-surfaces, one can hope that the
constraints due to commuting diagrams in the web of horizontal inclusions can be satis�ed automatically and
only the unitarity constraints remain. This web of inclusions brings strongly in mind the web of inclusions of
hyper-�nite factors.
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