
Prespacetime Journal July 2010 Vol. 1 Issue 4 Page 584-608
Pitkänen, M. Physics as Infinite-dimensional Geometry III: Configuration Space Spinor Structure 584

Article

Physics as Infinite-dimensional Geometry III: Configuration
Space Spinor Structure

Matti Pitkänen1

Abstract

There are three separate approaches to the challenge of constructing WCW Kähler geometry and spinor
structure. The first approach relies on a direct guess of Kähler function. Second approach relies on the con-
struction of Kähler form and metric utilizing the huge symmetries of the geometry needed to guarantee the
mathematical existence of Riemann connection. The third approach discussed in this article relies on the con-
struction of spinor structure based on the hypothesis that complexified WCW gamma matrices are representable
as linear combinations of fermionic oscillator operator for the second quantized free spinor fields at space-time
surface and on the geometrization of super-conformal symmetries in terms of spinor structure. This implies a
geometrization of fermionic statistics.

The basic philosophy is that at fundamental level the construction of WCW geometry reduces to the second
quantization of the induced spinor fields using Dirac action. This assumption is parallel with the bosonic
emergence stating that all gauge bosons are pairs of fermion and anti-fermion at opposite throats of wormhole
contact. Vacuum function is identified as Dirac determinant and the conjecture is that it reduces to the exponent
of Kähler function. In order to achieve internal consistency induced gamma matrices appearing in Dirac operator
must be replaced by the modified gamma matrices defined uniquely by Kähler action and one must also assume
that extremals of Kähler action are in question so that the classical space-time dynamics reduces to a consistency
condition. This implies also super-symmetries and the fermionic oscillator algebra at partonic 2-surfaces has
interpretation as N =∞ generalization of space-time super-symmetry algebra different however from standard
SUSY algebra in that Majorana spinors are not needed. This algebra serves as a building brick of various
super-conformal algebras involved.

The requirement that there exist deformations giving rise to conserved Noether charges requires that the
preferred extremals are critical in the sense that the second variation of the Kähler action vanishes for these
deformations. Thus Bohr orbit property could correspond to criticality or at least involve it.

Quantum classical correspondence demands that quantum numbers are coded to the properties of the pre-
ferred extremals given by the Dirac determinant and this requires a linear coupling to the conserved quantum
charges in Cartan algebra. Effective 2-dimensionality allows a measurement interaction term only in 3-D Chern-
Simons Dirac action assignable to the wormhole throats and the ends of the space-time surfaces at the boundaries
of CD. This allows also to have physical propagators reducing to Dirac propagator not possible without the
measurement interaction term. An essential point is that the measurement interaction corresponds formally to a
gauge transformation for the induced Kähler gauge potential. If one accepts the weak form of electric-magnetic
duality Kähler function reduces to a generalized Chern-Simons term and the effect of measurement interaction
term to Kähler function reduces effectively to the same gauge transformation.

The basic vision is that WCW gamma matrices are expressible as super-symplectic charges at the boundaries
of CD. The basic building brick of WCW is the product of infinite-D symmetric spaces assignable to the ends of
the propagator line of the generalized Feynman diagram. WCW Kähler metric has in this case "kinetic" parts
associated with the ends and "interaction" part between the ends. General expressions for the super-counterparts
of WCW flux Hamiltonians and for the matrix elements of WCW metric in terms of their anti-commutators are
proposed on basis of this picture.

Keywords: Infinite-dimensional geometry,Kähler metric, spinor structure, second quantization, symmetric
space, super-conformal invariance, electric-magnetic duality.

1 Introduction
Quantum TGD should be reducible to the classical spinor geometry of the configuration space. In particular,
physical states should correspond to the modes of the configuration space spinor fields. The immediate consequence
is that configuration space spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit
fermion number. Concerning the construction of the configuration space spinor structure there are some important
clues.

1.1 Geometrization of fermionic statistics in terms of configuration space spinor
structure

The great vision has been that the second quantization of the induced spinor fields can be understood geometrically in
terms of the configuration space spinor structure in the sense that the anti-commutation relations for configuration
space gamma matrices require anti-commutation relations for the oscillator operators for free second quantized
induced spinor fields.
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1. One must identify the counterparts of second quantized fermion fields as objects closely related to the con-
figuration space spinor structure. [48] has as its basic field the anti-commuting field Γk(x), whose Fourier
components are analogous to the gamma matrices of the configuration space and which behaves like a spin
3/2 fermionic field rather than a vector field. This suggests that the are analogous to spin 3/2 fields and
therefore expressible in terms of the fermionic oscillator operators so that their naturally derives from the
anti-commutativity of the fermionic oscillator operators.

As a consequence, configuration space spinor fields can have arbitrary fermion number and there would be
hopes of describing the whole physics in terms of configuration space spinor field. Clearly, fermionic oscillator
operators would act in degrees of freedom analogous to the spin degrees of freedom of the ordinary spinor and
bosonic oscillator operators would act in degrees of freedom analogous to the ’orbital’ degrees of freedom of
the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the configuration space geometry. It would be
very nice if the classical theory for the spinor fields would be contained in the definition of the configuration
space spinor structure somehow. The properties of the associated with the induced spinor structure are indeed
very physical. The modified massless Dirac equation for the induced spinors predicts a separate conservation
of baryon and lepton numbers. The differences between quarks and leptons result from the different couplings
to the CP2 Kähler potential. In fact, these properties are shared by the solutions of massless Dirac equation
of the imbedding space.

3. Since TGD should have a close relationship to the ordinary quantum field theories it would be highly desirable
that the second quantized free induced spinor field would somehow appear in the definition of the configuration
space geometry. This is indeed true if the complexified configuration space gamma matrices are linearly related
to the oscillator operators associated with the second quantized induced spinor field on the space-time surface
and its boundaries. There is actually no deep reason forbidding the gamma matrices of the configuration space
to be spin half odd-integer objects whereas in the finite-dimensional case this is not possible in general. In
fact, in the finite-dimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor and
vector representations of the vielbein group SO(D) to have same dimension and this is possible for D = 8-
dimensional Euclidian space only. This coincidence might explain the success of 10-dimensional super string
models for which the physical degrees of freedom effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in terms of the
anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†
A
, γB} = iJAB ,

where JAB denotes the matrix elements of the Kähler form of the configuration space. The presence of the
Hermitian conjugation is necessary because configuration space gamma matrices carry fermion number. This
definition is numerically equivalent with the standard one in the complex coordinates. The realization of this
delicacy is necessary in order to understand how the square of the configuration space Dirac operator comes
out correctly.

1.2 Modified Dirac equation for induced classical spinor fields

The basic vision is that WCW geometry reduces to the second quantization of induced spinor fields. This means
that WCW gamma matrices are linear combinations of fermionic oscillator operators and the vacuum functional
of the theory is identifiable as Dirac determinant. An unproven conjecture is that this determinant equals to the
exponent of Kähler action for its preferred extremal.

The motivation for the modified Dirac action came from the observation that the counterpart of the ordinary
Dirac equation is internally consistent only if the space-time surfaces are minimal surfaces. One can however
assign to any general coordinate invariant action principle for space-time surfaces a unique modified Dirac action,
which is internally consistent and super-symmetric. Space-time geometry must carry information about conserved
quantum charges assignable to partonic 2-surfaces and it took considerable to to realize that this is achieved via a
measurement interaction terms linear in conserved charges. It took still some time to conclude that Kähler action
with a measurement interaction term is is required in order the code information about quantum numbers to the
space-time geometry.

1.2.1 Preferred extremals as critical extremals

The study of the modified Dirac equation leads to a detailed view about criticality. Quantum criticality [50] fixes
the values of Kähler coupling strength as the analog of critical temperature. Quantum criticality implies that
second variation of Kähler action vanishes for critical deformations and the existence of conserved current except
in the case of Cartan algebra of isometries. Quantum criticality allows to fix the values of couplings appearing
in the measurement interaction by using the condition K → K + f + f . p-Adic coupling constant evolution can
be understood also and corresponds to scale hierarchy for the sizes of causal diamonds (CDs). The discovery
that the hierarchy of Planck constants [15] realized in terms of singular covering spaces of CD × CP2 can be
understood in terms of the extremely non-linear dynamics of Kähler action implying 1-to-many correspondence
between canonical momentum densities and time derivatives of the imbedding space coordinates led to a further
very concrete understanding of the criticality at space-time level and its relationship to zero energy ontology [6, A1].
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1.2.2 Inclusion of the measurement interaction term

One can pose several conditions on the measurement interaction term of Dirac action. The term should be linear
in the measured charges which must commute and act on their eigenstates. The effective 2-dimensionality requires
that the measurement interaction term is 3-dimensional and this allows only the Dirac action associated with
the generalized Chern-Simons action. Measurement interaction term must define fermionic 3-D propagators along
wormhole throats. This is necessary because 4-D Dirac equation is satisfied always and cannot define the fermionic
propagator. For Chern-Simons term off mass shell propagation is possible since 3-D Chern-Simons Dirac equation
need not to be satisfied.

1. The basic vision is that the addition of the measurement interaction term induces a U(1) gauge transformation
K → K + f + f of the Kähler function of WCW. Here f is holomorphic function of WCW ("world of classical
worlds") complex coordinates and arbitrary function of zero mode coordinates. Although WCW Kähler metric
is not affected, Kähler function changes and this means that preferred extremal changes also and therefore
codes information about the values of the measured observables.

2. The measurement interaction is assumed to be linear in the measured charges which must commute and
therefore belong to the Cartan algebra. Cartan algebra plays a key role not only at quantum level but also
at the level of space-time geometry since quantum critical conserved currents vanish for the Cartan algebra
of isometries and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for the eigen states of Cartan algebra
generators. The hierarchy of Planck constants realized in terms of the book like structure of the generalized
imbedding space assigns to each CD (causal diamond) preferred Cartan algebra: in case of Poincare algebra
there are two of them corresponding to linear and cylindrical M4 coordinates. The origin of the hierarchy of
Planck constants can be now understood from the basic quantum TGD and it relates directly with criticality
[6, A1].

3. The values of Cartan charges are fed to 3-D Chern-Simons Dirac action via the measurement interaction term.
Measurement interaction term corresponds to a term resulting from the U(1) transformation φ of the CP2

Kähler potential. Since this term is assigned only with the Chern-Simons Dirac action, it does not reduce to
a mere gauge transformation with a trivial effect. This picture is consistent with the reduction of TGD to
almost topological QFT [43] implied by electric-magnetic duality and the vanishing of the Coulomb interaction
term in Kähler action [6, A1].

4. One can require that the propagating states are generalized eigenstates of the modified Dirac equation. The
generalized eigenvalues are of form DC−SΨ = λkγkΨ, where only the covariantly constantM4 gamma matrices
can appear. λk is completely analogous to four-momentum and the propagator is formally massless propagator
so that ordinary twistor formalism should apply. The identification with actual four-momentum does not
however make sense. This suggests that also massless gauge theories could make sense if the four-momenta
do not correspond to the actual four-momenta.

1.2.3 CP breaking and matter-antimatter asymmetry

Chern-Simons Dirac action used to defined measurement interaction term breaks CP and T symmetries and therefore
provides a first principle description for the breaking of these symmetries. CP breaking could also reflect to the
discretization of the relative coordinate between the tips of the CD. One could label the positions of the lower
tip of CD by M4 and the relative positions of the upper tip by a discrete space consisting of discrete variants of
hyperboloids with proper time coordinate coming as powers of 2. This CP and T breaking would be apparent and
due to the fixing the rest system to the observer assigned with the "lower" boundary of CD serving as a role of
medium forcing the CP breaking at the level sub-CDs. One can of course argue that the CP breaking induced
by Chern-Simons action gives the special role for the "lower" boundary of CD. In fact, the breaking of Lorentz
invariance at the level of CD (but not at the level of WCW) could even make possible a spontaneous breaking of
CPT symmetry.

1.2.4 Weak form of electric-magnetic duality and Kähler function as Dirac determinant

The construction of WCW spinor structure in terms of induced spinor fields has been continual shifting between
various options. Should one have 3-D or 4-D modified Dirac action at the fundamental level? Does the idea about
TGD as almost topological QFT make sense or not? Is the identification of Kähler function as Dirac determinant
really needed? Does Dirac determinant make even sense mathematically?

The weak form of electric-magnetic duality provides the a clearcut answer to most open questions of this kind.
The reduction to almost topological QFT based on the weak form of electric-magnetic duality gives the explicit
form of the WCW Kähler function Chern-Simons action, and one understand how the measurement interaction term
affects it. This is of utmost importance for the construction of quantum TGD since WCW Kähler metric becomes
directly calculable. The progress in some aspects however forces always to challenge the basic assumptions.

1. The basic idea has been that a correlation between 4-D geometry of the space-time sheet and quantum numbers
would be achieved by the identification of the exponent of Kähler function as a Dirac determinant. The effect
of the measurement interaction to the Kähler function is however induced by the same gauge transformation
of the induced Kähler gauge potential appearing in Chern-Simons action as appears in Chern-Simons Dirac
action. Therefore Dirac determinant is not needed to calculate the Kähler function and one can ask whether
the identification of Kähler function as a Dirac determinant has any practical value. It has.
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It turns out that the weak form of electric-magnetic duality leads to a beautiful generalization of the earlier
solution asatz of the field equations (Kähler current is proportional to the instanton current which requires
that both currents are Beltrami fields [52]) guaranteeing the reduction of the Kähler action to Chern-Simons
term.

Another consequence is an explicit solution of Kähler Dirac equation and generalized eigenvalue equation for
the Chern-Simons Dirac equation allowing to write an explicit formula for the Dirac determinant in terms of
the geometric data about the orbit of the partonic 2-surface coded by the eigenvalues [9, A4]. Concerning the
interpretation of Kähler function as a Dirac determinant the outcome is very encouraging since in the case
of CP2 vacuum extremals the resulting formula for Kähler function is consistent with the earlier conjecture
leading to an expression of gravitational constant in terms of Kähler action for CP2 type vacuum extremal
and p-adic length scale. The detailed calculations are carried out in [9, A4].

2. One can still worry whether the measurement interaction is really needed. The propagator reduces formally
to a massless Dirac propagator in which the analog of four-momentum is expressible in terms of quantum
numbers propagating along the line of the generalized Feynman diagram. This would be a fantastic news for
a believer in the twistor program since also massive case and virtual momenta could be treated. One could
however argue that the road involving minimum amount of calculations is the safest one: why not to identify
the four-momentum with the physical four-momentum and try to resolve the resulting problems? It turns out
that this identification fails for several reasons [9, A4].

1.3 Identification of configuration space gamma matrices as super Hamiltonians

The basic super-algebra corresponds to the fermionic oscillator operators and can be regarded as a generalization
N super algebras by replacing N with the number of solutions of the modified Dirac equation which can be infinite.
This leads to QFT SUSY limit of TGD different in many respects crucially from standard SUSYs [13].

Configuration space gamma matrices identified as super generators of super-symplectic and are expressible in
terms of these oscillator operators. Super-symplectic and super charges are assumed to be expressible as integrals
over 2-dimensional partonic surfaces X2 and interior degrees of freedom of X4 can be regarded as zero modes
representing classical variables in one-one correspondence with quantal degrees of freedom at X3

l as indeed required
by quantum measurement theory.

2 Configuration space spinor structure: general definition
The basic problem in constructing configuration space spinor structure is clearly the construction of the explicit
representation for the gamma matrices of the configuration space. One should be able to identify the space, where
these gamma matrices act as well as the counterparts of the "free" gamma matrices, in terms of which the gamma
matrices would be representable using generalized vielbein coefficients.

2.1 Defining relations for gamma matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

{γA, γB} = 2gAB .

This definition served implicitly also as a basic definition of the gamma matrix algebra in TGD context until the
difficulties related to the understanding of the configuration space d’Alembertian defined in terms of the square
of the Dirac operator forced to reconsider the definition. If configuration space allows Kähler structure, the most
general definition allows to replace the metric any covariantly constant Hermitian form. In particular, gAB can be
replaced with

{Γ†
A
,ΓB} = iJAB , (2.1)

where JAB denotes the matrix element of the Kähler form of the configuration space. The reason is that gamma
matrices carry fermion number and are non-hermitian in all coordinate systems. This definition is numerically
equivalent with the standard one in the complex coordinates but in arbitrary coordinates situation is different since
in general coordinates iJkl is a non-trivial positive square root of gkl. The realization of this delicacy is necessary
in order to understand how the square of the configuration space Dirac operator comes out correctly.

2.2 General vielbein representations

There are two ideas, which make the solution of the problem obvious.

1. Since the classical time development in bosonic degrees of freedom (induced gauge fields) is coded into the
geometry of the configuration space it seems natural to expect that same applies in the case of the spinor
structure. The time development of the induced spinor fields dictated by the TGD counterpart of the massless
Dirac action should be coded into the definition of the configuration space spinor structure. This leads to the
challenge of defining what classical spinor field means.
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2. Since classical scalar field in the configuration space corresponds to second quantized boson fields of the
imbedding space same correspondence should apply in the case of the fermions, too. The spinor fields of
configuration space should correspond to second quantized fermion field of the imbedding space and the space
of the configuration space spinors should be more or less identical with the Fock space of the second quantized
fermion field of imbedding space or X4(X3). Since classical spinor fields at space-time surface are obtained
by restricting the spinor structure to the space-time surface, one might consider the possibility that life is
really simple: the second quantized spinor field corresponds to the free spinor field of the imbedding space
satisfying the counterpart of the massless Dirac equation and more or less standard anti-commutation relations.
Unfortunately life is not so simple as the construction of configuration space spinor structure demonstrates:
second quantization must be performed for induced spinor fields.

It is relatively simple to fill in the details once these basic ideas are accepted.

1. The only natural candidate for the second quantized spinor field is just the on X4. Since this field is free field,
one can indeed perform second quantization and construct fermionic oscillator operator algebra with unique
anti-commutation relations. The space of the configuration space spinors can be identified as the associated
with these oscillator operators. This space depends on 3-surface and strictly speaking one should speak of the
Fock bundle having configuration space as its base space.

2. The gamma matrices of the configuration space (or rather fermionic Kac Moody generators) are representable
as super positions of the fermionic oscillator algebra generators:

Γ+
A = En

Aa
†
n

Γ−A = Ēn
Aan

iJAB̄ =
∑
n

En
AĒ

n
B (2.2)

where En
A are the vielbein coefficients. Induced spinor fields can possess zero modes and there is no oscillator

operators associated with these modes. Since oscillator operators are spin 1/2 objects, configuration space
gamma matrices are analogous to spin 3/2 spinor fields (in a very general sense). Therefore the generalized
vielbein and configuration space metric is analogous to the pair of spin 3/2 and spin 2 fields encountered in
super gravitation! Notice that the contractions jAkΓk of the complexified gamma matrices with the isometry
generators are genuine spin 1/2 objects labeled by the quantum numbers labeling isometry generators. In
particular, in CP2 degrees of freedom these fermions are color octets.

3. A further great idea inspired by the symplectic [25] and Kähler [24] structures of the configuration space is
that configuration gamma matrices are actually generators of super-symplectic symmetries. This simplifies
enormously the construction allows to deduce explicit formulas for the gamma matrices.

2.3 Configuration space Clifford algebra as a hyper-finite factor of type II1
The naive expectation is that the trace of the unit matrix associated with the Clifford algebra [26] spanned by
configuration space sigma matrices is infinite and thus defines an excellent candidate for a source of divergences in
perturbation theory. This potential source of infinities remained un-noticed until it became clear that there is a
connection with von Neumann algebras [38]. In fact, for a separable Hilbert space defines a standard representation
for so called [39]. This guarantees that the trace of the unit matrix equals to unity and there is no danger about
divergences coming from infinite traces.

2.3.1 Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The basic ideas
behind the von Neumann algebra are dictated by physics. The algebra elements allow Hermitian conjugation ∗ and
observables correspond to Hermitian operators. Any measurable function f(A) of operator A belongs to the algebra
and one can say that non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density matrix defining
expectations of observables in ensemble is the basic example. The highly non-trivial requirement of von Neumann
was that identical a priori probabilities for a detection of states of infinite state system must make sense. Since
quantum mechanical expectation values are expressible in terms of operator traces, this requires that unit operator
has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-dimensional eigen
spaces of observables. For infinite-dimensional case the probably of projection to 1-dimensional sub-space vanishes if
each state is equally probable. The notion of observable must thus be modified by excluding 1-dimensional minimal
projections, and allow only projections for which the trace would be infinite using the straightforward generalization
of the matrix algebra trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is that the eigen
spaces of the density matrix must be infinite-dimensional for non-vanishing projection probabilities. Quantum
measurements can lead with a finite probability only to mixed states with a density matrix which is projection
operator to infinite-dimensional subspace. The simple von Neumann algebras for which unit operator has unit trace
are known as factors of type II1 [39].
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The definitions of adopted by von Neumann allow however more general algebras. Type In algebras correspond
to finite-dimensional matrix algebras with finite traces whereas I∞ associated with a separable infinite-dimensional
Hilbert space does not allow bounded traces. For algebras of type III non-trivial traces are always infinite and the
notion of trace becomes useless.

2.3.2 Von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix mechanism
with wave mechanics. Note however that the assumption about continuous momentum state basis is in conflict with
separability but the particle-in-box idealization allows to circumvent this problem (the notion of space-time sheet
brings the box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental and factors
of type III as pathological. The highly pragmatic and successful approach of Dirac based on the notion of delta
function, plus the emergence of Feynman graphs, the possibility to formulate the notion of delta function rigorously
in terms of distributions, and the emergence of path integral approach meant that von Neumann approach was
forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field theories [44, 45]
allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic structures known as bi-algebras, Hopf
algebras, and ribbon algebras [40, 41] relate closely to type II1 factors. In topological quantum computation [49]
based on braid groups [42] modular S-matrices they play an especially important role.

2.3.3 Clifford algebra of configuration space as von Neumann algebra

The Clifford algebra of the configuration space provides a school example of a hyper-finite factor of type II1, which
means that fermionic sector does not produce divergence problems. Super-symmetry means that also "orbital"
degrees of freedom corresponding to the deformations of 3-surface define similar factor. The general theory of hyper-
finite factors of type II1 is very rich and leads to rather detailed understanding of the general structure of S-matrix in
TGD framework. For instance, there is a unitary evolution operator intrinsic to the von Neumann algebra defining
in a natural manner single particle time evolution. Also a connection with 3-dimensional topological quantum field
theories and knot theory, conformal field theories, braid groups, quantum groups, and quantum counterparts of
quaternionic and octonionic division algebras emerges naturally (for classical numbers fields see [27, 28, 29]). These
aspects are discussed in detail in [14].

3 Does modified Dirac action define the fundamental action principle?
Although quantum criticality in principle predicts the possible values of Kähler coupling strength, one might hope
that there exists even more fundamental approach involving no coupling constants and predicting even quantum
criticality and realizing quantum gravitational holography. The Dirac determinant associated with the modified
Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional of the theory having
interpretation as the exponent of Kähler function of world of classical worlds (WCW) expressible and that Kähler
function reduces to Kähler action for a preferred extremal of Kähler action.

3.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two kinds of equations
at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals of Kähler action.
Preferred extremals are quantum critical in the sense that second variation vanishes for critical deformations
representing zero modes. This condition guarantees that corresponding fermionic currents are conserved.
There is infinite hierarchy of these currents and they define fermionic counterparts for zero modes. Space-time
sheets can be also regarded as hyper-quaternionic surfaces. What these statements precisely mean has become
clear only during this year. A rigorous proof for the equivalence of these two identifications is still lacking.

2. The purely quantal equations are associated with the representations of various super-conformal algebras and
with the modified Dirac equation. The requirement that there are deformations of the space-time surface
-actually infinite number of them- giving rise to conserved fermionic charges implies quantum criticality at the
level of Kähler action in the sense of critical deformations. The precise form of the modified Dirac equation is
not however completely fixed without further input. Quantal equations involve also generalized Feynman rules
for M -matrix generalizing S-matrix to a "complex square root" of density matrix and defined by time-like
entanglement coefficients between positive and negative energy parts of zero energy states is certainly the
basic goal of quantum TGD.

3. The notion of weak electric-magnetic duality generalizing the notion of electric-magnetic duality [9, A4] leads
to a detailed understanding of how TGD reduces to almost topological quantum field theory [9, A4]. If
Kähler current defines Beltrami flow [52] it is possible to find a gauge in which Coulomb contribution to
Kähler action vanishes so that it reduces to Chern-Simons term. If light-like 3-surfaces and ends of space-time
surface are extremals of Chern-Simons action also effective 2-dimensionality is realized. The condition that
the theory reduces to almost topological QFT and the hydrodynamical character of field equations leads to
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a detailed ansatz for the general solution of field equations and also for the solutions of the modified Dirac
equation relying on the notion of Beltrami flow for which the flow parameter associated with the flow lines
defined by a conserved current extends to a global coordinate. This makes the theory is in well-defined
sense completely integrable. Direct connection with massless theories emerges: every conserved Beltrami
currents corresponds to a pair of scalar functions with the first one satisfying massless d’Alembert equation
in the induced metric. The orthogonality of the gradients of these functions allows interpretation in terms of
polarization and momentum directions. The Beltrami flow property can be also seen as one aspect of quantum
criticality since the conserved currents associated with critical deformations define this kind of pairs.

4. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The original jus-
tification for the hierarchy of Planck constants came from the indications that Planck constant could have
large values in both astrophysical systems involving dark matter and also in biology. The realization of the
hierarchy in terms of the singular coverings and possibly also factor spaces of CD and CP2 emerged from
consistency conditions. It however seems that TGD actually predicts this hierarchy of covering spaces. The
extreme non-linearity of the field equations defined by Kähler action means that the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is 1-to-many. This
leads naturally to the introduction of the covering space of CD × CP2, where CD denotes causal diamond
defined as intersection of future and past directed light-cones.

At the level of WCW there is the generalization of the Dirac equation which can be regarded as a purely classical
Dirac equation. The modified Dirac operators associated with quarks and leptons carry fermion number but the
Dirac equations are well-defined. An orthogonal basis of solutions of these Dirac operators define in zero energy
ontology a basis of zero energy states. The M -matrices defining entanglement between positive and negative energy
parts of the zero energy state define what can be regarded as analogs of thermal S-matrices. The M-matrices
associated with the solution basis of the WCW Dirac equation define by their orthogonality unitary U-matrix
between zero energy states. This matrix finds the proper interpretation in TGD inspired theory of consciousness.
WCW Dirac equation as the analog of super-Virasoro conditions for the "gamma fields" of superstring models
defining super counterparts of Virasoro generators was the main focus during earlier period of quantum TGD but
has not received so much attention lately and will not be discussed in this chapter.

3.2 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic challenges of quan-
tum TGD. The question leading to a considerable progress in the problem was simple: Under what conditions
the modified Dirac action allows to assign conserved fermionic currents with the deformations of the space-time
surface? The answer was equally simple: These currents exists only if these deformations correspond to vanishing
second variations of Kähler action - which is what criticality is. The vacuum degeneracy of Kähler action strongly
suggests that the number of critical deformations is always infinite and that these deformations define an infinite
inclusion hierarchy of super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy
of breakings of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge theories. These
super-conformal inclusion hierarchies would realize the inclusion hierarchies for hyper-finite factors of type II1.

3.2.1 Quantum criticality and fermionic representation of conserved charges associated with second
variations of Kähler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The development of the
understanding of conservation laws has been slow. Modified Dirac action provides excellent candidates for quantum
counterparts of Noether charges. Unfortunately, the isometry charges vanish for Cartan algebras. The only manner
to obtain non-trivial isometry charges is to add a direct coupling to the charges in Cartan algebra as will be found
later. This addition involves Chern-Simons Dirac action so that the original intuition guided by almost TQFT idea
was not wrong after all.

1. Conservation of the fermionic current requires the vanishing of the second variation of Kähler action

1. The modified Dirac action assigns to a deformation of the space-time surface a conserved charge expressible
as bilinears of fermionic oscillator operators only if the first variation of the modified Dirac action under this
deformation vanishes. The vanishing of the first variation for the modified Dirac action is equivalent with the
vanishing of the second variation for the Kähler action. This can be seen by the explicit calculation of the
second variation of the modified Dirac action and by performing partial integration for the terms containing
derivatives of Ψ and Ψ to give a total divergence representing the difference of the charge at upper and lower
boundaries of the causal diamond plus a four-dimensional integral of the divergence term defined as the integral
of the quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (3.1)

Here hkβ denote partial derivative of the imbedding space coordinate with respect to space-time coordinates.
This term must vanish:
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DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course occur only for
preferred deformations of X4. One could consider the possibility that these deformations vanish at light-like
3-surfaces or at the boundaries of CD. Note that covariant divergence is in question so that Jαk does not define
conserved classical charge in the general case.

2. It is essential that the modified Dirac equation holds true so that the modified Dirac action vanishes: this is
needed to cancel the contribution to the second variation coming from the determinant of the induced metric.
The condition that the modified Dirac equation is satisfied for the deformed space-time surface requires that
also Ψ suffers a transformation determined by the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (3.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the fermionic propagator.

3. The fermionic conserved currents associated with the deformations are obtained from the standard conserved
fermion current

Jα = ΨΓαΨ . (3.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler action: this is also
needed to guarantee Hermiticity and same form for the modified Dirac equation for Ψ and its conjugate as well
as absence of mass term essential for super-conformal invariance [32, 34]. Note also that ordinary divergence
rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by replacing modified
gamma matrices with their increments in the deformation keeping Ψ and its conjugate constant. Second term
is obtained by replacing Ψ with its increment δΨ. The third term is obtained by performing same operation
for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (3.4)

These currents provide a representation for the algebra defined by the conserved charges analogous to a
fermionic representation of Kac-Moody algebra [35].

4. Also conserved super charges corresponding to super-conformal invariance are obtained. The first class of super
currents are obtained by replacing Ψ or Ψ right-handed neutrino spinor or its conjugate in the expression for
the conserved fermion current and performing the above procedure giving two terms since nothing happens
to the covariantly constant right handed-neutrino spinor. Second class of conserved currents is defined by
the solutions of the modified Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same
procedure gives three terms appearing in the super current.

5. The existence of vanishing of second variations is analogous to criticality in systems defined by a potential
function for which the rank of the matrix defined by second derivatives of the potential function vanishes at
criticality. Quantum criticality becomes the prerequisite for the existence of quantum theory since fermionic
anti-commutation relations in principle can be fixed from the condition that the algebra in question is equiv-
alent with the algebra formed by the vector fields defining the deformations of the space-time surface defining
second variations. Quantum criticality in this sense would also select preferred extremals of Kähler action as
analogs of Bohr orbits and the the spectrum of preferred extremals would be more or less equivalent with the
expected existence of infinite-dimensional symmetry algebras.

2. About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P corresponding
to linear and cylindrical Minkowski coordinates) defines critical deformations (one could require that the
isometries respect the geometry of CD). The corresponding charges are conserved but vanish since the
corresponding conjugate coordinates are cyclic for the Kähler metric and Kähler form so that the conserved
current is proportional to the gradient of a Killing vector field which is constant in these coordinates. Therefore
one cannot represent isometry charges as fermionic bilinears. Four-momentum and color quantum numbers
are defined for Kähler action as classical conserved quantities but this is probably not enough. This can be
seen as a problem.
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(a) Four-momentum and color Cartan algebra emerge naturally in the representations of super-conformal
algebras. In the case of color algebra the charges in the complement of the Cartan algebra can be con-
structed in standard manner as extension of those for the Cartan algebra using free field representation of
Kac-Moody algebras. In string theories four-momentum appears linearly in bosonic Kac-Moody genera-
tors and in Sugawara construction [36] of super Virasoro generators as bilinears of bosonic Kac-Moody
generators and fermionic super Kac-Moody generators [35]. Also now quantized transversal parts for M4

coordinates could define a second quantized field having interpretation as an operator acting on spinor
fields of WCW. The angle coordinates conjugate to color isospin and hyper charge take the role of M4

coordinates in case of CP2.

(b) Somehow one should be able to feed the information about the super-conformal representation of the
isometry charges to the modified Dirac action by adding to it a term coupling fermionic current to the
Cartan charges in general coordinate invariant and isometry invariant manner. As will be shown later,
this is possible. The interpretation is as measurement interaction guaranteeing also the stringy character
of the fermionic propagators. The values of the couplings involved are fixed by the condition of quantum
criticality assumed in the sense that Kähler function of WCW suffers only a U(1) gauge transformation
K → K + f + f , where f is a holomorphic function of WCW coordinates depending also on zero modes.

(c) The simplest addition involves the modified gamma matrices defined by a Chern-Simon term at the
light-like wormhole throats and is sum of Chern-Simons Dirac action and corresponding coupling term
linear in Cartan charges assignable to the partonic 2-surfaces at the ends of the throats. Hence the
modified Dirac equation in the interior of the space-time sheet is not affected and nothing changes as far
as quantum criticality in interior is considered.

2. The action defined by four-volume gives a first glimpse about what one can expect. In this case modified
gamma matrices reduce to the induced gamma matrices. Second variations satisfy d’Alembert type equation
in the induced metric so that the analogs of massless fields are in question. Mass term is present only if some
dimensions are compact. The vanishing of excitations at light-like boundaries is a natural boundary condition
and might well imply that the solution spectrum could be empty. Hence it is quite possible that four-volume
action leads to a trivial theory.

3. For the vacuum extremals of Kähler action the situation is different. There exists an infinite number of second
variations and the classical non-determinism suggests that deformations vanishing at the light-like boundaries
exist. For the canonical imbedding of M4 the equation for second variations is trivially satisfied. If the CP2

projection of the vacuum extremal is one-dimensional, the second variation contains a on-vanishing term and
an equation analogous to massless d’Alembert equation for the increments of CP2 coordinates is obtained.
Also for the vacuum extremals of Kähler action with 2-D CP2 projection all terms involving induced Kähler
form vanish and the field equations reduce to d’Alembert type equations for CP2 coordinates. A possible
interpretation is as the classical analog of Higgs field. For the deformations of non-vacuum extremals this
would suggest the presence of terms analogous to mass terms: these kind of terms indeed appear and are
proportional to δsk. M4 degrees of freedom decouple completely and one obtains QFT type situation.

4. The physical expectation is that at least for the vacuum extremals the critical manifold is infinite-dimensional.
The notion of finite measurement resolution suggests infinite hierarchies of inclusions of hyper-finite factors of
type II1 possibly having interpretation in terms of inclusions of the super conformal algebras defined by the
critical deformations.

5. The properties of Kähler action give support for this expectation. The critical manifold is infinite-dimensional
in the case of vacuum extremals. Canonical imbedding of M4 would correspond to maximal criticality analo-
gous to that encountered at the tip of the cusp catastrophe. The natural guess would be that as one deforms
the vacuum extremal the previously critical degrees of freedom are transformed to non-critical ones. The
dimension of the critical manifold could remain infinite for all preferred extremals of the Kähler action. For
instance, for cosmic string like objects any complex manifold of CP2 defines cosmic string like objects so that
there is a huge degeneracy is expected also now. For CP2 type vacuum extremals M4 projection is arbitrary
light-like curve so that also now infinite degeneracy is expected for the deformations.

3. Critical super algebra and zero modes

The relationship of the critical super-algebra to configuration space geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler action for preferred
extremals means that the critical variations are orthogonal to all deformations of the space-time surface with
respect to the configuration space metric and thus correspond to zero modes. This conforms with the fact
that configuration space metric vanishes identically for canonically imbedded M4. Zero modes do not seem to
correspond to gauge degrees of freedom so that the super-conformal algebra associated with the zero modes
has genuine physical content.

2. Since the action ofX4 local Hamiltonians of δM4
×CP2 corresponds to the action in quantum fluctuating degrees

of freedom, critical deformations cannot correspond to this kind of Hamiltonians.

3. The notion of finite measurement resolution suggests that the degrees of freedom which are below measurement
resolution correspond to vanishing gauge charges. The sub-algebras of critical super-conformal algebra for
which charges annihilate physical states could correspond to this kind of gauge algebras.
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4. The conserved super charges associated with the vanishing second variations cannot give configuration space
metric as their anti-commutator. This would also lead to a conflict with the effective 2-dimensionality stating
that the configuration space line-element is expressible as sum of contribution coming from partonic 2-surfaces
as also with fermionic anti-commutation relations.

4. Connection with quantum criticality

The vanishing of the second variation for some deformations means that the system is critical, in the recent case
quantum critical. Basic example of criticality is bifurcation diagram for cusp catastrophe. For some mysterious
reason I failed to realize that quantum criticality realized as the vanishing of the second variation makes possible a
more or less unique identification of preferred extremals and considered alternative identifications such as absolute
minimization of Kähler action which is just the opposite of criticality. Both the super-symmetry of DK and
conservation Dirac Noether currents for modified Dirac action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are characterized by the matrix
defined by the second derivatives of the potential function and the rank of system classifies the levels in the
hierarchy of criticalities. Maximal criticality corresponds to the complete vanishing of this matrix. Thom’s
catastrophe theory classifies these hierarchies, when the numbers of behavior and control variables are small
(smaller than 5). In the recent case the situation is infinite-dimensional and the criticality conditions give
additional field equations as existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy of criticalities
is realized. For a general vacuum extremal with at most 2-D CP2 projection the matrix defined by the
second variation vanishes because Jαβ = 0 vanishes and also the matrix (Jαk + J α

k )(Jβl + J β
l ) vanishes by the

antisymmetry Jαk = −J α
k . Recall that the formulation of Equivalence Principle in string picture demonstrated

that the reduction of stringy dynamics to that for free strings requires that second variation with respect
to M4 coordinates vanish. This condition would guarantee the conservation of fermionic Noether currents
defining gravitational four-momentum and other Poincare quantum numbers but not those for gravitational
color quantum numbers. Encouragingly, the action of CP2 type vacuum extremals having random light-like
curve as M4 projection have vanishing second variation with respect to M4 coordinates (this follows from the
vanishing of Kähler energy momentum tensor, second fundamental form, and Kähler gauge current). In this
case however the momentum is vanishing.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In particular, the
isometries of the imbedding space define conserved currents represented in terms of the fermionic oscillator
operators if the second variations defined by the infinitesimal isometries vanish for the modified Dirac action.
For vacuum extremals the dimension of the critical manifold is infinite: maybe there is hierarchy of quantum
criticalities for which this dimension decreases step by step but remains always infinite. This hierarchy could
closely relate to the hierarchy of inclusions of hyper-finite factors of type II1. Also the conserved charges
associated with Super-symplectic and Super Kac-Moody algebras would require infinite-dimensional critical
manifold defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the transitions, and it is
natural to expect that dynamical symmetries characterize the hierarchy of quantum criticalities. The notion
of finite quantum measurement resolution based on the hierarchy of Jones inclusions indeed suggests the
existence of a hierarchy of dynamical gauge symmetries characterized by gauge groups in ADE hierarchy [15]
with degrees of freedom below the measurement resolution identified as gauge degrees of freedom.

5. A breakthrough in understanding of the criticality was the discovery that the realization that the hierarchy of
singular coverings of CD×CP2 needed to realize the hierarchy of Planck constants could correspond directly
to a similar hierarchy of coverings forced by the factor that classical canonical momentum densities correspond
to several values of the time derivatives of the imbedding space coordinates led to a considerable progress if
the understanding of the relationship between criticality and hierarchy of Planck constants [6, A1]. Therefore
the problem which led to the geometrization program of quantum TGD, also allowed to reduce the hierarchy
of Planck constants introduced on basis of experimental evidence to the basic quantum TGD. One can say
that the 3-surfaces at the ends of CD resp. wormhole throats are critical in the sense that they are unstable
against splitting to nb resp. na surfaces so that one obtains space-time surfaces which can be regarded as
surfaces in na × nb fold covering of CD × CP2. This allows to understand why Planck constant is effectively
replaced with nanb~0 and explains charge fractionization.

3.2.2 Preferred extremal property as classical correlate for quantum criticality, holography, and
quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation of the
modified Dirac operator DK defined by Kähler action vanishes. This is equivalent with the vanishing of the second
variation of Kähler action -at least for the variations corresponding to dynamical symmetries having interpretation
as dynamical degrees of freedom which are below measurement resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum criticality

so that the basic vision about quantum dynamics of quantum TGD would lead directly to a precise identification of
the preferred extremals. Something which I should have noticed for more than decade ago! The question whether
these extremals correspond to absolute minima remains however open.
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The vanishing of second variations of preferred extremals -at least for deformations representing dynamical sym-
metries, suggests a generalization of catastrophe theory of Thom, where the rank of the matrix defined by the second
derivatives of potential function defines a hierarchy of criticalities with the tip of bifurcation set of the catastrophe
representing the complete vanishing of this matrix. In the recent case this theory would be generalized to infinite-
dimensional context. There are three kind of variables now but quantum classical correspondence (holography)
allows to reduce the types of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wï£¡th the light-like boundaries of causal
diamonds CD would represent behavior variables. At least the vacuum extremals of Kähler action would
represent extremals for which the second variation vanishes identically (the "tip" of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical degrees of freedom
necessary in quantum measurement theory. By effective 2-dimensionality (or holography or quantum classical
correspondence) meaning that the configuration space metric is determined by the data coming from partonic
2-surfaces X2 at intersections of X3

l with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of
CDs in rough sense correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler metric of
configuration space represent zero modes. Fixing the interior of the 3-surface would mean fixing of control
variables. Extremum property would fix the 4-surface and behavior variables if boundary conditions are fixed
to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as quantum fluc-
tuating degrees of freedom contributing to the configuration space metric. Quantum classical correspondence
requires 1-1 correspondence between zero modes and these variables. This would be essentially holography
stating that the 2-D "causal boundary" X2 of X3(X2) codes for the interior. Preferred extremal property
identified as criticality condition would realize the holography by fixing the values of zero modes once X2

is known and give rise to the holographic correspondence X2 → X3(X2). The values of behavior variables
determined by extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quantum criticality,
quantum classical correspondence, holography, and preferred extremal property would all represent more or
less the same thing. One must of course be very cautious since the boundary conditions at X3

l involve normal
derivative and might bring in delicacies forcing to modify the simplest heuristic picture.

5. There is a possible connection with the notion of self-organized criticality [51] introduced to explain the
behavior of systems like sand piles. Self-organization in these systems tends to lead "to the edge". The
challenge is to understand how system ends up to a critical state, which by definition is unstable. Mechanisms
for this have been discovered and based on phase transitions occurring in a wide range of parameters so
that critical point extends to a critical manifold. In TGD Universe quantum criticality suggests a universal
mechanism of this kind. The criticality for the preferred extremals of Kähler action would mean that classically
all systems are critical in well-defined sense and the question is only about the degree of criticality. Evolution
could be seen as a process leading gradually to increasingly critical systems. One must however distinguish
between the criticality associated with the preferred extremals of Kähler action and the criticality caused by
the spin glass like energy landscape like structure for the space of the maxima of Kähler function.

3.3 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It is essential to
make trials, even if one is aware that they are probably wrong. When stares long enough to the letters which do
not quite fit, one suddenly realizes what one particular crossword must actually be and it is soon clear what those
other crosswords are. In the following I describe an example in which this analogy is rather concrete. Let us begin
by listing the problems.

1. The condition that modified Dirac action allows conserved charges leads to the condition that the symmetries in
question give rise to vanishing second variations of Kähler action. The interpretation is as quantum criticality
and there are good arguments suggesting that the critical symmetries define an infinite-dimensional super-
conformal algebra forming an inclusion hierarchy related to a sequence of symmetry breakings closely related
to a hierarchy of inclusions of hyper-finite factors of types II1 and III1. This means an enormous generalization
of the symmetry breaking patterns of gauge theories.

There is however a problem. For the translations of M4 and color hyper charge and isospin (more generally,
any Cartan algebra of P × SU(3)) the resulting fermionic charges vanish. The trial for the crossword in
absence of nothing better would be the following argument. By the abelianity of these charges the vanishing
of quantal representation of four-momentum and color Cartan charges is not a problem and that classical
representation of these charges or their super-conformal representation is enough.

2. Modified Dirac equation is satisfied in the interior of space-time surface always. This means that one does
not obtain off-mass shell propagation at all in 4-D sense. Effective 2-dimensionality suggests that off mass
shell propagation takes place along wormhole throats. The reduction to almost topological QFT with Kähler
function reducing to Chern-Simonst type action implied by the weak form of electric-magnetic duality and a
proper gauge choice for the induced Kähler gauge potential implies effective 3-dimensionality at classical level.
This inspires the question whether Chern-Simons type action resulting from an instanton term could define
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the modified gamma matrices appearing in the 3-D modified Dirac action associated with wormhole throats
and the ends of the space-time sheet at the boundaries of CD.

The assumption that modified Dirac equation is satisfied also at the ends and wormhole throats would realize
effective 2-dimensionality as conditions on the boundary values of the 4-D Dirac equation but would would
not allow off mass shell propagation. Therefore one could argue that effective 2-dimensionality in this sense
holds true only for incoming and outgoing particles.

The reduction of Kähler action to Chern-Simons term together with effective 2-dimensionality suggests that
Kähler function corresponds to an extremum of this action with a constraint term due to the weak form of
electric-magnetic duality. Without this term the extrema of Chern-Simons action have 2-D CP2 projection not
consistent with the weak form of electric-magnetic duality. The extrema are not maxima of Kähler function:
they are obtained by varying with respect to tangent space data of the partonic 2-surfaces. Lagrange multiplier
term induces also to the modified gamma matrices a contribution which is of the same general form as for any
general coordinate invariant action.

3. Quantum classical correspondence requires that the geometry of the space-time sheet should correlate with
the quantum numbers characterizing positive (negative) energy part of the quantum state. One could argue
that by multiplying WCW spinor field by a suitable phase factor depending on the charges of the state, the
correspondence follows from stationary phase approximation. This crossword looks unconvincing. A more
precise connection between quantum and classical is required.

4. In quantum measurement theory classical macroscopic variables identified as degrees of freedom assignable to
the interior of the space-time sheet correlate with quantum numbers. Stern Gerlach experiment is an excellent
example of the situation. The generalization of the imbedding space concept by replacing it with a book like
structure implies that imbedding space geometry at given page and for given causal diamond (CD) carries
information about the choice of the quantization axes (preferred plane M2 of M4 resp. geodesic sphere of
CP2 associated with singular covering/factor space of CD resp. CP2 ). This is a big step but not enough.
Modified Dirac action as such does not seem to provide any hint about how to achieve this correspondence.
One could even wonder whether dissipative processes or at least the breaking of T and CP characterizing the
outcome of quantum jump sequence should have space-time correlate. How to achieve this?

Each of these problems makes one suspect that something is lacking from the modified Dirac action: there should
exist an elegant manner to feed information about quantum numbers of the state to the modified Dirac action in
turn determining vacuum functional as an exponent Kähler function identified as Kähler action for the preferred
extremal assumed to be dictated by by quantum criticality and equivalently by hyper-quaternionicity.

This observation leads to what might be the correct question. Could a general coordinate invariant and Poincare
invariant modification of the modified Dirac action consistent with the vacuum degeneracy of Kähler action allow
to achieve this information flow somehow? In the following one manner to achieve this modification is discussed.
It must be however emphasized that I have considered many alternatives and the one discussed below finds its
justification only from the fact that it is the simplest one found hitherto.

3.3.1 The identification of the measurement interaction term

The idea is simple: add to the modified Dirac action a term which is analogous to the Dirac action inM4×CP2. One
can consider two options according to whether the term is assigned with interior or with a 3-D light-like 3-surface
and last years have been continual argumentation about which option is the correct one.

1. The additional term would be essentially the analog of the ordinary Dirac action at the imbedding space level.

Sint =
∑
A

QA

∫
ΨgABjBαΓ̂αΨ

√
gd4x ,

gAB = jkAhklj
l
B , gABgBC = δAC ,

jBα = jkBhkl∂αh
l . (3.5)

The sum is over isometry charges QA interpreted as quantal charges and jAk denotes the Killing vector field of
the isometry. gAB is the inverse of the tensor gAB defined by the local inner products of Killing vectors fields
in M4 and CP2. The space-time projections of the Killing vector fields jBα have interpretation as classical
color gauge potentials in the case of SU(3). In M4 degrees of freedom and for Cartan algebra of SU(3) jBα
reduce to the gradients of linear M4 coordinates in case of translations. Modified gamma matrices could be
assigned to Kähler action or its instanton term or with Chern-Simons action.

2. The added term containing quantal charges must make sense in the modified Dirac equation. This requires
that the physical state is an eigenstate of momentum and color charges. This allows only color hyper-charge
and color isospin so that there is no hope of obtaining exactly the stringy formula for the propagator. The
modified Dirac operator is given by

D = D +Dint = Γ̂αDα + Γ̂α
∑
A

QAg
ABjBα

= Γ̂α(Dα + ∂αφ) , ∂αφ =
∑
A

QAg
ABjBα . (3.6)
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The conserved fermionic isometry currents are

JAα =
∑
B

QBΨgBCjkChklj
l
AΓ̂αΨ = QAΨΓ̂αΨ . (3.7)

Here the sum is restricted to a Cartan sub-algebra of Poincare group and color group.

3. An important restriction is that by four-dimensionality of M4 and CP2 the rank of gAB is 4 so that gAB exists
only when one considers only four conserved charges. In the case of M4 this is achieved by a restriction to
translation generators QA = pA. gAB reduces to Minkowski metric and Killing vector fields are constants.
The Cartan sub-algebra could be however replaced by any four commuting charges in the case of Poincare
algebra (second one corresponds to time translation plus translation, boost and rotation in given direction).
In the case of SU(3) one must restrict the consideration either to U(2) sub-algebra or its complement. CP2 =
SU(3)/SU(2) decomposition would suggest the complement as the correct choice. One can indeed build the
generators of U(2) as commutators of the charges in the complement. On the other hand, Cartan algebra is
enough in free field construction of Kac-Moody algebras.

4. What is remarkable that for the Cartan algebra ofM4×SU(3) the measurement interaction term is equivalent
with the addition of gauge part ∂αφ of the induced Kähler gauge potential Aα. This property might hold
true for any measurement interaction term. This also suggests that the change in Kähler function is only the
transformation Aα → Aα + ∂αφ, ∂αφ =

∑
AQAg

ABjBα.

5. Recall that the φ for U(1) gauge transformations respecting the vanishing of the Coulomb interaction term
of Kähler action [6, A1] the current jαKφ is conserved, which implies that the change of the Kähler action
is trivial. These properties characterize the gauge transformations respecting the gauge in which Coulombic
interaction term of the Kähler action vanishes so that Kähler action reduces to 3-dimensional generalized
Chern-Simons term if the weak form of electric-magnetic duality holds true guaranteeing among other things
that the induced Kähler field is not too singular at the wormhole throats [6, A1]. The scalar function assignable
to the measurement interaction terms does not have this property and this is what is expected since it must
change the value of the Kähler function and therefore affect the preferred extremal.

Concerning the precise form of the modified Dirac action the basic clue comes from the observation that the
measurement interaction term corresponds to the addition of a gauge part to the induced CP2 Kähler gauge potential
Aα. The basic question is what part of the action one assigns the measurement interaction term.

1. One could define the measurement interaction term using either the four-dimensional instanton term or its
reduction to Chern-Simons terms. The part of Dirac action defined by the instanton term in the interior does
not reduce to a 3-D form unless the Dirac equation defined by the instanton term is satisfied : this cannot be
true. Hence Chern-Simons term is the only possibility.

The classical field equations associated with the Chern-Simons term cannot be assumed since they would imply
that the CP2 projection of the wormhole throat and space-like 3-surface are 2-dimensional. This might hold
true for space-like 3-surfaces at the ends of CD and incoming and outgoing particles but not for off mass shell
particles. This is however not a problem since DαΓ̂αC−S for the modified gamma matrices for Chern-Simons
action does not contain second derivatives. This is due to the topological character of this term. For Kähler
action second derivatives are present and this forces extremal property of Kähler action in the modified Dirac
Kähler action so that classical physics results as a consistency condition.

2. If one assigns measurement interaction term to both DK and DC−S the measurement interaction corresponds
to a mere gauge transformation for ASα and is trivial. Therefore it seems that one must choose between DK

or DC−S. At least formally the measurement interaction term associated with DK is gauge equivalent with
its negative DC−S. The addition of the measurement interaction to DK changes the basis for the 4-D induced
spinors by the phase exp(−iQKφ) and therefore also the basis for the generalized eigenstates of DC−S and
this brings in effectively the measurement interaction term affecting the Dirac determinant.

3. The definition of Dirac determinant should be in terms of Chern-Simons action induced by the instanton term
and identified as a product of the generalized eigenvalues of this operator. The modified Dirac equation for Ψ
is consistent with that for its conjugate if the coefficient of the instanton term is real and one uses the Dirac
action Ψ(D→ −D←)Ψ giving modified Dirac equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (3.8)

As noticed, the divergence of gamma matrices does not contain second derivatives in the case of Chern-Simons
action. In the case of Kähler action they occur unless field equations equivalent with the vanishing of the
divergence term are satisfied.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions flow along the
light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac equation following from the
variational principle and fermion current is not conserved. Also if the Chern-Simons term is imaginary - as a
naive idea about dissipation would suggest- the Dirac equation fails to be consistent with the conjugation.
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4. Off mass shell states appear in the lines of the generalized Feynman diagrams and for these DC−S cannot an-
nihilate the spinor field. The generalized eigen modes lf DC−S should be such that one obtains the counterpart
of Dirac propagator which is purely algebraic and does not therefore depend on the coordinates of the throat.
This is satisfied if the generalized eigenvalues are expressible in terms of covariantly constant combinations of
gamma matrices and here only M4 gamma matrices are possible. Therefore the eigenvalue equation reqards
as

DΨ = λkγkΨ , D = DC−S +DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(3.9)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent gauge term.
Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ+ = λkλkΨ . (3.10)

The commutator term is analogous to magnetic moment interaction. The generalized eigenvalues correspond
to λ =

√
λkλk and Dirac determinant is defined as a product of the eigenvalues. λ is completely analogous

to mass. For incoming lines this mass would vanish so that all incoming particles irrespective their actual
quantum numbers would be massless in this sense and the propagator is indeed that for a massless particle.
Note that the eigen modes define the boundary values for the solutions of DKΨ = 0 so that the values of λ
indeed define the counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible the application of the
twistor formalism as such in TGD framework [12]. N = 4 SUSY is one of the very few gauge theory which
might be UV finite but it is definitely unphysical due to the masslessness of the basic quanta. Could the
resolution of the interpretational problems be that the four-momenta appearing in this theory do not directly
correspond to the observed four-momenta?

3.3.2 Objections

The alert reader has probably raised several critical questions. Doesn’t the need to solve λk as functions of incoming
quantum numbers plus the need to construct the measurement interactions makes the practical application of the
theory hopelessly difficult? Could the resulting pseudo-momentum λk correspond to the actual four-momentum?
Could one drop the measurement interaction term altogether and assume that the quantum classical correspondence
is through the identification of the eigenvalues as the four-momenta of the on mass shell particles propagating at
the wormhole throats? Could one indeed assume that the momenta have a continuous spectrum and thus do not
depend on the boundary conditions at all? Usually the thinking is just the opposite and in the general case would
lead to to singular eigen modes.

1. Only the information about four-momentum would be fed into the space-time geometry. TGD however allows
much more general measurement interaction terms and it would be very strange if the space-time geometry
would not correlate also with the other quantum numbers. Mass formulas would of course contain information
also about other quantum numbers so that this claim is not quite justified.

2. Number theoretic considerations and also the construction of octonionic variant of Dirac equation [19, A7]
force the conclusion that the spectrum of pseudo four-momentum is restricted to a preferred plane M2 of M4

and this excludes the interpretation of λk as a genuine four-momentum. It also improves the hopes that the
sum over pseudo-momenta does not imply divergences.

3. Dirac determinant would depend on the mass spectrum only and could not be identified as exponent of
Kähler function. Note that the original guideline was the dream about stringy propagators. This is achieved
for λAλA = n in suitable units. This spectrum would of course also imply that Dirac determinant defined in
terms of ζ function regularization is independent of the space-time surface and could not be identified with
the exponent of Kähler function. One must of course take the identification of exponent of Kähler function as
Dirac determinant as an additional conjecture which is not necessary for the calculation of Kähler function if
the weak form of electric-magnetic duality is accepted.

4. All particles would behave as massless particles and this would not be consistent with the proposed Feynman
diagrammatics inspired by zero energy ontology. Since wormhole throats carry on mass shell particles with
positive or negative energy so that the net momentum can be also space-like propagators diverge for massless
particles. One might overcome this problem by assuming small thermal mass (from p-adic thermodynamics
[5]) and this is indeed assumed to reduce the number of generalized Feynman diagrams contributing to a given
reaction to finite number.

Second objection of the skeptic reader relates to the delicacies of U(1) gauge invariance. The modified Dirac
action seems to break gauge symmetries and this breaking of gauge symmetry is absolutely essential for the depen-
dence of the Dirac determinant on the quantum numbers. It however seems that this breaking of gauge invariance
is only apparent.
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1. One must distinguish between genuine U(1) gauge transformations carried out for the induced Kähler gauge
potential Aα and apparent gauge transformations of the Kähler gauge potential Ak of S2 × CP2 induced by
symplectic transformations deforming the space-time surface and affect also induced metric. This delicacy of
U(1) gauge symmetry explains also the apparent breaking of U(1) gauge symmetry of Chern-Simons Dirac
action due to the presence of explicit terms Ak and Aα.

2. CP2 Kähler gauge potential is obtained in complex coordinates from Kähler function as (Kξi , Kξi) = (∂ξiK,−∂ξiK).
Gauge transformations correspond to the additions K → K+f+f , where f is a holomorphic function. Kähler
gauge potential has a unique gauge in which the Kähler function of CP2 is U(2) invariant and contains no
holomorphic part. Hence Ak is defined in a preferred gauge and is a gauge invariant quantity in this sense.
Same applies to S2 part of the Kähler potential if present.

3. Aα should be also gauge invariant under gauge transformation respecting the vanishing of Coulombic inter-
action energy. The allowed gauge transformations Aα → Aα + ∂αφ must satisfy Dα(jαKφ) = 0. If the scalar
function φ reduces to constant at the wormhole throats and at the ends of the space-time surface DC−S is
gauge invariant. The gauge transformations for which φ does not satisfy this condition are identified as rep-
resentations of critical deformations of space-time surface so that the change of Aα would code for this kind
of deformation and indeed affect the modified Dirac operator and Kähler function (the change would be due
to the change of zero modes).

3.3.3 Some details about the modified Dirac equation defined by Chern-Simons action

First some general comments about DC−S are in order.

1. Quite generally, there is vacuum avoidance in the sense that Ψ must vanish in the regions where the modified
gamma matrices vanish. A physical analogy for the system consider is a charged particle in an external
magnetic field. The effective metric defined by the anti-commutators of the modified gamma matrices so that
standard intuitions might not help much. What one would naively expect would be analogs of bound states
in magnetic field localized into regions inside which the magnetic field is non-vanishing.

2. If only CP2 Kähler form appears in the Kähler action, the modified Dirac action defined by the Chern-Simons
term is non-vanishing only when the dimension of the CP2 projection of the 3-surface is D(CP2) ≥ 2 and
the induced Kähler field is non-vanishing. This conforms with the properties of Kähler action. The solutions
of the modified Dirac equation with a vanishing eigenvalue λ would naturally correspond to incoming and
outgoing particles.

3. D(CP2) ≤ 2 is apparently inconsistent with the weak form of electric-magnetic duality requiring D(CP2) = 3.
The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint that electric-
magnetic duality holds true expressible in terms of Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (3.11)

This gives a constraint force to the field equations and also a dependence on the induced 4-metric so that one
has only almost topological QFT. This term also guarantees theM4 part of WCW Kähler metric is non-trivial.
The condition that the ends of space-time sheet and wormhole throats are extrema of Chern-Simons action
subject to the electric-magnetic duality constraint is strongly suggested by the effective 2-dimensionality.

4. Electric-magnetic duality constraint gives an additional term to the Dirac action determined by the Lagrange
multiplier term. This term gives an additional contribution to the modified gamma matrices having the same
general form as coming from Kähler action and Chern-Simons action. In the following this term will not be
considered. For the extremals it only affects the modified gamma matrices and leaves the general form of
solutions unchanged.

In absence of the constraint from the weak form of electric-magnetic duality the explicit expression of DC−S is
given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = Bα
K(Jkα + ∂αAk) ,

Bα
K = εαβγJβγ , Jkα = Jkl∂αs

l , ε̂αβγ = εαβγ
√
g3 . (3.12)

Note ε̂αβγ = does not depend on the induced metric.
The extremals of Chern-Simons action without constraint term satisfy

Bα
K(Jkl + ∂lAk)∂αh

l = 0 , Bα
K = εαβγJβγ . (3.13)

For a non-vanishing Kähler magnetic field Bα these equations hold true when CP2 projection is 2-dimensional. This
implies a vanishing of Chern-Simons action in absence of the constraint term realizing electric-magnetic duality,
which is therefore absolutely essential in order for having a non-vanishing WCW metric.

Consider now the situation in more detail.
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1. Suppose that one can assign a global coordinate to the flow lines of the Kähler magnetic field. In this case one
might hope that ordinary intuitions about motion in constant magnetic field might be helpful. The repetition
of the discussion of [6, A1] leads to the condition B ∧ dB = 0 implying that a Beltrami flow for which current
flows along the field lines and Lorentz forces vanishes is in question. This need not be the generic case.

2. With this assumption the modified Dirac operator reduces to a one-dimensional Dirac operator

D = ε̂rαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDr . (3.14)

3. The general solutions of the modified Dirac equation is covariantly constant with respect to the coordinate r:

DrΨ = 0 . (3.15)

The solution to this condition can be written immediately in terms of a non-integrable phase factor Pexp(i
∫
Ardr),

where integration is along curve with constant transversal coordinates. If Γ̂v is light-like vector field also Γ̂vΨ0

defines a solution of DC−S. This solution corresponds to a zero mode for DC−S and does not contribute to the
Dirac determinant. Note that the dependence of these solutions on transversal coordinates of X3

l is arbitrary.

4. The formal solution associated with a general eigenvalue can be constructed by integrating the eigenvalue
equation separately along all coordinate curves. This makes sense if r indeed assigned to light-like curves
indeed defines a global coordinate. What is strange that there is no correlation between the behaviors with
respect longitudinal coordinate and transversal coordinates. System would be like a collection of totally
uncorrelated point like particles reflecting the flow of the current along flux lines. It is difficult to say anything
about the spectrum of the generalized eigenvalues in this case: it might be that the boundary conditions at
the ends of the flow lines fix the allowed values of λ. Clearly, the Beltrami flow property is what makes this
case very special.

3.3.4 A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the geometry of
space-time surface as they should by quantum classical correspondence. This suggests an interpretation in terms of
quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commuting isometry charges
is not unique. Cartan algebra corresponds naturally to the measured observables. For instance, one could
choose the Cartan algebra of Poincare group to consist of energy and momentum, angular momentum and
boost (velocity) in particular direction as generators of the Cartan algebra of Poincare group. In fact, the
choices of a preferred plane M2 ⊂ M4 and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-
algebra to a high degree are implied by the replacement of the imbedding space with a book like structure
forced by the hierarchy of Planck constants. Therefore the hierarchy of Planck constants seems to be required
by quantum measurement theory. One cannot overemphasize the importance of this connection.

2. One can add similar couplings of the net values of the measured observables to the currents whose existence
and conservation is guaranteed by quantum criticality. It is essential that one maps the observables to
Cartan algebra coupled to critical current characterizing the observable in question. The coupling should have
interpretation as a replacement of the induced Kähler gauge potential with its gauge transform. Quantum
classical correspondence encourages the identification of the classical charges associated with Kähler action
with quantal Cartan charges. This would support the interpretation in terms of a measurement interaction
feeding information to classical space-time physics about the eigenvalues of the observables of the measured
system. The resulting field equations remain second order partial differential equations since the second order
partial derivatives appear only linearly in the added terms.

3. What about the space-time correlates of electro-weak charges? The earlier proposal explains this correlation
in terms of the properties of quantum states: the coupling of electro-weak charges to Chern-Simons term could
give the correlation in stationary phase approximation. It would be however very strange if the coupling of
electro-weak charges with the geometry of the space-time sheet would not have the same universal description
based on quantum measurement theory as isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-answered question
motivated by the fact that electro-weak gauge group identifiable as the holonomy group of CP2 can be
identified as U(2) subgroup of color group. Could the electro-weak charges be identified as classical color
charges? This might make sense since the color charges have also identification as fermionic charges
implied by quantum criticality. Or could electro-weak charges be only represented as classical color
charges by mapping them to classical color currents in the measurement interaction term in the modified
Dirac action? At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion current. There
are also other fundamental fermion currents which are conserved. All the following currents are conserved.
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Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣ
kl , ΣAB , ΣABJ} . (3.16)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly) constant sigma
matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents corresponding to O = 1 and
O = J and vectorial isospin current corresponds to J . It is natural to couple of electromagnetic charge to
the the projection of Killing vector field of color hyper charge and coupling it to the current defined by
Oem = a+ bJ . This allows to interpret the puzzling finding that electromagnetic charge can be identified
as anomalous color hyper-charge for induced spinor fields made already during the first years of TGD.
There exist no conserved axial isospin currents in accordance with CVC and PCAC hypothesis which
belong to the basic stuff of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1) part of electro-
weak charges to the n = 1 multiple of quark current and n = 3 multiple of the lepton current (note
that leptons resp. quarks correspond to t = 0 resp. t = ±1 color partial waves). If electro-weak resp.
couplings to H-chirality are proportional to 1 resp. Γ9, the fermionic currents assigned to color and
electro-weak charges can be regarded as independent. This explains why the possibility of both vectorial
and axial couplings in 8-D sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical deformations of
the basic fermion currents identified above. This would allow in principle to couple an arbitrary number
of observables to the geometry of the space-time sheet by mapping them to Cartan algebras of Poincare
and color group for a particular conserved quantum critical current. Quantum criticality would therefore
make possible classical space-time correlates of observables necessary for quantum measurement theory.

(f) The coupling constants associated with the deformations would appear in the couplings. Quantum
criticality (K → K + f + f condition) should predict the spectrum of these couplings. In the case
of momentum the coupling would be proportional to

√
G/~0= kR/~0 and k ∼ 211 should follow from

quantum criticality. p-Adic coupling constant evolution should follow from the dependence on the scale
of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surprising that quantum
criticality is needed to produce a correlation between quantal degrees of freedom and macroscopic degrees of
freedom. Note that quantum classical correspondence can be regarded as an abstract form of entanglement
induced by the entanglement between quantum charges QA and fermion number type charges assignable to
zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpretation in terms of
measurement theory coupling short and long length scales suggests that the measurement interaction terms
are localizable at the wormhole throats. This would favor Chern-Simons term or possibly instanton term
if reducible to Chern-Simons terms. The breaking of CP and T might relate to the fact that state func-
tion reductions performed in quantum measurements indeed induce dissipation and breaking of time reversal
invariance.

6. The experimental arrangement quite concretely splits the quantum state to a quantum superposition of space-
time sheets such that each eigenstate of the measured observables in the superposition corresponds to different
space-time sheet already before the realization of state function reduction. This relates interestingly to the
question whether state function reduction really occurs or whether only a branching of wave function defined
by WCW spinor field takes place as in multiverse interpretation in which different branches correspond to
different observers. TGD inspired theory consciousness requires that state function reduction takes place.
Maybe multiversalist might be able to find from this picture support for his own beliefs.

7. One can argue that "free will" appears not only at the level of quantum jumps but also as the possibility to
select the observables appearing in the modified Dirac action dictating in turn the Kähler function defining
the Kähler metric of WCW representing the "laws of physics". This need not to be the case. The choice
of CD fixes M2 and the geodesic sphere S2: this does not fix completely the choice of the quantization axis
but by isometry invariance rotations and color rotations do not affect Kähler function for given CD and for
a given type of Cartan algebra. In M4 degrees of freedom the possibility to select the observables in two
manners corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting Kähler
functions are different. The corresponding Kähler metrics do not differ if the real parts of the Kähler functions
associated with the two choices differ by a term f(Z) + f(Z), where Z denotes complex coordinates of WCW,
the Kähler metric remains the same. The function f can depend also on zero modes. If this is the case then
one can allow in given CD superpositions of WCW spinor fields for which the measurement interactions are
different. This condition is expected to pose non-trivial constraints on the measurement action and quantize
coupling parameters appearing in it.

3.3.5 New view about gravitational mass and matter antimatter asymmetry

The physical interpretation of the additional term in the modified Dirac action might force quite a radical revision
of the ideas about matter and antimatter.
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1. The term pA∂αm
A contracted with the fermion current is analogous to a gauge potential coupling to fermion

number. Since the additional terms in the modified Dirac operator induce stringy propagation, a natural
interpretation of the coupling to the induced spinor fields is in terms of gravitation. One might perhaps say
that the measurement of four momentum induces gravitational interaction. Besides momentum components
also color charges take the role of gravitational charges. As a matter fact, any observable takes this role via
coupling to the projections of Killing vector fields of Cartan algebra. The analogy of color interactions with
gravitational interactions is indeed one of the oldest ideas in TGD.

2. The coupling to four-momentum is through fermion number (both quark number and lepton number). For
states with a vanishing fermion number isometry charges therefore vanish. In this framework matter antimatter
asymmetry would be due to the fact that matter (antimatter) corresponds to positive (negative) energy parts
of zero energy states for massive systems so that the contributions to the net gravitational four-momentum
are of same sign. Could antimatter be unobservable to us because it resides at negative energy space-time
sheets? As a matter fact, I proposed already years ago that gravitational mass is essentially the magnitude of
the inertial mass but gave up this idea.

3. Bosons do not couple at all to gravitation if they are purely local bound states of fermion and anti-fermion at
the same space-time sheet (say represented by generators of super Kac-Moody algebra). Therefore the only
possible identification of gauge bosons is as wormhole contacts. If the fermion and anti-fermion at the opposite
throats of the contact correspond to positive and negative energy states the net gravitational energy receives
a positive contribution from both sheets. If both correspond to positive (negative) energy the contributions
to the net four-momentum have opposite signs. It is not yet clear which identification is the correct one.

3.4 Generalized eigenvalues of DC−S and General Coordinate Invariance

The fixing of light-like 3-surface to be the wormhole throat at which the signature of induced metric changes from
Minkowskian to Euclidian corresponds to a convenient fixing of gauge. General Coordinate Invariance however
requires that any light-like surface Y 3

l parallel to X3
l in the slicing is equally good choice. In particular, it should

give rise to same Kähler metric but not necessarily the same exponent of Kähler function identified as the product
of the generalized eigenvalues of DC,S at Y 3

l .
General Coordinate Invariance requires that the components of Kähler metric of configuration space defined in

terms of Kähler function as

Gkl = ∂k∂lK =
∑
i

∂k∂lλi

remain invariant under this flow. Here complex coordinate are of course associated with the configuration space.
This is the case if the flow corresponds to the addition of sum of holomorphic function f(z) and its conjugate f(z))
which is anti-holomorphic function to K. This boils down to the scaling of eigenvalues λi by

λi → exp(fi(z) + fi(z))λi . (3.17)

If the eigenvalues are interpreted as vacuum conformal weights, general coordinate transformations correspond to
a spectral flow scaling the eigenvalues in this manner. This in turn would induce spectral flow of ground state
conformal weights if the squares of λi correspond to ground state conformal weights.

4 Representations for the configuration space gamma matrices in terms
of super-symplectic charges at light cone boundary

During years I have considered several variants for the representation of WCW gamma matrices and each of these
proposals has had some weakness.

1. One question has been whether the Noether currents assignable to WCW Hamiltonians should play any
role in the construction or whether one can use only the generalization of flux Hamiltonians. Magnetic
flux Hamiltonians do not refer to the space-time dynamics implying genuine 2-dimensionality, which is a
catastrophe. If the sum of the magnetic and electric flux Hamiltonians and the weak form of self duality
is assumed effective 2-dimensionality is achieved. The challenge is to identify the super-partners of the flux
Hamiltonians and postulate correct anti-commutation relations for the induced spinor fields to achieve anti-
commutation to flux Hamiltonians.

2. In the original proposal for WCW gamma matrices the covariantly constant right handed spinors played a key
role. This led to interpretational problems with quarks. Are they needed at all or do leptons and quarks define
somehow equivalent representations? I discovered only recently a brutally simple but deadly objection against
this approach: the resulting WCW gamma matrices do not generate all WCW spinors from Fock vacuum.
Therefore all modes of the induced spinor fields must be used.

The latter objection forced to realize that nothing is changed if one replaces the covariantly constant right
handed neutrino with the collection of quark spinor modes qn resp. leptonic spinor modes Ln multiplied by the
contractions JA+ = jAkΓk resp. its conjugate JA− = jAkΓk. It is essential that only of these contractions is used for
a given H-chirality.
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1. If the anti-commutator of the spinor fields is or form J = Jαβε
αβδ2(x, y) at X2 for magnetic flux Hamiltonians

and appropriate generalization of this fro the sum of magnetic and electric flux Hamiltonians, the "half-Poisson
bracket" ∂kHAJ

kl∂lHB from the quark spinor field and its conjugate as anti-commutator from the leptonic
spinor field can combine to the full Poisson bracket if the remaining factors are identical.

2. This happens if the quark modes and lepton-like modes are in 1-1 correspondence and the contractions of the
eigenmodes resulting in the contraction satisfy qmγ0qn = Lmγ

0Ln = Φmn. The resulting Hamiltonians define
an X2-local algebra: that this extension is needed became obvious already earlier. A stronger condition is that
the spinors can be expressed in terms of scalar function bases {Φm} so that one would have qm,i = {Φm}qi
and Lm,i = {Φm}Li so that one would assign to the super-currents the local Hamiltonians ΦmHA.

3. One could of course still argue that it is questionable to use sum of quark and lepton gamma matrices since
this the resulting objects to not have a well defined fermion number and cannot be used to generate physical
states from vacuum. How seriously this argument should be taken is not clear to me at this moment. One
could of course consider also a scenario in which one divides leptonic (or quark) modes to two classes analogous
to quark and lepton modes and uses JA+ resp. JA− for these two classes.

In any case, the recent view is that all modes of the induced spinor fields must be used, that lepton-quark
degeneracy is absolutely essential for the construction of WCW geometry, and that the original super-symmetrization
of the flux Hamiltonians combined with weak electric-magnetic duality is the correct approach. There are also
fermionic Noether charges and their super counterparts implied by the criticality but these can be assigned with
zero modes.

This section represents both the earlier version of the construction of configuration gamma matrices and the
construction introducing explicitly the notion of finite measurement resolution. The motivation for the latter option
is that if the number the generalized eigen modes of modified Dirac operator is finite, strictly local anti-commutation
relations fail unless one restricts the set of points included to that corresponding to number theoretic braid. In the
following integral expressions for configuration space Hamiltonians and their super-counterparts are derived first.
After that the motivations for replacing integrals with sums are discussed and the expressions for Hamiltonians and
super Hamiltonians are derived.

4.1 Magnetic flux representation of the super-symplectic algebra

In order to derive representation of the configuration space gamma matrices and super charges it is good to restate
the basic facts about the magnetic flux representation of the configuration space gamma matrices using the original
approach based on 2-dimensional integrals.

4.2 Quantization of the modified Dirac action and configuration space geometry

The quantization of the modified Dirac action involves a fusion of various number theoretical ideas. The naive
approach would be based on standard canonical quantization of induced spinor fields by posing anti-commutation
relations between Ψ and canonical momentum density ∂L/∂(∂tΨ).

4.2.1 Generalized magnetic and electric fluxes

Isometry invariants are just a special case of fluxes defining natural coordinate variables for the configuration
space. Canonical transformations of CP2 act as U(1) gauge transformations on the Kähler potential of CP2 (similar
conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing the Hamiltonians to

be products of the CP2 Hamiltonians with the real and imaginary parts of the functions fs,n,k defining the Lorentz
covariant function basis HA, A ≡ (a, s, n, k) at the light cone boundary: HA = Ha × f(s, n, k), where a labels the
Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind magnetic or electric flux via the following formulas:

Qm/e(HA|X2) =

∫
X2

HAJm/e . (4.1)

Here the magnetic (electric) flux Jm (Je) denotes the flux associated with induced Kähler field and its dual which
is well-defined since X2 is part of 4-D space-time surface.

The flux Hamiltonians

Qi(HA|X2) = Qi(HA|X2) , A ≡ (a, s, n, k) (4.2)

provide a representation of WCW Hamiltonians as far as the "kinetic" part of Kähler form is considered.

4.2.2 Anti-commutation relations between oscillator operators associated with same partonic 2-
surface

The construction of WCW gamma matrices leads to the anti-commutation relations given by
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{Ψ(x)γ0,Ψ(x)} = [Je + Jm)δ2
x,y ,

Je =

∫
J03√g4 . (4.3)

Kähler magnetic flux Jm = εαβJαβ
√
g2 has no dependence on the induced metric.

If the weak- form of the electric-magnetic duality holds true, Kähler electric flux relates to it via the formula

J03√g4 = KJ12 ,

where K is symplectic invariant and identifiable in terms of Kähler coupling strength from classical charge quanti-
zation condition for Kähler electric flux. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart
of Kähler electric field equals to the Kähler charge gK gives the condition K = g2

K/~ = 4παK , where gK is Kähler
coupling constant. Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant. The arguments leading
to the identification ε ± 1 at the opposite boundaries of CD are discussed in [6, A1]. An alternative identification
is as ε = 0 but predicts that WCW is trivial in M4 degrees of freedom if Kähler function reduces to Chern-Simons
terms.

The general form of the anti-commutation relations is therefore

{Ψ(x)γ0,Ψ(x)} = (1 +K)Jδ2
x,y . (4.4)

What is nice that at the limit of vacuum extremals the right hand side vanishes when both J and J1 vanish so
that spinor fields become non-dynamical. One can criticize the non-vanishing of the anti-commutator for vacuum
extremals of Kähler action.

For the latter option the fermionic counterparts of local flux Hamiltonians can be written in the form

HA,±,n = εq(A,∓, n)HA,±,q,n + εL(A,±)HA,∓,L,n ,

HA,+,q,n =

∮
ΨJA+qnd

2x ,

HA,−,q,n =

∮
qnJ

A
−Ψd2x ,

HA,−,L,n =

∮
ΨJA+Lnd

2x ,

HA,+,L,n =

∮
LnJ

A
−Ψd2x ,

JA+ = jAkΓk , J
A
− = jAkΓk . (4.5)

The commutative parameters εq(A,±, n) resp. εL(A,±, n) are assumed to carry quark resp. lepton number opposite
to that of HA,∓,q,n resp. HA,∓,L,n and satisfy εi(A,+, n)εi(A,−, n) = 1. One encounters a hierarchy discrete algebras
satisfying this condition in the construction of a symplectic analog of conformal quantum field theory required by
the construction of quantum TGD [3]. Associativity condition fixes uniquely the commutative multiplication of
these units and analogs of plane waves with discrete momentum are in question.

Suppose that there is a one-one correspondence between quark modes and leptonic modes is satisfied and the
label n decomposes as n = (m, i), where n labels a scalar function basis and i labels spinor components. This would
give

qn = qm,i = Φmqi ,

Ln = Lm,i = ΦmLi ,

qiγ
0qj = Liγ

0Lj = gij . (4.6)

Suppose that the inner products gij are constant. The simplest possibility is gij = δij Under these assumptions the
anti-commutators of the super-symmetric flux Hamiltonians give flux Hamiltonians.

{HA,+,n, HA,−,n} = gij

∮
ΦmΦnHAJd

2x . (4.7)

The product of scalar functions can be expressed as

ΦmΦn = c k
mnΦk . (4.8)

Note that the notion of symplectic QFT [11] led to a scalar function algebra of similar kind consisting of phase
factors and there excellent reasons to consider the possibility that there is a deep connection with this approach.

One expects that the symplectic algebra is restricted to a direct sum of symplectic algebras localized to the
regions where the induced Kähler form is non-vanishing implying that the algebras associated with different region
form to a direct sum. Also the contributions to configuration space metric are direct sums. The symplectic algebras
associated with different region can be truncated to finite-dimensional spaces of symplectic algebras associated with
the regions in question. As far as coordinatization of the reduced configuration space is considered, these symplectic
sub-spaces are enough. These truncated algebras naturally correspond to the hyper-finite factor property of the
Clifford algebra of configuration space.
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4.2.3 Generalization of WCW Hamiltonians and anti-commutation relations between flux Hamilto-
nians belonging to different ends of CD

This picture requires a generalization of the view about configuration space Hamiltonians since also the interaction
term between the ends of the line is present not taken into account in the previous approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [7, A2, 8]

Q(HA) =

∫
HAJd

2x . (4.9)

works for the kinetic terms only since J is not expectred to be the same at the ends of the line.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbedding space - in
other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts from the representation in terms
of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡ Q({HA, HB}). One has ∂HA/∂tB = {HB, HA},
where tB is the parameter associated with the exponentiation of HB. The inverse JAB of JA,B = ∂HB/∂tA
is expressible as JA,B = ∂tA/∂HB. From these formulas one can deduce by using chain rule that the
bracket {Q(HA), Q(HB} = ∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian
Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interaction term. The
symplectic conjugation associated with the interaction term permutes the WCW coordinates assignable to the
ends of the line. One should reduce this apparently non-local symplectic conjugation (if one thinks the ends
of line as separate objects) to a non-local symplectic conjugation for δCD × CP2 by identifying the points
of lower and upper end of CD related by time reflection and assuming that conjugation corresponds to time
reflection. Formally this gives a well defined generalization of the local Poisson brackets between time reflected
points at the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. Perhaps the only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the replacement
of the flux integral over X2 with an integral over the projection of X2 to a sphere S2 assignable to the light-
cone boundary or to a geodesic sphere of CP2, which come as two varieties corresponding to homologically
trivial and non-trivial spheres. The projection is defined as by the geodesic line orthogonal to S2 and going
through the point of X2. The hierarchy of Planck constants assigns to CD a preferred geodesic sphere of CP2

as well as a unique sphere S2 as a sphere for which the radial coordinate rM or the light-cone boundary defined
uniquely is constant: this radial coordinate corresponds to spherical coordinate in the rest system defined by
the time-like vector connecting the tips of CD. Either spheres or possibly both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [11] led to the proposal that
braid diagrams and symplectic triangulations could be defined in terms of projections of braid strands to one
of these spheres. One could also consider a weakening for the condition that the points of the number theoretic
braid are algebraic by requiring only that the S2 coordinates of the projection are algebraic and that these
coordinates correspond to the discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int = (1 +K)

∫
S2
±

HAXδ
2(s+, s−)d2s± = (1 +K)

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (4.10)

Here the Poisson brackets between ends of the line using the rules involve delta function δ2(s+, s−) at S2 and
the resulting Hamiltonians can be expressed as a similar integral of H[A,B] over the upper or lower end since
the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is achieved by
identifying the scalar X in the following manner:

X = J+
kl + J−kl ,

Jkl± = ∂αs
k∂βs

lJαβ± . (4.11)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms and why the
brackets with flux Hamiltonians should vanish. This relate to how one defines the Kähler form. It was shown
above that in case of flux Hamiltonians the definition of Kähler form as brackets gives the basic formula
{Q(HA), Q(HB)} = Q({HA, HB} and same should hold true now. In the recent case JA,B would contain an
interaction term defined in terms of flux Hamiltonians and the previous argument should go through also now
by identifying Hamiltonians as sums of two contributions and by introducing the doubling of the coordinates
tA.
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5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one must add
to the super-Hamiltonian completely analogous term obtained by replacing J with X∂(s1, s2)/∂(x1

±, x
2
±).

Besides the anti-commutation relations defining correct anti-commutators to flux Hamiltonians, one should
pose anti-commutation relations consistent with the anti-commutation relations of super Hamiltonians. In
these anti-commutation relations Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that
the oscillator operators at the ends of the line are not independent and that the resulting Hamiltonian reduces
to integral over either end for H[A,B].

4.3 Expressions for configuration space super-symplectic generators in finite mea-
surement resolution

The expressions of configuration space Hamiltonians and their super counterparts just discussed were based on
2-dimensional integrals. This is problematic for several reasons.

1. In p-adic context integrals do not makes sense so that this representation fails in p-adic context (for pe-adic
numbers see[30]). Sums would be more appropriate if one wants number theoretic universality at the level of
basic formulas.

2. The use of sums would also conform with the notion of finite measurement resolution having discretization in
terms of intersections of X2 with number theoretic braids as a space-time correlate.

3. Number theoretic duality suggests a unique realization of the discretization in the sense that only the points
of partonic 2-surface X2 whose δM4

± projections commute in hyper-octonionic sense and thus belong to the
intersections of the projection PM4(X2) with radial light-like geodesics M± representing intersections of M2 ⊂
M4 ⊂ M8 with δM4

± × CP2 contribute to the configuration space Hamiltonians and super Hamiltonians and
therefore to the configuration space metric.

Clearly, finite measurement resolution seems to be an unavoidable aspect of the geometrization of the configu-
ration space as one can expect on basis of the fact that configuration space Clifford algebra provides representation
for hyper-finite factors of type II1 whose inclusions provide a representation for the finite measurement resolution.
This means that the infinite-dimensional configuration space can be represented as a finite-dimensional space in
arbitrary precise approximation so that also also configuration Clifford algebra and configuration space spinor fields
becomes finite-dimensional.

The modification of anti-commutation relations to this case is

{Ψ(xm)γ0,Ψ(xn)} = (1 +K)Jδxm,xn . (4.12)

Note that the constancy of γ0 implies a complete symmetry between the two points. The number of points must
be the maximal one consistent with the Kronecker delta type anti-commutation relations so that information is not
lost.

The question arises about the choice of the points xm. This choice should general coordinate invariant. The
number theoretic vision leads to the notion of number theoretic braid defined as the set of points common to real
and p-adic variant of X2. The points of the number theoretic braid are excellent candidates for points xn. The
p-adic variant exists only if X2 is defined by rational functions with coefficients which are possibly algebraic and
thus make sense both in real and p-adic sense. These points belong to the algebraic extension of rational numbers
appearing in the representation of X2 as an algebraic surface but one can consider quite generally the possibility
that the points of the number theoretic braid are rational or in a finite algebraic extension of rationals. What
is important that if one restricts the consideration to rational points this criterion makes sense even if X2 is not
algebraic. In the generic case one can expect that the number of these points is finite.

4.4 Configuration space geometry and hierarchy of inclusions of hyper-finite factors
of II1

The configuration space metric defined as anti-commutators of the configuration space gamma matrices is extremely
degenerate since it effectively corresponds to a quadratic form in N -dimensional space, where Nm is the total number
of the eigenmodes of DK . Since two Hamiltonians whose values and corresponding Killing vector fields co-incide at
the points of B are equivalent for given rayM±, it is natural to pose a cutoff in the number of Hamiltonians used for
the representation of reduced configuration space in given region inside which induced Kähler form is non-vanishing.
The natural manner to pose this cutoff is by ordering the representations with respect to dimension and eigenvalue
of Casimir operator for the irreducible representations of SO(3)× SO(4) in case of M8 and for the representations
of SO(3)× SU(3) in case of H.

This boils down to a hierarchy of approximate representations of the configuration space as Kähler manifold
with spinor structure with a truncation of the Clifford algebra to a finite dimensional Clifford algebra. This is in
spirit with the proposed interpretation of the inclusion sequence of hyper-finite factors of type II1 and with the very
notion of hyper-finiteness. A surprisingly concrete connection of the configuration space geometry with generalized
eigenvalue spectrum of DK(X3) and basic quantum physics results. For instance, from the general expression of
Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (4.13)
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and from the expression of exp(K) =
∏

i λi as the product of of finite number of eigenvalues of DK(X3), the
expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(4.14)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates of configuration
space.

A good candidate for these complex coordinates are the complex coordinates of S2 × S, S = CP2 or E4, for the
points of B so that a close connection with the geometry of imbedding space is obtained. Once these coordinates
have been specified G can be contracted with the Killing vector fields of configuration space isometries defining the
coordinates for the truncated configuration space. By studying the behavior of eigenvalue spectrum under small
deformations of X3

l by symplectic transformations of δCD × S the components of G can be estimated.
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