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Abstract 

In this paper, we generalize the Zeta regularization method to the divergent integrals  
0

s
x dx



  for 

positive ‘s.’ Using the Euler-Maclaurin summation formula we express a divergent integral in 

terms of a linear combination of divergent series, which can be regularized using the Riemann 

Zeta function, ( )s  s >0. For the case of the pole at s=1, we use a property of the functional 

determinant to obtain the regularization  
0

1 '

( )n

a
n a






 

 
 . With the aid of the Laurent series, 

we extend the Zeta regularization to the case of integral
0

( )f x dx



 . We believe that this method 

can be of interest in the regularization of the divergent UV integrals in quantum field theory 

since it does not have the problems of the analytic regularization or dimensional regularization.  

 

Key Words: Riemann Zeta Function, functional determinant, Zeta regularization, divergent 

series.  

 

 

1. Zeta Regularization for Divergent Integrals 

In mathematics and physics, one sometimes must evaluate divergent series of the form 
1

k

n

n




  

which is divergent unless Re (k) >1. These sums with  k=1 or k=3 appears in several calculations 

of string theory and Casimir effect. See for example [3], the result  3

1

1

120n

n




  appears to give 

the correct result for the Casimir force
2

4
240

cF c

A a


   where A is the area and a is the separation 

between the 2 plates.  
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The idea behind Zeta regularization method is to take for granted that for every ‘s’  the identity 

1

( )
s

n

n s




  holds, although this formula is valid only for Re (s) > 1.  

To extend the definition of the Riemann Zeta function to negative real numbers, one needs to use 

the functional equation for the Riemann function 

 

 (1 ) 2 2 ( )cos ( )
2

s s
s s s


  

  
    

 
               ( ) (1 )

sin( )
s s

s




           (1) 

 

This gives the expressions  0 1

2n i

n




    ,   
1

12n i

n




     and  2
0

n i

n




 .  

 

Due to the pole at s=1, the Harmonic series  1

1n

n






  is NOT zeta regularizable, although it can be 

given a finite value 1

1

0.577215..
n

n 






   this value can be justified by using the theory of 

Zeta-regularized infinite products (determinants). 

 

Zeta regularization for divergent integrals 

Let ( )
m s

f x x


  with Re (m-s) < -1, then the Euler-Maclaurin summation formula for this 

function reads 

1
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Here in formula (2) all the series and integrals are convergent. But formula (2) is usually 

worthless since it is easy to prove that  
1

1

k
k

a

a
x dx

k

 



  for Re(k) >1 and  

1

m s

i

m s i






  . So 

nothing new can be obtained from (2). 

 

The idea here is to use the functional equation (1) for the Riemann and Zeta function to extend 

the definition of equation (2) to the whole complex plane except s=1.  

In case (m-s) is positive, there will be no pole at x=0. S, one we can put a=0 and take the limit 

0s


   

1 22

10 0 0

!( 2 1)
( )

2 (2 )!( 2 1)!

m m m rr

r

B m m rm
x dx x dx m x dx

r m r


  
 



 
   

 
                  (3) 

 

Formula (3) is the analytic continuation of formula (2) with a=0 and can be used to obtain a finite 

definition for otherwise divergent integrals. This equation has an infinite number of terms but the 

Gamma function has a pole at x= 0 and at x being some negative integer. 

Some examples of formula (3) are : 
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       (4)    

 

So our method can provide finite ‘regularization’ to divergent integrals.  

With the aid of the zeta regularization algorithm, one gets finite results for divergent integrals. 

IN any case, formulae (2), (3) and (4) are consistent with the definition of the sum of a series, 

when this series is a convergent one. 
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In fact if 
0

m
x dx



  is finite, for finite  , one can use the properties of the Riemann and Hurwitz 

Zeta function [5] to get the sum of the k-th powers of n on the interval  [0,  ]    

1

0

( ) ( , )
m

i

i m m 




     ,  
0

( , ) ( )
s

n

s n






   , Re(s) >1  

 

We also have the following formulae for any values of the regulator   

1 22
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r
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x dx x dx m m x dx
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      (5) 

For integer ‘m’  1
( )

( , )
1

m
H

B x
m x

m
   


 one finds the Bernoulli Polynomials. The powers of    

would cancel the integral 
1

0
1

m
m

x dx
m

 



 . So in the end in formula (5) one gets the usual 

definition of Zeta regularization 1
(0)

( )
1

m
H

B
m

m
   


 integer. 

 

 Of course one could argue that a ‘simpler’ regularization of the divergent integrals should be  

1

0

( ) ( )
1

s
s a

I s dx x a
s

 

   
  and 1

0

( 1) ( ) logI dx x a a




     . This is obtained by just dropping 

out the term proportional to log  or 
1s

  inside the integral to make it finite.  

 

However, if one plugs this result into the Euler-Maclaurin summation formulae (2), (3) or (5), 

the terms involving ‘a’ would cancel and one finally finds that ( ) 0
H

m    for every ‘m’ which 

clearly is against the definition of zeta regularization of a series. 

 

For the case of the logarithmic divergence, taking the finite part of the integral obtained from 

differentiation with respect to the external parameter ‘a’ apparently works. 
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For the case of the integrals  log ( )
m s k

a

x x dx





 , we can simply differentiate k-times with respect 

to regulator ‘s’ in order to obtain finite values in terms of  ( )s   and '( )s  . 

 

The of negative values of ‘s’ unless m=-1 (for other negative values of m one can make a change 

of variable 1xq   ) is treated in the next section. 

 

Zeta-regularized determinants and the harmonic series 

Given an operator A with an infinite set of nonzero Eigenvalues   
0n n





 one can define a Zeta 

function and a Zeta-regularized determinant [10]  

 

 
0

( )
s s

A n

n

Tr A s 


 



        
0

(0)
det( ) exp A

n

n

d
A

ds








 
   

 
      (6) 

The proof of the second formula in (6) is straightforward: The derivative of the generalized zeta 

function is 
0

log
'( ) n

A s
n n

s









  , let s=0, use the property of the logarithm log( . ) log loga b a b   

and take the exponential on both sides. 

 

For the case of the eigenvalues of a simple quantum harmonic oscillator in one dimension [ 10]   

n
n a    , the Zeta function is just the Hurwitz Zeta function. So one can define a zeta-

regularized infinite product in the form 

0

(0, )
( ) exp H

n

d a
n a

ds





 
   

 
                

(0, )
log ( ) log 2H

d a
a

ds


     (7) 

 

In the case a=1, one finds the zeta-regularized product of all the natural numbers  

0

( 1) 2
n

n 




   [see 5]. If one take the derivative with respect to ‘a’, one finds the same 

regularized value as Ramanujan did [2], i.e., 
0

1 '
( )

( )n

a
n a






 

 
   a > 0.  
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Harmonic series appear due to a logarithmic divergence of the integral
0

( )

dx

n a



 . Let m= -1 in 

formula (2) and use a regulator‘s’ ,  0s


 , one obtains the Euler-Maclaurin summation formula 

2 1

2

1 1 2 1 1
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1 1 1

( ) 2 ( ) (2 )! ( )

r

r

s s r s
n r x

Bdx

n a a n a r u x a

  

   
  

 
     

    
      (8) 

 

Since s >0 the integral and the series in (8) will converge. Now one can integrate over ‘a’ in (8) 

and use the definition of the logarithm  
0

1
lim log

s

s

x
x

s



  to regularize the integral  

1

0
( )

s

dx

n a




  

as  0s


  in terms of the function 
'
( )a





  plus some finite corrections due to the Euler-

Maclaurin summation formula. 

 

A faster method is simply to differentiate with respect to ‘a’ inside the integral 
2

0
( )

dx dI

n a da



 
  

which is convergent for every ‘a’ and equal to
1

a
 . Integration over ‘a’ again gives the value 

log a c   plus a constant ‘c’ which does not depend on the value of ‘a’ in the integral in 

question. The proof that ‘c’ is unique no matter what ‘a’ is comes from the fact that the 

difference  
0

1 1
log

b
dx

x a x b a


   

    
    

 .  

 

For the case a=0, the derivative of the Hurwitz Zeta is  
(0,0)

log 2H
d

ds


  . So if one 

approximates the divergent integral by a series, one can get the regularized result 

00

1
0

n

dx

x n

 



  .  

 

 



Prespacetime Journal| March 2013 | Volume 4 | Issue 3 | pp. 213-226 

Moreta, J. J. G., The Application of Zeta Regularization Method to the Calculation of Certain Divergent Series and Integrals 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 
www.prespacetime.com 

 

219 

Regularization of divergent integrals 
0

( )dxf x



   

In general, the divergent integrals that appear in quantum field theory, e.g., 

 

4

2
2 2

d p

p m
   or  

 

4

22 2

1

( )

d p

pp q m 
  are invariant under rotations. 

 

If one uses 4-dimesional polar coordinates, one can reduce these integrals to the case 

 

/ 2
1

0

2
( )

/ 2

d
d

drf r r
d






  and the UV divergences appear when r  . 

 

Depending on the value of ‘d’ one can have several types of divergences  

1 1

0

( ) log
d m

drf r r a b



 
    . If b =0 and m =2, the UV divergences are quadratic; if m =0 the 

divergences are linear ; and in case a = 0 and b =1 the divergences are of logarithmic type, e.g.,   

 

4

2
2 2

d p

p m
  has only a logarithmic divergence in dimension 4. 

To study the rate of divergence, one can expand the function into a Laurent series valid 

for z , ( ) ( )
n k

n

n

n

f x c x a




   where ‘k’ is a finite number which means that the function 

( )f x  has a power law divergence for big ‘x’. 

 

To compute a divergent integral, one adds and substracts a Polynomial plus a term proportional 

to 
1

x a
 in order to split the integral into a finite part and another divergent integrals 

1
1

0 00 0 0 0

( ) ( )
k k

n n
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b dx
dx f x b x b x dx b f x dx

x a x a

   




 

 
     

  
            (9) 
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where ‘k’ is chosen so that the first integral is finite. The first integral in (9) can be computed by 

numerical or exact methods yielding a finite value and the remaining integrals are just the 

logarithmic and power-law divergences. They can be regularized with the aid of formulae (2) (3), 

(4), (6) and (8) to get a finite value involving a linear combination of ( )m   m=0,1,2,....,k  and  

 

2 2 2

2 1

2

2 1
1 0

1 (0) 1
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' 1 1
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a a

r

r

r
r x
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B
a
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         (10) 

 

The first integral in (10) is convergent and has exact value of
1

log
a

a

 
 
 

. In order to regularize 

the logarithmic integral, one has to use the result  
0

1 '
( )

( )n

a
n a






 

 
  plus the Euler-Maclaurin 

summation formula.  

 

 

2. Regularization of Multiple Integrals 

Until now, I have only considered integrals in one variable (after change to polar coordinates). 

The question then is if one can apply my method of zeta regularization to more complicate 

integrals such as 

 
  4 4 4

1 2 1 2 1 22
1

1
( ) .......... ( , ,....., ) , ,.....,

1

s

n n n

i i

I s d q d q d q F q q q R q q q
q









      (11) 

where I have introduced a regulator depending on an external parameter ‘s’ in order for the 

integral to converge for big ‘s’ and use the analytic regularization to take the limit 0s


 . 

 

This regulator must be chosen with care in order not to spoil any symmetries of the physical 

system. This regulator may be of the form   

  2

1 2

1

, ,....., 1
n

n i

i

R q q q q


                   1 2

1

, ,....., 1
n

n i

i

R q q q q


          (12) 
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The first ansatz is to define n-dimensional polar coordinates in order to rewrite (11) as a multiple 

integral depending on ‘r’ 2

1

n

i

i

q r


  and several angles i
  i= 1,2,3,4,..., n-1 in the form  

   1

0

( ) ( , ) ( , )
sn

i iI s d drG r r R r 






         
1

1

1

sin
n

n i

i i

i

d d 


 



       (13) 

 

One may choose the first regulator in (13) so that it does not depend on the angular coordinates. 

The idea is that in case of (13) one has an ultraviolet divergence which appears whenever r  . 

One performs the integral over the angular variables   
1

1

1

sin
n

n i

i i

i

d d 


 



   being left with an 

integral  1

0

( ) ( ) 1
sn

I s drU r r r




  . In order to regularize this, one defines a convergent integral 

(by substraction) plus some divergent terms   

   1

1 10 0

( ) 1 ( ) (1 ) 1
k k

s i sn i

i i

i i

I s dr r U r r a r a r dr

 
 

 

 
      

 
           (14) 

where U (r) is the function obtained after integration over the angles and ‘k’ is a finite number 

for performing the minimal substraction of terms in order the first integral to converge even for s 

= 0. If the integral over the angles is too complicated to have an exact form, one can replace this 

integral over the angles by an approximate finite sum  
i

d (sum over all the angular 

variables ) in order to make the integral easier to calculate by using Montercarlo methods of 

integration. 

 

Substraction method 

Once one has made the change of variable to spherical coordinates inside integral  

1 2( , ,......, )nI q q q  one could substract some terms to render the integral finite 

   1

1 10 0

( ) ( , ) ( ) 1 ( ) 1
k k

j s j sn

i j i j i

j j

I s d dr G r r f r f d dr r  
 

 

  

 
       

 
        (15) 
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One may choose number ‘k’ and the functions  ( )
j i

f   in such way that the first integral in (15) 

converge. For the second integral, one can perform integration over the angular variables and 

then use formulae (2) and (3) to regularize 
0

(1 )
m

r dr



 . 

Iterated integration on several variables 

Another method is to consider the multiple integral as an interate integral and then make the 

substraction for every variable, e.g., 

1, 2 1 1 1 1 1

1 10

( ,......, ) ( ,....., )(1 ) ( ,....., )(1 )
k k

i i

n n i n n n i n n

i i

q F q q q a q q q q a q q q



  

 

 
      

 
    (16) 

where nq  means that the integral is made over the variable n
q  while keeping the other variables 

constant , the number ‘k’ is chosen so the first integral is finite. This integral will depend on  

1( ,........, )nI q q  , the divergent integrals (even for the logarithmic case i=-1) can be regularized. 

 

Now one can repeat the iterative process for the functions 

1 1 2 1 2 2 1 1 1 2 1

1 10
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q a q q q b q q q q b q q q



      

 

 
      

 
    (17)  

Using (16) and (17) for every step, one can reduce the dimension of the integral until one reach 

the one dimensional case which is easier to handle, e.g., 

 
2

2

0 0 0 0 0 0 0 0
1 1 1 1

xy xy x x dy
dx dy dx dy x xdx dy x x dx

x y x y y y

       
 

      
      

          (18) 

 2

0

( ) ( )dx f x bx a b x



        
 

3 2

0

( )
( 1) 1

dy x x
f x

y x y





             (19) 

where
0 reg

a dx

 
  
 
 and . For an initial given integral with an overlapping divergence as  x   

y  , a substraction is made to get a finite integral over ‘y’. 

 

Repeating the same process one can regularize the integral over ‘x’. In order to integrate the 

finite part of the integral, one can use several numerical methods.  
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For example, the integral  
 

3 2

0

( )
( 1) 1

dy x x
f x

y x y





    can be calculated numerically to give 

 

3 2
1

( )
( 1) 1j j j

x x
f x

y x y




  
  in order to avoid terms with log( )x ,  tan( )ar x  or similar ones in 

(18) and (19). 

 

Another method to calculate (19) would be to introduce a regulator in the form 

 2 2
1 ( , , )

s

x y R s x y


   which will make (19) to converge for certain values of ‘s’. If one 

uses polar coordinates in (x,y), one has 

 

 

2/ 2

1
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sin(2 ) 1( , , )
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1 2 cos( ) sin( )

s
r u rR x y s
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x y u u r

   






   
           (20) 

 

Integration over the angular variable ‘u’ can be carried by numerical methods to produce some 

new divergent integrals that will only depend on the value of ‘r’  
0

( ) 1
s

idrg r r




 . This integrals 

can be regularized with the same methods I used to give a finite meaning to 1-D integrals. But 

unlike the dimensional regularitzation, the ‘regulator’ is not the dimension of space-time, so we 

have no problem to change to spherical coordinates in d=4 to overcome the UV divergencies. 

 

If the integrand  1 2
( , ,......., )

n
F q q q  had no singularities for 0

j
q   , one may expand this 

integrand into a multiple Laurent series of several variables, and then perform the substraction  
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    (21) 

plus some corrections due to divergent integrals 
0

( )
m

i i iq b dq



  m=-1,0,1,..... . 
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In many cases, although the integrals given in (17) and (18) are finite, they will have no exact 

expression or the exact expression will be too complicated. In that case, one can use the Gauss-

Laguerre Quadrature formula (in case the interval is  [0, )  ) to approximate the integral by a 

sum over the zeros of Laguerre Polynomials  
1 2 1

0

( , ,....., , )
n

i n i

i

w f q q q x



  with the weight 

expressed in terms of Laguerre Polynomials and their roots 

 
22

1
( 1) ( )

i
i

n i

x
w

n L x





, ( ) 0n iL x             (22) 

 

3. Conclusions 

In this paper, I have extended the definition of the Zeta regularization of a series in order to 

apply the extension to the Zeta regularization of a divergent integral  
0

m
x dx



   m >0 by using the 

Zeta regularization technique combined with the Euler-Maclaurin summation formula.  

 

For introduction to the Zeta regularization techniques, the readers are directed to the book by 

Elizalde [4] or the book Brendt [2]. These techniques are based on the mathematical discoveries 

of Ramanujan and its method of summation equivalent to the Zeta regularization algorithm [2]. 

Another good reference (but a bit more advanced) is the book by Zeidler [12]. Further, for the 

case of Zeta-regularized determinants [7] is a good online reference to study infinite product, 

e.g., 
0

( 1) log 2
n

n 




   .  

 

Since the Riemann Zeta funciton has a pole at s=1, there is an apparent contradiction that 

harmonic series could not be regularized. However, using the definition of a functional 

determinant 
0

n

n

E







    nE n a  , one gets the finite result for the generalized harmonic series  

0

1 '( )

( )n

a

n a a






 

 
  with the aid of the Euler-Maclaurin summation formula. This result for the 
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harmonic series can be used to obtain an approximate regularized value for the logarithmic 

integral
0

1
dx

x a



 .  

 

For the case of other types of divergent integrals  
0

m
dx x a



 , one can again use Euler-

Maclaurin summation formula to express this divergent integrals in terms of the negative values 

of the Hurwitz or Riemann Zeta function ( ,1) ( )H s s  , ( ,1)
H

m    (UV).           

 

I also believe that a similar procedure can be applied to extend the Zeta regularization algorithm 

to multiple (multi-loop) integrals 4 4 4

1 2 1 2......... ( , ,......., )n nd q d q d q F q q q   .  

 

One of the main advantages of this algorithm is that the dimension of the space does not appear 

explicitly.  So method developed here does not have the same problems as dimensional 

regularization and can be used when the Dirac matrices 5 0 1 2 3i      appear. 

 

The imposition in formula (2) that ‘a’ must be a natural number is in order to avoid oddities in 

the process of Zeta regularization with the Zeta and Hurwitz Zeta function, since unless ‘a’ is a 

positive integer the equality 
0 0 0

1
( 1, ) ( )

12 2n n n

a
a n a n a

  

  


          does not hold. 
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