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Article

What Could p-adic Icosahedron Mean? And What about p-adic
Manifold?

Matti Pitkanen [

Abstract

The original focus of this article was p-adic icosahedron. The discussion of attempt to define this
notion however leads to the challenge of defining the concept of p-adic sphere, and more generally,
that of p-adic manifold, and this problem soon became the main target of attention since it is one of
the key challenges of also TGD.

There exists two basic philosophies concerning the construction of both real and p-adic manifolds:
algebraic and topological approach. Also in TGD these approaches have been competing: algebraic
approach relates real and p-adic space-time points by identifying the common rationals. Finite pinary
cutoff is however required to achieve continuity and has interpretation in terms of finite measurement
resolution. Canonical identification maps p-adics to reals and vice versa in a continuous manner
but is not consistent with p-adic analyticity nor field equations unless one poses a pinary cutoff. It
seems that pinary cutoff reflecting the notion of finite measurement resolution is necessary in both
approaches. This represents a new notion from the point of view of mathematics.

1. One can try to generalize the theory of real manifolds to p-adic context. The basic problem is
that p-adic balls are either disjoint or nested so that the usual construction by gluing partially
overlapping spheres fails. This leads to the notion of Berkovich disk obtained as a completion
of p-adic disk having path connected topology (non-ultrametric) and containing p-adic disk as
a dense subset. This plus the complexity of the construction is heavy price to be paid for path-
connectedness. A related notion is Bruhat-Tits tree defining kind of skeleton making p-adic
manifold path connected. The notion makes sense for the p-adic counterparts of projective
spaces, which suggests that p-adic projective spaces (S? and CP, in TGD framework) are
physically very special.

2. Second approach is algebraic and restricts the consideration to algebraic varieties for which
also topological invariants have algebraic counterparts. This approach looks very natural in
TGD framework - at least for imbedding space. Preferred extremals of Kéahler action can be
characterized purely algebraically - even in a manner independent of the action principle - so
that they might make sense also p-adically.

Number theoretical universality is central element of TGD. Physical considerations force to gener-
alize the number concept by gluing reals and various p-adic number fields along rationals and possible
common algebraic numbers. This idea makes sense also at the level of space-time and of ”world of
classical worlds” (WCW).

Algebraic continuation between different number fields is the key notion. Algebraic continuation
between real and p-adic sectors takes place along their intersection which at the level of WCW
correspond to surfaces allowing interpretation both as real and p-adic surfaces for some value(s) of
prime p. The algebraic continuation from the intersection of real and p-adic WCWs is not possible
for all p-adic number fields. For instance, real integrals as functions of parameters need not make
sense for all p-adic number fields. This apparent mathematical weakness can be however turned to
physical strength: real space-time surfaces assignable to elementary particles can correspond only
some particular p-adic primes. This would explain why elementary particles are characterized by
preferred p-adic primes. The p-adic prime determining the mass scale of the elementary particle
could be fixed number theoretically rather than by some dynamical principle formulated in real context
(number theoretic anatomy of rational number does not depend smoothly on its real magnitude!).
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Although Berkovich construction of p-adic disk does not look promising in TGD framework, it
suggests that the difficulty posed by the total disconnectedness of p-adic topology is real. TGD in turn
suggests that the difficulty could be overcome without the completion to a non-ultrametric topology.
Two approaches emerge, which ought to be equivalent.

1. The TGD inspired solution to the construction of path connected effective p-adic topology
is based on the notion of canonical identification mapping reals to p-adics and vice versa in a
continuous manner. The trivial but striking observation was that canonical identification satisfies
triangle inequality and thus defines an Archimedean norm allowing to induce real topology to
p-adic context. Canonical identification with finite measurement resolution defines chart maps
from p-adics to reals and vice versa and preferred extremal property allows to complete the
discrete image to hopefully space-time surface unique within finite measurement resolution so
that topological and algebraic approach are combined. Finite resolution would become part of
the manifold theory. p-Adic manifold theory would also have interpretation in terms of cognitive
representations as maps between realities and p-adicities.

2. One can ask whether the physical content of path connectedness could be also formulated as
a quantum physical rather than primarily topological notion, and could boil down to the non-
triviality of correlation functions for second quantized induced spinor fields essential for the
formulation of WCW spinor structure. Fermion fields and their n-point functions could become
part of a number theoretically universal definition of manifold in accordance with the TGD in-
spired vision that WCW geometry - and perhaps even space-time geometry - allow a formulation
in terms of fermions. This option is a mere conjecture whereas the first one is on rigorous basis.

1 Introduction

This article was originally meant to be a summary of what I understoond about the article ”The p-Adic
Icosahedron”| in Notices of AMS [3]. The original purpose was to summarize the basic ideas and discuss
my own view about more technical aspects - in particular the generalization of Riemann sphere to p-adic
context which is rather technical and leads to the notion of Bruhat Tits tree and Berkovich space.

About Bruhat-Tits tree there is a nice web article titled p-Adic numbers and Bruhat-Tits tree| [5]
describing also basics of p-adic numbers in a very concise form. The Wikipedia article about Berkovich
space| is written with a jargon giving no idea about what is involved. There are [video lectures [6] about
Berkovich spaces. The web article about Berkovich spaces| by Temkin [7] seems too technical for a non-
specialist. The slides [8] however give a concise bird’s eye of view about the basic idea behind Berkovich
spaces.

The notion of p-adic icosahedron leads to the challenge of constructing p-adic sphere, and more
generally p-adic manifolds and this extended the intended scope of the article and led to consider the
fundamental questions related to the construction of TGD.

Quite generally, there are two approaches to the construction of manifolds based on algebra resp.
topology.

1. In algebraic geometry manifolds - or rather, algebraic varieties - correspond to solutions of algebraic
equations. Algebraic approach allows even a generalization of notions of real topology such as the
notion of genus.

2. Second approach relies on topology and works nicely in the real context. The basic building brick is
n-ball. More complex manifolds are obtained by gluing n-balls together. Here inequalities enter the
game. Since p-adic numbers are not well-ordered they do not make sense in purely p-adic context
unless expressed using p-adic norm and thus for real numbers. The notion of boundary is also one
of the problematic notions since in purely p-adic context there are no boundaries.
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1.1 The attempt to construct p-adic manifolds by mimicking topological con-
struction of real manifolds meets difficulties

The basic problem in the application of topological method to manifold construction is that p-adic disks
are either disjoint or nested so that the standard construction of real manifolds using partially overlapping
n-balls does not generalize to the p-adic context. The notions of Bruhat-Tits tree [5], building, and
Berkovich disk [§] and [Berkovich space [7] represent attempts to overcome this problem. Berkovich
disk is a generalization of the p-adic disk obtained by adding additional points so that the p-adic disk
is a dense subset of it. Berkovich disk allows path connected topology which is path connected. The
generalization of this construction is used to construct p-adic manifolds using the modification of the
topological construction in the real case. This construction provides also insights about p-adic integration.

The construction is highly technical and complex and pragmatic physicist could argue that it contains
several un-natural features due to the forcing of the real picture to p-adic context. In particular, one
must give up the p-adic topology whose ultra-metricity has a nice interpretation in the applications to
both p-adic mass calculations and to consciousness theory.

I do not know whether the construction of Bruhat-Tits tree, which works for projective spaces but
not for Qp (!) is a special feature of projective spaces, whether Bruhat-Tits tree is enough so that no
completion would be needed, and whether Bruhat-Tits tree can be deduced from Berkovich approach.
What is however remarkable that for M* x C'P, p-adic S? and C'P; are projective spaces and allow Bruhat-
Tits tree. This not true for the spheres associated with the light-cone boundary of D # 4-dimensional
Minkowski spaces.

1.2 Two basic philosophies concerning the construction of p-adic manifolds

There exists two basic philosophies concerning the construction of p-adic manifolds: algebraic and topo-
logical approach. Also in TGD these approaches have been competing: algebraic approach relates real
and p-adic space-time points by identifying common rationals. Finite pinary cutoff is however required to
avoid totally wild behavior and has interpretation in terms of finite measurement resolution. Canonical
identification maps p-adics to reals and vice versa in a continuous manner but is not consistent with field
equations without pinary cutoff.

1. One can try to generalize the theory of real manifolds to p-adic context. Since p-adic balls are either
disjoint or nested, the usual constuction by gluing partially overlapping balls fails. This leads to the
notion of Berkovich disk obtained as a completion of p-adic disk having path connected topology
(non-ultrametric) and containing p-adic disk as a dense subset. This plus the complexity of the
construction is heavy price to be paid for path-connectedness. A related notion is Bruhat-Tits tree
defining kind of skeleton making p-adic manifold defining its boundary path connected. The notion
makes sense for the p-adic counterparts of projective spaces, which suggests that p-adic projective
spaces (S? and C'P, in TGD framework) are physically very special.

2. Second approach is algebraic and restricts the consideration to algebraic varieties for which also
topological invariants have algebraic counterparts. This approach is very natural in TGD framework,
where preferred extremals of Kahler action can be characterized purely algebraically - even in a
manner independent of the action principle - so that they make sense also p-adically.

At the level of WCW algebraic approach combined with symmetries works: the mere existence of
Kéhler geometry implies infinite-D group of isometries and fixes the geometry uniquely. One can say
that infinite-D geometries are the final victory of Erlangen program. At space-time level it however
seems that one must have correspondence between real and p-adic worlds since real topology is the
”lab topology”.

ISSN: 2153-8301 Prespacetime Journal Wwww.prespacetime.com
Published by QuantumDream, Inc.


http://en.wikipedia.org/wiki/Berkovich_space

Prespacetime Journal | February 2013 | Volume 4 | Issue 2 | pp. 119-160 122
Pitkanen, M. What Could p-adic Icosahedron Mean? And What about p-adic Manifold?

1.3 Number theoretical universality and the construction of p-adic manifolds

Construction of p-adic counterparts of manifolds is also one of the basic challenges of TGD. Here the
basic vision is that one must take a wider perspective. One must unify real and various p-adic physics
to single coherent whole and to relate them. At the level of mathematics this requires fusion of real and
p-adic number fields along common rationals and the notion of algebraic continuation between number
fields becomes a basic tool.

The number theoretic approach is essentially algebraic and based on the gluing of reals and various
p-adic number fields to a larger structure along rationals and also along common algebraic numbers. A
strong motivation for the algebraic approach comes from the fact that preferred extremals [19, [I8] are
characterized by a generalization of the complex structure to 4-D case both in Euclidian and Minkowskian
signature. This generalization is independent of the action principle. This allows a straightforward
identification of the p-adic counterparts of preferred extremals. The algebraic extensions of p-adic numbers
play a key role and make it possible to realize the symmetries in the same manner as they are realized in
the construction of p-adic icosahedron.

The lack of well-ordering of p-adic numbers poses strong constraints on the formulation of number
theoretical universality.

1. The notion of set theoretic boundary does not make sense in purely p-adic context. Quite generally,
everything involving inequalities can lead to problems in p-adic context unless one is able to define
effective Archimedean topology in some natural manner. Canonical identifcation inducing real
topology to p-adic context would allow to achieve this.

2. The question arises about whether real topological invariants such as genus of partonic 2-surface
make sense in the p-adic sector: for algebraic varieties this is the case. One would however like to
have a more general definition and again Archimedean effective topology is suggestive.

3. Integration poses problems in p-adic context and algebraic continuation from reals to p-adic number
fields seems to be the only possible option making sense. The continuation is however not possible
for all p-adic number fields for given surface. This has however a beautiful interpretation explaining
why real space-time sheets (and elementary particles) are characterized by some p-adic prime or
primes. The p-adic prime determining the mass scale of the elementary particle could be fixed
number theoretically rather than by some dynamical principle formulated in real context (number
theoretic anatomy of rational number does not depend smoothly on its real magnitude!). A more
direct approach to integration could rely on canonical integration as a chart map allowing to define
integral on the real side.

4. Only those discrete subgroups of real symmetries, which correspond matrices with elements in
algebraic extension of p-adic numbers can be realized so that a symmetry breaking to discrete
subgroup consistent with the notion of finite measurement resolution and quantum measurement
theory takes place. p-Adic symmetry groups can be identified as unions of elements of discrete
subgroup of the symmetry group (making sense also in real context) multiplied by a p-adic variant
of the continuous Lie group. These genuinely p-adic Lie groups are labelled by powers of p telling
the maximum norm of the Lie-algebra parameter. Remarkably, effective values of Planck constant
come as powers of p. Whether this interpretation for the hierarchy of effective Planck constants
is consistent with the interpretation in terms of n-furcations of space-time sheet remains an open
question.

1.4 How to achieve path connectedness?

The basic problem in the construction of p-adic manifolds is the total disconnectedness of the p-adic
topology implied by ultrametricity. This leads also to problems with the notion of p-adic integration.
Physically it seems clear that the notion of path connectedness should have some physical counterpart.
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The notion of open set makes possible path connectedness possible in the real context. In p-adic
context Bruhat-Tits tree [5] and completion of p-adic disk to Berkovich disk [§] are introduced to achieve
the same goal. One can ask whether Berkovich space could allow to achieve a more rigorous formulation
for the p-adic counterparts of C'Ps, of partonic 2-surfaces, their light-like orbits, preferred extremals of
Kahler action, and even the "world of classical worlds” (WCW) [I4] [I5]. To me this construction does
not look promising in TGD framework but I could of course be wrong.

TGD suggests two alternative approaches to the problem of path connectedness. They should be
equivalent.

1.4.1 p-Adic manifold concept based on canonical identification

The TGD inspired solution to the construction of path connectd p-adic topology relies on the notion of
canonical identification mapping reals to p-adics and vice versa in a continuous manner.

1. Canonical identification is used to map the values of p-adic mass squared predicted by p-adic mass
calculations to their real counterparts [20]. It makes also sense to map p-adic probabilities to their
real counterparts by canonical identification. In TGD inspired theory of consciousness canonical
identification is a good candidate for defining cognitive representations as representations mapping
real preferred extremals to p-adic preferred extremals as also for the realization of intentional action
as a quantum jump replacing p-adic preferred extremal representing intention with a real preferred
extremal representing action. Could these cognitive representations and their inverses actually
define real coordinate charts for the p-adic "mind stuff” and vice versa?

2. The trivial but striking observation was that it satisfies triangle inequality and thus defines an
Archimedean norm allowing to induce real topology to p-adic context. Canonical identification
with finite measurement resolution defines chart maps from p-adics to reals (rather than p-adics!)
and vice versa and preferred extremal property allows to complete the discrete image to a space-time
surface unique apart from finite measurement resolution so that topological and algebraic approach
are combined. Without preferred extremal property one can complete to smooth real manifold (say)
but the completion is much less unique.

3. Also the notion of integration can be defined. If the integral for - say- real curve at the map
leaf exists, its value on the p-adic side for its pre-image can be defined by algebraic continuation
in the case that it exists. Therefore one can speak about lengths, volumes, action integrals, and
similar things in p-adic context. One can also generalize the notion of differential form and its
holomomorphic variant and their integrals to the p-adic context. These generalizations allow a
generalization of integral calculus required by TGD and also provide a justification for some basic
assumptions of p-adic mass calculations.

1.4.2 Could path connectedness have a quantal description?

The physical content of path connectedness might also allow a formulation as a quantum physical rather
than primarily topological notion, and could boil down to the non-triviality of correlation functions for
second quantized induced spinor fields essential for the formulation of WCW spinor structure. Fermion
fields and their n-point functions could become part of a number theoretically universal definition of
manifold in accordance with the TGD inspired vision that WCW geometry - and perhaps even space-
time geometry - allow a formulation in terms of fermions.

The natural question of physicist is whether quantum theory could provide a fresh number theoreti-
cally universal approach to the problem. The basic underlying vision in TGD framework is that second
quantized fermion fields might allow to formulate the geometry of ”world of classical worlds” (WCW)
(for instance, Kahler action for preferred extremals and thus Kahler geometry of WCW would reduce to
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Dirac determinant [I7]). Maybe even the geometry of space-time surfaces could be expressed in terms of
fermionic correlation functions.

This inspires the idea that second quantized fermionic fields replace the K-valued (K is algebraic
extension of p-adic numbers) functions defined on p-adic disk in the construction of Berkovich. The
ultrametric norm for the functions defined in p-adic disk would be replaced by the fermionic correlation
functions and different Berkovich norms correspond to different measurement resolutions so that one
obtains also a connection with hyper-finite factors of type Il;. The existence of non-trivial fermionic
correlation functions would be the counterpart for the path connectedness at space-time level. The
3-surfaces defining boundaries of a connected preferred extremal are also in a natural manner ”path
connected” with ”path” being defined by the 4-surface. At the level of WCW and in zero energy ontology
(ZEO) [26] WCW spinor fields are analogous to correlation functions having collections of these disjoint 3-
surfaces as arguments. There would be no need to complete p-adic topology to a path connected topology
in this approach.

This apporach is much more speculative that the first option and should be consistent with it.

1.5 Topics of the article

The article was originally meant to discuss p-adic icosahedron. Although the focus was re-directed to
the notion of p-adic manifold - especially in TGD framework - I decided to keep the original starting
point since it provides a concrete manner to end up with the deep problems of p-adic manifold theory
and illustrates the group theoretical ideas.

e In the first section icosahedron is described in the real context. In the second section the ideas
related to its generalization to the p-adic context are introduced. After that I discuss how to define
sphere in p-adic context.

e In the section about algebraic universality I consider the problems related to the challenge of defining
p-adic manifolds TGD point of view, which is algebraic and involves the fusion of various number
fields and number theoretical universality as additional elements.

e The key section of the article describes the construction of p-adic space-time topology relying on
chart maps of p-adic preferred extremals defined by canonical identification in finite measurement
resolution and on the completion of discrete chart maps to real preferred extremals of Kéhler action.
The needed path-connected topology is the topology induced by canonical identification defining
real chart maps for p-adic space-time surface. Canonical identification allows also the definition of
p-adic valued integrals and definition of p-adic differential forms crucial in qugantum TGD.

e Last section discusses in rather speculative spirit the possibility of defining space-time surfaces in
terms of correlation functions of induced fermion fields.

2 Real icosahedron and its generalization to p-adic context

I summarize first the description of icosahedron in real context allowing a generalization to the p-adic
context and consider the the problems related to the precise definition of p-adic icosahedron.

2.1 What does one mean with icosahedron in real context?

The notion of licosahedron [I] is a geometric concept involving the notion of distance. In p-adic context
this notion does not make sense since one cannot calculated distances, between points using standard
formulas. Same applies to areas and volumes. The reason is that Riemann integral does not generalize
and this is due to the fact that p-adic numbers are not well-ordered: one cannot say whether for two
p-adic numbers of same norm a < b or b < a holds true.
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Platonic solids| [4] are however characterized by their isometry groups and group theory makes sense
also in p-adic context. The idea is therefore to characterize the icosahedron or any Platonic solid solely
by its isometry group.

In practice this means following. Platonic solid is described as a collection of points. Vertices,
midpoints of edges, and barycenters of faces. These points are fixed points for discrete subgroups of
the Platonic solid. In the case of icosahedron the isometry group is As the group of even permutations
of 5 letters. There are are 6 cyclic subgroups of order 5, 10 cyclic subgroups of order 3, and 15 cyclic
subgroups of order 2. The respective fixed points are the 12 vertices, 20 barycenters, and 30 midpoints of
edges. Thus icosahedron becomes a collection of points with a label telling which is the cyclic subgroup
associated with the point. This is something which might be able to generalize to p-adic context since
there would be no need to talk about distances. One should however describe also the ”solid” aspect of
icosahedron.

2.2 What does one mean with ordinary 2-sphere?

In order to construct p-adic analog of icosahedron one must construct a space in which the isometry group
As of icosahedron acts and is imbedded to a group defining the analog of rotation group.

One could consider two options. The first option would be 3-D Euclidian space E® = R? replaced
with its p-adic counterpart Qg. The action of SO(3) however leaves the distance from origin invariant
and one can restrict the consideration to 2-sphere. The challenge is to define the counterpart of 2-sphere
p-adically.

Before one can say anything about p-adic 2-sphere, one must understand what means with the ordinary
2-sphere identified now as sphere in metric sphere.

1. Riemann sphere is compactification of complex plane and can be regarded as complex projective
space CP; = PY(C) is taken as starting point. This space is obtained from C? by identified points
(21, 22) which differ by a complex scaling: (21,22) = A(21,22). One can say that points of P*(C)
are complex lines, which are nothing but Riemann spheres. This manifold requires two coordinate
patches corresponding to patch containing North resp. South pole but not South resp. North pole.
The coordinates in a patch containing Northern hemisphere can be taken to be (u = 21/22,1) by
projective equivalence allowing to select point (z1/z2,1) from the projective line with zo # 0. In
the region containing Southern hemisphere one can take v = z5/21). In the overlap region around
equator the coordinates are related by v = 1/u. One can think also P!(C) as plane with single
point oo (south pole) added.

2. The group PGL(2,C) and also the Lorentz group SL(2,C) acts at Riemann sphere as Mobius
transformations. The complex matrix

Qo
N—

is represented as a Mobius transformation

au +b
— .
cu+d

Note that the matrix elements are complex: what this means in p-adic context is not at all clear!

One can regard the coordinates z; and z5 as spinor components and the action of SO(3) is lifted to
the action of covering group SU(2) for which 27 rotation is represented by -1. The group As can be
lifted to its covering group have twice as many elements as the original one but the action of SU(2)
resp. overing of As reduces to that of SO(3) resp. As since one considers the action on the ratio
21/ 72 of the spinor components.
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3. 8?2 = PYC) is a good structure to generalize to p-adic context since one can define it purely
algebraically, and one realize the action of isometries in it.

2.3 Icosahedron in p-adic context
2.3.1 What does one mean with p-Adic numbers?

The article about p-icosahedron [3] gives also a concise summary of p-adic numbers. p-Adic number fields
define a hierarchy of number fields @, labeled by prime p = 2,3,5, .... They are completions of rationals
so that rationals can be said to be common to reals and p-adics. Each @), allows an infinite number of
algebraic extensions whereas reals allow only one - complex numbers.

Local topology of p-adic numbers is what distinguishes them from reals. Two points of ), are near
to each other if they differ by a very large positive power of p. As real numbers these numbers would
differ very much. Most p-adic numbers have infinite number pinary digits in the pinary expansion and
are infinite as real numbers.

The p-adic norm defining the p-adic topology is defined by p-adic number fixed completely by the
lowest pinary digit in the expansion and is therefore very rough and obtains only values p™ for @),,. The
resulting topology is very rough. Indeed all p-adic points define open sets: one says that p-adic topology
is totally disconnected. p-Adic norm is non-Archimedean. It satisfies |x — y| < Max{z,y} whereas real
norm satisfies |z| — |y| < | — y| < |z| + |y|. This property of p-adic topology is known as ultrametricity.

p-Adic differential calculus exists and differentiation rules are same as for the real calculus. It is
however not at all clear whether given real Taylor series with rational coefficients generalizes to its p-adic
counterpart since the series need not converge p-adically. Exponential and trigonometric functions have
p-adic counterparts but they do not have the properties of their real counterparts: for instance, p-adic
trigonometric functions are not periodic. This is a problem when one tries to generalize Fourier analysis.

p-Adic integral calculus is problematic. The reason is that p-adic numbers are not well-ordered. As
a consequence, the ordering crucial for Riemann integral does not exist. In fact, formal definition of
Riemann integral gives as a limit vanishing integral. The generalization of Fourier analysis based on the
integration of plane wave factors exp(ikx) as roots of unity appearing in algebraic extension of p-adic
numbers seems to be the only manner to overcome the problem. Algebraic continuation of integrals
depending on parameters (such as integration limits) from real to p-adic context is in a central role in
TGD framework but requires the fusion of reals and various p-adic number fields to bigger structure along
common rationals: each number field would be like one page in a big book.

2.3.2 What does one mean with p-adic complex projective space?

The question is what one should do for the projective space P(C) to get its p-adic counterpart? The
basic condition is that As acts transitively in the p-adic analog of P1(C).

1. The first guess would be the replacement of P'(C) with P'(Q,). This is however the p-adic analog
of real projective line, not complex projective line and one cannot imbed the complex matrices
representing the action of the covering group of As of PGL(2,Q,).

2. What one should do? The basic observation is that complex numbers C' define the only possible
algebraic extension of real numbers. Generalizing this, one should consider algebraic extension of
Qp- There is infinite number of these extensions and one must choose that of minimal algebraic
dimensions. This means that the phases exp(in/5) (10:th root of unity), exp(im/3) (6:th root of
unity), and exp(in/2) =i (4:th root of unity) must be contained by the extension. The reason why
one must have exp(im/5) rather than exp(2m/5) representing rotation of 27/5 generating the cyclic
group Zs is due the fact that one has two fold covering. Same applies to other roots of unity. The
solutions of equation z%° = 1 give the needed roots of unity since 60 = 6 x 10 = 4 x 3 x 5 contains
all the needed roots of unity needed in the representation matrices.
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The extension of @, containing those roots of unity which do not reduce to -1 (existing p-adically)
would define the extension used. One can calculate the algebraic dimension of this extension but
certainly it is much larger than 2 as in the case of complex numbers. The extension - call it K - is
not unique but is minimal. There is infinite number of extensions containing this extension.

To define things precisely one must replace the notions of p-adic integer, prime, and rational p
applying in K but this is a technicality. This means that p - the only prime in @), - is replaced with
m, the only prime in K.

I will leave the detailed construction of the projective space P! (Qp) later because it is rather technical
procedure. Some comments are however in order:

1. For p mod 4 =1 (say p = 5 or 17) i« = v/—1 belongs to the p-adic number field. Therefore the
dimension of algebraic extension is considerably smaller than for p mod 4 =3 (sayp=3or 7).

2. The naive question is whether for p mod 4 = 3 a considerably simpler approach could make sense.
Use 2-D algebraic extension of p-adic numbers consisting of numbers = + iy: call this space C).
Naive non-specialist might think that in this case the rather intricate complex construction of the
projective space P'(Q,) based on Bruhat-Tits tree might not be needed. This simpler construction
however fails for p mod 4 = 1. It fails also more generally. The reason is that the exp(im/n),
n = 3,5 are algebraic numbers and do not belong to C,,. Therefore one must extend C), to included
also the phase factors and it seems that one ends up to the same situation as in general case.

3. Side track to TGD.

(a) In TGD one encounters the problem ”What could be the p-adic counterpart of S and CP, =

P2(C)?". The above general recipe applies to this problem: replace C with an algebraic
extension K of @, allowing the imbedding of some discrete subgroup of SU(2) resp. SU(3)
represented as matrices in PGL(2, K) resp. PGL(3, K). The interpretation would be that due
to finite measurement resolution the Lie group SU(2) resp. SU(3) is replaced with its discrete
counterpart.
This has a direct connection to the inclusions of hyperfinite factors of type I'T; (HFF) [25],
where all discrete subgroups of SU(2) appear also those of SU(3), whose interpretation is in
terms of finite measurement resolution with included HFF creating states which cannot be
distinguished from the original state in the resolution used. General inclusions correspond to
discrete subgroups of rotation group and by McKay correspondence [I1] to Lie groups of ADE
type. The isometry groups of Platonic solids are the only simple groups in this hierarchy and
correspond to exceptional Lie groups Eg, F7, Es.

(b) One could criticize the approach since the algebraic extension K containing the isometry group
is not unique. In TGD framework one however interprets the algebraic extensions in terms of
finite measurement resolution. One cannot measure all possible angles p-adically- actually one
cannot measure angles at all but only discrete set of phase factors coming as roots exp(ik2m/n)
of unity. The large the value of n, the better the measurement resolution.

2.3.3 What does one mean with p-adic icosahedron?

Once the projective space P!(K) generalizing P1(C) = S? is constructed such that it allows the action
of As (it does not allow the action of entire rotation group!) one can identify the points which remain
fixed by the action of various subgroups of As (6 cyclic subgroups of order 5, 10 cyclic subgroups of order
3, and 15 cyclic subgroups of order 2. The respective fixed points are the 12 vertices, 20 barycenters, and
30 midpoints of edges). This is a purely algebraic procedure and there is no need to define what edges
and faces are.

To obtain a more concrete picture about the situation one must define precisely what P!(Q) means
and here the notion of Bruhat-Tits tree [5] seems to be unavoidable.
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3 Trying to explain what P!(Q,) could mean technically

The naive approach to the construction of Pl(Qp) would be following. Do the same things as in the case
of PY(C) or P*(R). The point pairs (qi,q2) in Q3 are identified with pairs A x (g1, ¢2) where A # 0 is
p-adic number. For some reason this simple approach is not adopted in the article [3]. The reason is
that one cannot introduce the notion of Bruhat-Tits tree [5] in this approach. Bruhat-Trits tree is needed
to obtain path-connectedness - that is connect the fixed points of icosahedron to form a ”solid” and to
give a more geometric meaning to the notion of icosahedron. One can regard P! (Qp) as boundary of
Bruhat-Tits tree somewhat like sphere is a boundary of ball in real context.

I am not not sure whether this approach on P!(Q,) is equivalent with that of Berkovich [§] based on
the idea of adding some points to P'(Q,) to make it path connected space containing P!(Q,) as a dense
subset. The outcome has rather frightening complexity.

The alternative approach would be purely algebraic. I will discuss later the problem of introducing
the counterpart of path connectedness without giving up p-adic topology and by introducing induced real
topology as effective topology having the desired path-connectedness.

3.1 Generalization of P!(C') making possible to introduce Bruhat-Tits tree

The following construction looks somewhat artificial but its purpose is to make possible the introduction
of Bruhat-Tits tree allowing to realize path-connectedness.

1. The point pairs (g1, ¢2) QZQ, are replaced with Z, lattices in Qf,. For given lattices the points are of
form (nqu, nev), where u and v are linearly independent (in @,,) vectors of QIQ). Note that the p-adic
integers n; =Y, <¢ n; xp* can be and typically are infinite as real integers. This is how the lattice
differs from the real lattice. Also the p-adic distances between lattices points for which n, differ by
a large power of p are very small.

Note: Qf) is the p-adic analog of space of 2-spinors. The pairs (u, v) are indeed in 1-1 correspondence
with pairs (g1, ¢2).

2. Projective equivalence is realized as for point pairs (q1,¢2). This means that lattices for which base
vectors (u,v) differ by a p-adic scaling are equivalent (u,v) = (Au, Av). Only the ratio u/v defining
the ”direction” of point of Qf, matters.

Note: In the complex case one would have two complex vectors and their ratio defines the conformal
equivalence class of the plane compactified to torus by identifying the opposite edges of the polygon
defined by u/v.

Note: In the article one speaks about homothety classes: homothety means scaling which in p-adic
context need not change p-adic norm.

This is not quite enough yet. Real icosahedron is in a well defined sense a connected coherent structure.
Not just a collection of points. p-Adic topological is however totally disconnected. This suggests that one
must introduce additional structure making possible to speak about icosahedron as ”solid”. Bruhat-Tits
tree is one possible manner to achieve this. Also TGD inspired view about p-adic manifolds makes this
possible.

3.2 Why Bruhat-Tits tree?

One introduces Bruhat-Tits tree [5] as an additional structure having P*(Q,) as its boundary in a well-
defined sense (one needs its counterpart also in P1(K)). In [3] it is stated that this relates to a proper
global definition of p-adic analytic structure in terms of Berkovich disks. As already explained, the basic
problem for introducing analytic manifold structure is the total disconnectedness of p-adic topology. In
p-adic topology each point is open set and all p-adic open sets are also compact. Moreover, two p-adic
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balls are either disjoint or nested. Therefore one cannot have partially overlapping p-adic spheres and the
basic construction recipe for real manifolds fails. One can overcome this problem for algebraic varieties
defined by algebraic equations but they are much less general objects than manifolds in real context.

1. There are no problems in defining p-adic differential calculus (a local aspect of the analytic structure)
and field equations associated with action principles make sense although the definition of action as
integral is problematic. p-Adic differential equations are non-deterministic: integration constants
are replaced by piecewise constant functions depending on finite number of pinary digits. This has
a nice interpretation in TGD inspired consciousness, where this nondeterminism would be correlate
for non-determinism of imagination - one aspect of cognition. Therefore I am not at all sure whether
the reinforcement of real number based notions to p-adic context is a good idea.

2. p-Adic integration (a global aspect of the analytic structure) is the problem in p-adic calculus and the
total disconnectedness relates to the absence of well-ordering. An obvious guess is that Bruhat-Tits
tree could help in the definition of p-adic integral by defining the allowed integration paths.

Note: TGD approach on integration relies on algebraic continuation from real context and is based
on what might ge regarded fusion of reals and p-adics along common rationals.

3. Intuitively the Bruhat-Tits tree builds up a ”skeleton” connecting points by edges and thus curing
the total disconnectedness. This requires some non-locality and the replacement of point pairs
(q1,q2) with integer lattices spanned by ¢; and g2 would introduce this non-locality.

4. In any case, what one obtains is a graph with vertices and edges. Vertices are identified as homothety
classes [M] of the lattices and are just the points of P!(Q,). Two vertices [M] and [N] are connected
by an edge iff one can find representatives M and N such that pM C N C M. The representative
N is in some sense between pM and M. Note that one has pM = M by homothety so that the use
of representatives in the definition is necessary.

The resulting graph is also a regular p+1-valent tree, the number of F,-rational points of P!(F}),which
is projective space associated with finite field. One can check this in case of p = 2. The points
(f1, f2) are (1,0),(1,1),(0,1),(1,1) and by projective equivalence one has just p = 1+ 2 = 3 points
in corresponding projective space. The transitive action of GI(2, K) means that all vertices are
p + 1-valent and this fixes the structure of the graph completely. I will consider this point in more
detail later on basis of the jweb article, [5].

Bruhat-Tits tree can be seen as a skeleton of the ”full” P!(K) containing also the additional points
making it a path connected Berkovich space. The "naive” P!(K) can be regarded as boundary of the
Bruhat-Tits tree.

Bruhat-Tits tree looks very nice notion but there is objection against its construction in the proposed
manner. Ordinary p-adic numbers- the simplest possible situation - are not in 1-1 correspondence with
the Z, lattices as will be demonstrated later but with powers of p. Same applies to QIQ) where the lattices
correspond to SI(2, Z,) equivalence classes of elements of Qf). One can of course ask whether projective
spaces are p-adically and maybe also physically very special for this reason.

3.3 Berkovich disk

Bruhat-Tits tree is not enough for p-adicizing real topologist. Also Berkovic disk is required as the analog
of open ball in real context. The slides of Emmy Noether Lecture by Annette Werner [8] give a concise
representation of the basic idea behind Berkovich disk serving as a basic building brick of p-adic manifolds
just like real n-disk does in the case of real n-manifolds and also also explains its construction. I must
admit that I do not understand well enough the connection between Berkovich disk and Bruhat-Tits tree.

One can motivate the construction with the completion of rationals to reals. By adding all irrationals
(algebraic numbers and transcendentals) one obtains reals and these additional numbers glue the rationals
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to form a continuum so that one can defined calculus and many other nice things. The idea is to mimic
this construction.

1. In the example one restricts to the unit disk for an non-archimedean field assumed for simplicity be
algebraically closed, which means algebraic completion containing all algebraic numbers considered
also by Khrennikov. This notion is very formal and unpractical. The idea is to form a completion
of the unit disk for a non-archimedean field K (algebraic extension of @),) containing thus K as
a dense subset with the property that the resulting topology is path connected and not anymore
ultrametric (somewhat artificial!).

For this purpose one constructs what is called the space of bounded multiplicative non-Archimedean
norms for formal K-valued power series defined in the unit disk reducing to the norm of K for
constant functions. It is possible to characterize rather explicitly this space and with topology
defined by a pointwise convergence (point is now the K-valued function) of the norm one obtains
uniquely path connected topology. The additional points can be said to glue the points of the
K-disk to a continuum as its dense subset just as the addition of irrationals glues rationals to form
a continuum.

2. The construction generalizes to the construction of the counterparts of p-adic projective spaces and
symmetric spaces. Berkovich has also proposed an approach to p-adic integration and harmonic
analysis relying on the notion of Berkovic space.

Note: In TGD framework integration is defined by algebraic continuation in the structure defined
by the fusion of real and various p-adic numbers fields and their extensions to form a book like
structure. One could perhaps say that this fusion defines a kind of ”super-completion”: all possible
completions of rationals are fused to single book like structure and rationals indeed defined a dense
subset of this structure.

The construction is rather technical. From unit disk to a function space defined in it to the space
of multiplicative seminorms defined in this function space! For the simple brain of physicist desperately
crying for some concreteness this looks hopelessly complicated. Physicists would be happy in finding
some concrete physical interpretation for all this.

3.4 Bruhat-Tits tree allows to ”connect” the points of p-adic icosahedron as
a point set of P!(K)

The notion of p-adic icosahedron can be defined also in terms of Bruhat-Tits tree since the PLG(2, K)
acts transitively on the homothety class so that one obtains all homothety classes from the one associated
with (u,v) = (1,1) and one can speak about orbit of this basic homothety class. This means that one
can connect the vertices, mid-points of edges, and barycenters of faces to common origin by edge paths
in Bruhat-Tits tree and therefore to each other. This is what path-connectedness means.

How Bruhat-Tits tree allows to build from a set of totally disconnected fixed points a ”solid”? One
answer is that the addition points of completion make this possible.

1. Bruhat-Tits tree allows to define what is called an end of the Bruhat-Tits tree as an equivalence
class of infinite half line with two half lines identified if they differ by a finite number of edges.
These ends are in one-one corresponds with the K-rational points of P!(K) (these are not the only
points of P}(K)). One can say that P!(K) represents the boundary of Bruhat-Tits tree as a p-adic
manifold.

Note: Could this finite number of different edges corresponds to a finite number of pinary digits
appearing in p-adic integration ”constants”)? The identification could mean that all choices of
pseudo constants in p-adic differential equations are regarded as equivalent. Physicist might speak
about the analog of gauge invariance: the values of pseudoconstants do not matter.
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2. For a finite set of points of totally disconnectd P'(K) there exists a unique minimal subtree of
the entire Bruhat-Tits tree containing the points of this set as its ends [3]. This subtree is what
connects the points of this point set to a coherent structure in the set that one can construct paths
connecting the points to single point. There are of course several manners to achieve this but one
can define even the analog of the geodesic line as a path with a minimal number of edges so that
it becomes possible to speak also about the edges of icosahedron. The length of the geodesic could
be simply the number of edges for this minimal edge path.

3. The p-adic counterpart of Platonic solid must be also ”solid”. This is achieved if the fixed points
for the subgroups of the isometry group of Platonic solid (in particular for those of the As) defining
the Platonic are identified as ends of a unique minimal subtree of Bruhat-Tits tree.

For higher-dimensional projective spaces P™(K) Bruhat-Tits tree generalizes from 1-D discrete ho-
mogenous space PGl(2, K)/GI2, Z ) to n-dimensional discrete homogenous space. The reason is that the
edges of tree develop higher-dimensional cycles having interpretation as simplexes. One can also define
homology groups for this structure. Also now P"(K) can be regarded as a boundary of the resulting
structure.

4 Algebraic universality in TGD framework

In TGD framework the algebraic approach looks very promising one - at the first glance perhaps even
the only possible one - since the field equations for preferred extremals [19] [I8] reduce to purely algebraic
ones and do not even refer to action principle explicitly. The point is that the preferred extremal property
means a generalization of complex structure to 4-D situation and is a notion independent of action and the
preferred extremals are solutions to field equations of very many general coordinate invariant variational
principles (Einstein-Maxwell equations with cosmological term and minimal surface equations hold true).
p-Adic variants of these conditions are purely algebraic and make sense so that one can hope that even
space-time surfaces might have p-adic counterparts.

As already noticed, one can consider a compromise between topological and algebraic approach to
the definition of p-adic manifolds by using a variant of canonical identification to map rational points of
the p-adic preferred extremal to rational points of its real counterpart and completing this skeleton to a
preferred extremal in the real context. This mapping need not be one-to-one. In the intersection of real
and p-adic worlds the expression for real preferred extremal makes sense also in p-adic number field, and
a direct identification makes sense and is unique.

In the real sector the preferred extremal property would boil down to to the existence of complex
structure in Euclidian regions and what I call Hamilton-Jacobi structure in Minkowskian regions. Also the
conjecture that preferred extremals are quaternionic surfaces in certain sense [22] implies independence on
action principle. The challenge is to prove that these two algebraic characterizations of preferred extremals
are equivalent. These two purely algebraic conditions might make sense also in p-adic context with
complex and hypercomplex numbers replaced with appropriate algebraic extensions of p-adic numbers.

The p-adicization program based on the notion of algebraic continuation involves many open questions
to be discussed first.

4.1 Should one p-adicize entire space-time surfaces or restrict the p-adicization
to partonic 2-surfaces and boundaries of string world sheets?

One of the many open questions concerns the objects for which one should be able to find p-adic coun-
terparts. The arguments based on canonical identification and universality of the preferred extremal
property support the view that p-adicization can be carried out at 4-D level for space-time surfaces and
also at the level of WCW. Later a detailed proposal for how p-adic preferred extremals can be mapped to
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real preferred extremals with the uniqueness of this correspondence restricted by the finite measurement
resolution realized as pinary cutoff will be described.

One can however consider also an alternative approach in which one restricts the p-adicization to 3- or
even 2-dimensional objects of some special classes of these objects and this possibility is discussed below.

1. Should one p-adicize only boundaries?

A grave objection against p-adicizing only partonic 2-surfaces and braid strands is that one loses the
very powerful constraints provided by the preferred extremal property and coordinate maps defined by
the canonical identification in preferred coordinates. Therefore the algebraic continuation of the partonic
2-surface can become highly non-unique ( ™ 4+ y™ = 2™, n > 2, is the basic counter example: in higher
dimensions one expects that this kind of situations are very rare!). Furthermore, the restriction to
partonic 2-surfaces and braid strands is artificial since imbedding space must be p-adicized in any case.
The replacement of the p-adicization of the partonic surface plus 4-D tangent space data with that of
the preferred extremal containing it increases the number of constraints dramatically so that holography
might even make the p-adicization unique.

Despite this objection one can try to invent arguments for restricting the p-adicization to some subset
of objects since this would simplify the situation enormously.

1. The basic underlying idea of homology theory is that the boundary of a boundary is empty. p-
Adic manifolds in turn have no boundaries because of the properties of p-adic topology. Should
p-adicization in TGD framework be carried only for boundaries? Light-like 3-surfaces define bound-
aries between Minkowskian and Euclidian regions of space-time surface. The space-like 3-surfaces
defining the ends of space-time surfaces at the boundaries of CD are boundaries. Also 2-D par-
tonic surfaces and boundaries of string world sheets can be considered. One must consider also the
boundaries of string world sheets as this kind of objects.

2. Strong form of General Coordinate Invariance implies strong form of holography. Either the data
at light-like 3-surfaces (at which the signature of induced metric changes) or space-like 3-surfaces
at the ends of CD codes for physics, which implies that partonic 2-surfaces and 4-D tangent space
data at them code for physics.

What 2-D tangent space data could include? The tangent space data are dictated partially by
the weak form of electric magnetic duality [23] stating that the electric component of the induced
Kéhler field component is proportional to its magnetic component at light-like 3-surfaces. Also the
boundaries of string world sheets contribute to 4-D tangent space data and at the end of braid
strands at partonic 2-surfaces both light-like and space-like direction are involved.

If space-time interior is not p-adicized (somewhat un-natural option), the p-adicization reduces to the
algebraic continuation of Kéhler function and Morse function to p-adic sectors of WCW. Both functions
reduce to 3-D Chern-Simons terms for selected 3-surfaces. p-Adicization should reduce to algebraic
continuation of various geometric parameters appearing as arguments of Kahler action.

In the minimal situation only partonic 2-surfaces and the boundaries of string world sheets - briefly
braid strands - need to be p-adicized and the existing results - such as the results of Mumford derived
from the existence of p-adic uniformization - could give powerful contraints. One can also ask whether the
p-adic string world sheet in some sense is equivalent with the generalization of Bruhat-Tits tree allowing
also loops.

Besides the string world sheet boundary and partonic 2-surface also for ”74-D tangent space data”
fixed at least partially by weak form of electric magnetic duality and string world sheets is needed. There
are several open questions.

1. Does weak form of electric-magnetic duality have any meaning if one cannot speak about space-time
interior in p-adic sense? This condition would apply only at partonic 2-surfaces. Same question
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applies in the case of braid strands. Can one effectively reduce space-time interior and string world
sheet to their tangent spaces at partonic 2-surface/braid strands.

2. It is not even clear whether the dynamics of light-like 3-surfaces and space-like 3-surfaces is de-
terministic. Strong form of holography requires either determinism or non-determinism realized as
gauge invariance, which could correspond to Kac-Moody type symmetries. Kac-Moody symmetry
would favor the idea that p-adicization takes place only for partonic 2-surfaces and for the braid
strands. Gauge symmetry would also give hopes that the integral of Chern-Simons term depends
only on the data at the end points of braid strands at partonic 2-surfaces and maybe on data at
braid strands: this would however require p-adic integration not possible in purely p-adic context.
These data should remain invariant under Kac-Moody symmetries.

3. Should one p-adicize the weak form of electric magnetic duality? The duality involves the dual of
Kahler form of the partonic surface with respect to the induced four-metric: the normal component
of Kahler electric field at partonic surface and/or at string world sheet boundary equals to Kéhler
magnetic form at the partonic surface at particular point of its orbit (most naturally light-like
curve). The induced 4-metric becomes degenerate at the light-like 4-surface and the component
of electric field is finite only if weak form of electric-magnetic duality can be satisfied. Should the
duality hold true for entire 3-surfaces, for partonic 2-surfaces, or perhaps only for for the braid
strands? The purpose of the condition is to guarantee that Kéhler electric charge as eletric flux is
proportional to K&hler magnetic charge: therefore it should hold along entire 3-surfaces and if these
are regarded as real surfaces there are no problems with the p-adicization of the condition.

2. What kind of algebraic 2-surfaces can have p-adic counterparts?

There is no need for a generic algebraic surface to have direct algebric p-adic counterpart for all
p-adic primes. If one uses as preferred coordinates a subset of preferred coordinates of the imbedding
space and accepts only imbedding space isometries as general coordinate transformations, the algebraic
surfaces in the intersection of real and p-adic worlds must satisfy very strong conditions. For instance, a
representation in terms of polynomials cannot involve real transcendentals. Even rational coefficients can
force algebraic extension of @),, when the remaining imbedding space coordinates are expressed in terms
of the coordinates of the partonic two-surface.

Mumford is one of the pioneers of p-adicization of the algebraic geometry and has demonstrated that
only a restricted set of p-adic algebraic surfaces allow interpretation as p-adic Riemann surfaces if one
requires that a generalization of so called uniformization theorem holds true for them [I3]. This theorem
says that Riemann surfaces are constructible as factor spaces of either sphere, complex plane, or complex
upper plane (hyperbolic space H? with the subgroup I' identified as the finitely generated free subgroup
of the isometries of the space in question. The construction does not work for all algebraic surfaces but
only for the surfaces satisfying certain additional conditions. This is not a problem in TGD framework
in the intersection of real and p-adic worlds since the p-adicization is not expected to be possible always
but only in the intersection of real and p-adic worlds.

According to the article Multiloop Calculations in p-Adic String Theory and Bruhat-Tits Trees| by
Chekhov et al [9] the construction of higher genus Riemann surfaces as so called Mumford surfaces takes
place by starting from Bruhat-Tits tree representing ¢ = 0 surface and by taking subgraphs having
interpretation as representations for an orbit of so called Schottky group| characterizing the higher genus
Riemann surface and gluing these graphs together by transversal connections. This indeed represents the
genus homologically as a loop of the resulting tree.

Note: The article of Chekhov et al describes a proposal for the construction of complex scattering
amplitudes for p-adic strings in real imbedding space so that the situation is not relevant for TGD as such.
The amplitudes are constructed in terms of p-adic characteristics and this means that the amplitudes can
be interpreted also as numbers in p-adic number fields extended by roots of unity. The characteristics
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q = exp(i2piT) exist only for the values of ¢ which are of form ¢ = p™exp(x)exp(i2n/m), |z| < 1 so that
discretization of the p-adic norm and phase of 7 is necessary.

3. Should one really restrict the p-adicization to algebraic surfaces?

One could also consider the possibility of restricting p-adicization to algebraic surfaces (they could be
also 4-D). Practicing physicist would argue that the restriction of p-adicization to algebraic surfaces is
quite too heavy an idealization. In the real world spheres are topological rather than algebraic.

Luckily, if the construction recipe for p-adic manifolds to be discussed later really works, canonical
identification with pinary cutoff allows to generalize p-adic algebraic surfaces to p-adic manifolds, and
to achieve very close correspondence with the real manifold theory. Given real preferred extremal can
correspond to not necessarily unique p-adic preferred extremal for some values of p. Also two p-adic
preferred extremals with different values of p-adic prime which correspond to the same real preferred
extremal correspond to each other. This provides an elegant solution to all problems discussed hitherto
and there is not need to restrict the p-adicization in any manner.

Finite measurement resolution would be a prerequisite for algebraic continuation in the sense that
subset of rational and algebraic points defined by pinary cutoff and algebraic extension would be common
to the real and p-adic preferred extremals. Therefore finite measurement resolution would make it possible
to realize both number theoretical universality and p-adic manifold topology.

4.2 Should one p-adicize at the level of WCW?

One can of course challenge the idea about p-adicization at the level of WCW and WCW spinor fields and
ask what this procedure gives. One motivation for the p-adicization would be p-adic thermodynamics.
p-Adic thermodynamics should emerge at the level of M-matrix which indeed can be regarded as a
”complex square root” of hermitian density matrix in zero energy ontology and therefore expressible as
a product of hermitian square root of density matrix and unitary S-matrix. Hence it would seem that
the p-adicization at the level of WCW is natural and the representability as a union of symmetric spaces
constructible as factor groups of symplectic group of §M${ x CPy gives hopes that algebraic approach
works also in infinite-dimensional case. Finite measurement resolution and the properties of hyper-finite
factors of type II; are expecetd to reduce the situation to finite-dimensional case effectively.

4.3 Possible problems of p-adicization

The best manner to clarify one’s thoughts is to invent all possible objections and in the following I do my
best in this respect. The basic point is following. If one accepts the purely algebraic approach without no
reference to canonical identification, one must check that everything in TGD - as I recently understand
it - can be expressed without inequalities! Boundaries are defined by inequalities and one must check
that they can be avoided. If this is not the case, the notion of p-adic manifold relying on the notion of
canonical identification seems to remain the only manner to avoid problems.

4.3.1 Wormbhole throats are causal rather than topological boundaries

The notion of boundary does not have any counterpart in purely p-adic context since its definition involves
inequalities. The original vision was that space-time sheets possess boundaries and the boundaries carry
quantum numbers - in particular family replication phenomenon for fermions would have explanation in
terms of the genus of 2-dimensional boundary component of 3-surface [16]. It however turned out that
boundary conditions require that the space-time sheet approaches vacuum extremals at boundary and this
does not seem to make sense. This led to the view that one must allow only closed space-time ”sheets”
which can be thought of as being obtained by gluing real space-time sheets together along boundaries.
Also the notion of elementary particle involves preferred extremals - massless extremals in the sim-
plified model [I9] - connected by wormhole contact structure defining the elementary particle. These
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preferred extremals must combine to form a closed space-time surface and this is quite possible: the
minimal situation corresponds to two space-time sheets glued together as in the model of elementary
particles.

Genuine boundaries are replaced by the light-like 3-surfaces -orbits of wormhole throats - at which
the signature of the induced metric changes from Minkowskian to Euclidian and four-metric degenerates
effectively to 3-D metric locally. These can be defined by purely algebraic conditions and there is no need
for inequalities.

Partonic 2-surfaces are identified as intersections of the space-like 3-surfaces at the ends of CD: the
ends of C'D are defined by purely algebraic equation 2 — 72 = 0 and (t — T)? — r? = 0 and once the
equations of space-time surface are known one can solve the equations for space-like 3-surfaces. The
equations defining what light-like 3-surfaces at which the induced four-metric is degenerate are algebraic
and express just the degeneracy of the induced four-metric. The condition that algebraic equations for
light-like 3-surfaces and space-like 3-surfaces hold true simultaneously define partonic 2-surfaces. Hence
it seems that the surfaces can be expressed algebraically.

This approach might look a little bit artificial. Also the idea that only boundaries should be p-adicized
should be be p-adicized looks artificial. The best looking option is the use of canonical identification to
define p-adic manifolds since it allows to transfer real topological notions to the p-adic context. In
particular, the well-ordering of reals induces that of p-adics so that inequalities cease to be a problem
and boundaries can be defined.

4.3.2 What about the notion of causal diamond and Minkowski causality?

A possible problem for purely p-adic approach allowing no in-equalities is caused by the notion of causal
diamond (CD) defined as intersection of future and past directed light cones (as a matter fact, CPs is
included to C'D as Cartesian factor but I do not bother to mention it again and again). C'D has light-like
boundaries.

It is not quite clear whether space-time surface must be always localized inside C'D. The notion of
generalized Feynman diagram indeed suggests that the space-time surfaces can continue also outside the
CDs and that C'D could be seen as an imbedding space correlate for what might be called spot-light
of consciousness. If this were the case quite generally, the p-adicization of space-time sheets would not
produce problems even if one does not use canonical identification.

In purely p-adic context, one should however give some meaning for the statement that space-time
surface is contained inside C'D and this seems to require the notion of boundary for C'D. Does this notion
of C'D make sense in the p-adic context or is the fusion of real and p-adic number fields along common
rationals required? The resolution of the problem seems to require the fusion. In the case of algebraic
extensions also common algebraics are present.

The first questions concern the notion of Minkowski causality, which relies on light-cone and its
complement expressed in terms of inequalities.

1. The first reason of worry is that in purely p-adic context also the equation 2 4+ 72 = 0 has a lot
of solutions! The reason is that the notion of positive and negative do not make sense for p-adic
numbers without some constraints. If one restricts the p-adic numbers to those having finite number
of pinary digits - this happens always when one has finite pinary resolution - all p-adic numbers
included rationals reduces to finite positive integers as real numbers. Therefore in finite pinary
resolution the problems disappear. The condition that rationals points of Minkowski space are
common with its p-adic variant, makes finite pinary resolution natural, and one could say that all
p-adic numbers - including negatives of finite integers - can be said to be infinitely large positive
integers in real sense. Here one must of course be very cautious.

2. The condition s =t — 2 < 0 for the complement of future light-cone has no meaning in the p-adic
context for general p-adic numbers. If rational values of Minkowski coordinates correspond to same
point in real and p-adic sense, finite pinary resolution means that all pinary cutoffs have s > 0 and
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t > 0 in real sense. This is also true for a = v/t2 — r2 so that one remains inside future light-cone
unavoidably. Anything outside future light-cone is unexpressible in finite measurement resolution
p-adically.

Finite temporal and spatial resolution suggest integer quantization of ¢ and r in suitable units
and one could say whether s has finite of infinite number of pinary digits - that is are positive or
negative. Finite real integer values of ¢ and r have finite number of pinary digits. Their negatives
have infinite number of pinary digits and one could argue they correspond to infinite future if they
are interpreted as real numbers. The values of s in future light-cone have finite number of pinary
digits and correspond to finite real values. Outsider the future light cone the values of s are negative
in real sense and have infinite number of pinary digits and thus interpreted as real numbers are in
future infinity.

One can consider also rational values of ¢ and s if one keeps also p-adically track that rational is in
question. Rationality means that pinary expansion is periodic after some pinary digit. Therefore
it would seem to be possible to distinguish between s > 0 and s < 0 also p-adically for finite
measurement resolution purely algebraically.

3. Causal diamond is defined as the intersection of future and past directed light cones. The lower
light-cone in the intersection decomposes to pieces of hyperplanes t > 0 with » < ¢ and upper
light-cone to pieces T —t > 0, r < T — t. If these variables are quantized as integer multiples of
suitable unit and if these integer multiples can be interpreted in both real and p-adic sense, there
is no need for inequalities in p-adic context. Also now rational values can be allowed.

If only boundaries are p-adicized, p-adicization would apply only to the light-like boundaries of C'Ds,
and one would avoid possible problems related the sign of s = t?> — 2. This would conform with the
strong form of holography and allow p-adicization of WCW.

Again one might argue that the number theoretical game above is artificial. The safest alternative
seems to be canonical identification with pinary cutoff used to map real preferred extremal to its p-adic

counterpart.

4.3.3 Definition of integrals as the basic technical problem

Physicist wants to perform integrals, and the problems related to the notion of integral is what any novice
of p-adic physics is doomed to encounter sooner or later. As will be described the definition of p-adic
manifold based on canonical identification solves these problems by inducing real integration to the p-adic
realm by algebraic continuation.

Before continuing about integration it is however good to summarize the general TGD based view
about the relationship between real and p-adic worlds.

1. Intersection of real and p-adic worlds as key concept

In TGD framework the basic notion is the intersection of real and p-adic worlds generalizing the idea
that rationals are common to reals and p-adics. Algebraic continuation between real and p-adic worlds
takes place through this intersection, in which real formulas allow interpretation as p-adic ones. The
notions of intersection and algebraic continuation apply both at space-time level and WCW level.

1. At the space-time level rational (and even some algebraic) points of real surfaces are contained by
p-adic surfaces. One can identify these rationals and say that real and p-adic surfaces intersect at
these points and define discrete cognitive representation. Among other things this would explain
why numerics is necessarily discrete and possible only using rationals with cutoff.

2. Omne can abstract this idea to the level of WCW. Instead of number fields one considers surfaces
(partonic 2-surfaces, 3-surfaces, or space-time surfaces) in various number fields. If the representa-
tion of the surface (say in terms of rational functions) makes sense both for reals and p-adic number
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field in question, one can identify the real and p-adic variants of surfaces. These surfaces can be
said to belong to the intersection of real and p-adic worlds (worlds of classical worlds, to be more
precise). In TGD inspired theory of consciousness one would say that they belong to the intersec-
tion of material/sensory world and the world of cognition. In TGD inspired quantum biology life is
identified as something residing in the intersection of realities and p-adicities.

2. Algebraic continuation as a basic tool

With this philosophical background one an consider the algebraic continuation of real integrals from the
intersection of real and p-adic worlds defined by surfaces, whose representations in preferred coordinates
make sense in real number field and in the p-adic number field to which one wants to continue.

1. Harmonic analysis in coset spaces with discretization defined by the algebraic extension of @), might
make possible to avoid the problems by reducing the integrals to sums over the discrete points of
the coset space. Algebraic continuation is of course central element in the program.

2. The recent progress in the calculation of planar scattering amplitudes in A = 4 SYMs gives hopes
that M-matrix could be defined in number theoretically universal manner. The reason is that
in TGD framework the fermions defining building bricks of elementary particles are massless - a
basic prerequisite for the twistor approach - also when they appear as virtual particles. This gives
enormously powerful kinematical constraints reducing the number of diagrams dramatically, and
allows to express amplitude in terms of on-mass shell amplitudes just as one does in the twistor
Grassmannian approach.

For N'=4 SYM (and also more general theories) planar Feynman diagrams boil down to integrals
over Grassmannians, which are coset spaces associated with Gl(n,C)/Gl(n — m,C) x Gl(m,C)
allowing the already described generalization to p-adic context. The integrals reduce to multiple
residue integrals, which could make sense also in the p-adic context because of the very weak
dependence on integration region. The algebraic continuation of the resulting amplitudes to p-adic
context replacing C' with an appropriate extension of p-adic numbers might well make sense.

8. Two problems as solutions of each other

Unfortunately, the algebraic continuation of integrals is not free of technical problems. Even in the
case of rational functions the algebraic continuation of the real integrals is susceptible to p-adic existence
problems.

1. The basic problem with definition of ordinary 1-D integrals of rational functions is that the integral
function of 1/« is log(x) rather than rational function as for other powers. Unless the limits are very
special (of form z = 1 + O(p)), the algebraic continuation requires infinite-dimensional extension
of p-adic numbers containing all powers of log(x) for some 1 < z < p. Can one allow infinite-D
extensions, which are not algebraic?

2. The appearance of 27 in residue integral formulas which could otherwise make sense in p-adic
context provides a second reason for worries: should one also transcendental extension containing
powers of 277

Often two quite unrelated looking problems turn out to have a common solution. Now the second
problem is purely physical: why a given particle should correspond to a particular p-adic prime? At
this moment one must be satisfied with the p-adic length scale hypothesis stating that these primes are
near powers of 2 and Mersenne primes are favored. I have not been able to identify any convincing
dynamical principle explaining why primes near powers of two seem to be favored. It deserves however to
be mentioned that the preferred p-adic length scale as a fixed point of p-adic coupling constant evolution
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(discrete) is one possible explanation meaning vanishing of beta functions, something very natural taking
into account the quantum criticality of TGD Universe.

Could this problem define the solution of the first problem and vice versa! Maybe one must just accept
that algebraic continuation to given p-adic number field is not always possible!

1. This criterion could strongly constrain the p-adic primes assignable to a given elementary particle.
Consider as an example Kéhler function defined as Kéahler action for Euclidian portion of space-time
(generalized Feynman graph) and Morse function defined as K&hler action for Minkowskian portion
of space-time. The existence of the p-adic variant of Kahler function (or its real exponent) and
Morse function (or its imaginary exponent) would allow to assign to a given space-time surface a
highly restricted set of p-adic primes, and the allowed quantum superpositions of space-time surfaces
could contain only those for which at least one of the allowed primes is same.

2. For massless particles Kahler action would vanish and algebraic continuation of Kahler action would
be possible to all p-adic primes in accordance with the scale invariance of massless particles. Also
the breaking of scale invariance and conformal invariance meaning selection of a particular p-adic
length scale could be basically a number theoretical phenomenon. This would provide a totally new
approach to the mystery of mass scales which in standard model framework requires fine tuning of
Higgs mass with a totally unrealistic accuracy (one must avoid both the Landau pole meaning infinite
self-coupling of Higgs and vacuum instability preventing massivation by Higgs vacuum expectation).

3. For instance, a function of form log(m/n) can be algebraically continued only to those p-adic number
fields for which m and n have form m = k + O(p), and n = k + O(p), 0 < k < p so that one has
m/n = 1+0(p). The exponent of Kahler function in turn can be continued to @, if it is proportional
to power of corresponding prime p. The exponential decay of Kéhler function would have p-adic
counterpart as decay of p-adic norm (just like Boltzmann weight exp(—F/T) corresponds to p™ in
thermodynamics). This could partially answer the question why the space-time surfaces assignable
to electron seem correspond to Mersenne prime Mio; = 2'27 — 1 as suggested by p-adic mass
calculations.

4. Number theoretic criterion might also mean that the p-adic prime characterizing particle state is
extremely sensitive to the details of the particle state in real sense. The point is that a small mod-
ification of rational number in real sense changes its prime decomposition dramatically! Number
theoretic anatomy is not continuous in real sense! An extremely small symmetry breaking in real
sense modifying the value of Kéhler function as function of quantum numbers might modify the
value of the p-adic prime dramatically by affecting profoundly the number theoretic anatomy of
some rational parameter appearing in the formula for Kéhler function. For instance, in the stan-
dard framework it is very difficult to imagine any breaking for the SUSY assignable to right-handed
neutrinos since they interact only gravitationally. The addition of right handed neutrino transform-
ing particle to sparticle might however modify the p-adic prime (and thus mass scale) assigned to
the particle dramatically.

4. What should one achieve?

It is a long way from this heuristic number theoretic vision to the calculation of p-adic valued integrals
at space-time level, say to a formula for the p-adic action integral defined by Kéhler action density (if
needed at all).

1. The reduction to integral of Abelian Chern-Simons form over preferred 3-surfaces would be the first
step and the definition of p-adic integral of Chern-Simons form second step. The special properties
of preferred extremals give hopes about the reduction of the value of the Kéhler action to local data
given at discrete points at partonic 2-surfaces. The braid picture for many-fermion states forced
by the modified Dirac equation [I§] and motivated by the notion of finite measurement resolution
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having discretization as a space-time correlate, suggests a reduction of real action integral to a sum
of contributions from the ends of braid strands defining the boundaries of string world sheets. The
optimistic hope would be that this data allows a continuation to the p-adic realm.

Note: This kind of reduction might be quite too strong a conditon. All that is required in the
approach based on canonical identification is that the values of K&hler function and Morse function
exist in the given p-adic number field or its algebraic extension.

2. p-Adic valued functional integral is unavoidable at the level of WCW.

(a) Algebraic continuation in the framework provided by the fusion of reals and various p-adic
number fields looks the only reasonable approach to the p-adic functional integral.

(b) Second element is Fourier/harmonic analysis in symmetric spaces: WCW is indeed a union
of infinite-dimensional symmetric spaces over zero modes which do not contribute to WCW
metric. One can hope that one can define the symmetric spaces algebraically in terms of their
maximal symmetries since the metric reduces to that in single point of the symmetric space.

(¢) Canonical identification is the third element: p-adic functional integral for given p should be
real functional integral restricted to preferred extremals allowing canonical identification map
to the p-adic preferred extremal for that value of p. This would mean that real functional
integral decomposes into a sum of contributions labelled by p-adic number fields and their
algebraic extensions. This decomposition would be analogous to the formula obtained as a
logarithm of the adelic formula for the rational as the inverse of the product of its p-adic
norms.

4.3.4 Do the topological invariants of real topology make sense in the p-adic context?

In p-adic context the direct construction of topological invariants is not possible. For instance, the ho-
mology theory formulated in terms of simplexes fails since the very notion of simplex requires inequalities
and well-ordering of the number system to define orientation for the simplex.

Also the notion of boundary is lacking since p-adic sets do not possess boundaries in topological sense.
There however exists refined theories of p-adic homology allowing to circumvent this difficulty and the
problem is that there are too many theories of this kind. A single universal theory would be needed and
this was the dream of Grothendieck.

p-Adic mass calculations assume that the genus of the partonic 2-surface makes sense also in the p-adic
context. For algebraic varieties the genus can be defined algebraically. There should be no problems if
the partonic 2-surfaces are defined by algebraic equations which make sense for both reals and p-adic
numbers. This is true for polynomial equations with rational coefficients and for algebraic extensions
with coefficients in algebraic extension. By continuity algebraic continuation should allow to extend the
notion of genus to surfaces for which rational coefficients are replaced with general p-adic numbers.

One expects that also more refined topological invariants making sense in the real context make sense
also p-adically for algebraic varieties. A possible objection is that in the case of 3-manifolds allowing
hyperbolic geometry (constant sectional curvatures) the volume of 3-manifold serves as a topological
invariant. Volume is defined as an integral but in purely p-adic context volume integral is ill-defined. Is
this a reason for worries? Hyperbolic n-manifolds have purely group theoretic formulation as coset spaces
H" /T, where T is discrete subgroup of the isometry group SO(1,n) of n-dimensional hyperboloid H" of
n + 1-D Minkowski space satisfying some additional conditions. Maybe this could allow to overcome the
problem.

If canonical identification is used to map real preferred extremals to p-adic ones, boundaries and real
topological invariants are mapped to p-adic ones both by algebraic continuation and in topological sense
within finite measurement resolution. This even in the case that the real surface is not algebraic surfaces.
This applies also to conformal moduli of the partonic 2-surfaces, whose p-adic variants play a key role in
p-adic mass calculations.
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4.3.5 What about p-adic symmetries?

A further objection relates to symmetries. It has become already clear that discrete subgroups of Lie-
groups of symmetries cannot be realized p-adically without introducing algebraic extensions of p-adics
making it possible to represent the p-adic counterparts of real group elements. Therefore symmetry
breaking is unavoidable in p-adic context: one can speak only about realization of discrete sub-groups for
the direct generalizations of real symmetry groups. The interpretation for the symmetry breaking is in
terms of discretization serving as a correlate for finite measurement resolution reflecting itself also at the
level of symmetries.

1. Definition of p-adic Lie groups

The above observation has led to TGD inspired proposal for the realization of the p-adic counterparts
symmetric spaces resembling the construction of P!(K) in many respects but also differing from it.

1. For TGD option one considers a discrete subgroup G of the isometry group G making sense both
in real context and for extension of p-adic numbers. One combines Gy with a p-adic counterpart
of Lie group G, obtained by exponentiating the Lie algebra by using p-adic parameters ¢; in the
exponentiation exp(t;T5).

2. One obtains actually an inclusion hierarchy of p-adic Lie groups. The levels of the hierarchy are
labelled by the maximum p-adic norms |t;|, = p~™, n; > 1 and in the special case n; = n - strongly
suggested by group invariance - one can write G,1 D Gp2 C ...Gpp.... Gp; defines the p-adic
counterpart of the continuous group which gets the smaller the larger the value of n is. The discrete
group cannot be obtained as a p-adic exponential (although it can be obtained as real exponential),
and one can say that group decomposes to a union of disconnected parts corresponding to the
products of discrete group elements with Gy, .

This decomposition to totally uncorrelated disjoint parts is of course worrying from the point of view
of algebraic continuation. The construction of p-adic manifolds by using canonical identification to
define coordinate charts as real ones allows a correspondence between p-adic and real groups and
also allows to glue together the images of the disjoint regions at real side: this induces gluing at
p-adic side. The procedure will be discussed later in more detail.

3. A little technicality is needed. The usual Lie-algebra exponential in the matrix representation
contains an imaginary unit. For p mod 4 = 3 this imaginary unit can be introduced as a unit in
the algebraic extension. For p mod 4 = 1 it can be realized as an algebraic number. It however
seems that imaginary unit or its p-adic analog should belong to an algebraic extension of p-adic
numbers. The group parameters for algebraic extension of p-adic numbers belong to the algebraic
extension. If the algebraic extension contains non-trivial roots of unity U, , = exp(i2rm/n), the
differences U, — Uy, ,, are proportional to imaginary unit as real numbers and one can replace
imaginary unit in the exponential with U, », — Uy, ,,. In real context this means only a rescaling of
the Lie algebra generator and Planck constant by a factor (2sin(27m/n))~1. A natural imaginary

unit is defined in terms of Uy pn.

4. This construction is expected to generalize to the case of coset spaces and give rise to a coset space
G/ H identified as the union of discrete coset spaces associated with the elements of the coset G/ Hp
making sense also in the real context. These are obtained by multiplying the element of G,Hy by
the p-adic factor space Gy, /Hp.n.

One has two hierarchies corresponding to the hierarchy of discrete subgroups of Gy requiring each
some minimal algebraic extension of p-adic numbers and to the hierarchy of G),:s defined by the powers of
p. These two hierarchies can be assigned to angles (actually phases coming as roots of unity) and p-adic
length scales in the space of group parameters.
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2. Does the hierarchy of Planck constants emerge p-adically?

The Lie algebra of the rotation group spanned by the generators L., L, L, provides a good example of
the situation and leads to the question whether the hierarchy of Planck constants [24] could be understood
p-adically.

1. Ordinary commutation relations are [L,, L] = tAL.. For the hierarchy of Lie groups it is convenient
to extend the algebra by introducing the generators L:-L) = p"L; and one obtains [LZL),LZ)] =

ihL;n+n). This resembles the commutation relations of Kac-Moody algebra structurally. Since
p-adic integers one the replacement of i = p* — np*, n mod p =+# 0 produces same Lie-algebra.

2. For the generators of Lie-algebra generated by LG) one has [L7", L;f)] = ip™hL™. One can say
that Planck constant is scaled from A to p™h. It is important to realize that heyy = mp®h for
m mod p # 0 (p-adic unit property) is equivalent with A.rf = pFh in the sense that p-adically
the resulting Lie-algebras are same.

3. The earlier proposal assigns the origin of the effective hierarchy of Planck constants f.y; = nh to
n-furcations of space-time sheets. Recall that n-furcations are assigned with the non-determinism of
Kahler action. In n-furcation the solution becomes n-valued meaning the presence of n alternative
branches in the usual interpretation. The proposal is that a space-time counterpart of second
quantization occurs. Single branch is in the role of single particle state and ”classically” the only
possible one. ”Quantally” also m-branch states, 1 < m < n, are allowed. This makes sense in zero
energy ontology if the branching occurs either at the space-like ends of the space-time surface inside
CD or at light-like wormhole throats. Otherwise one has problem with conservation laws allowing
only single branch. The Kéahler action for m-branch state would be roughly m times that for single
branch states as a sum of the Kéhler actions for branches so that one would have A.fs = mh. This
prediction is inconsistent with p-adic Lie-algebra prediction unless m = p* holds true.

Can these two views about the effective hierarchy of Planck constants be consistent with each other?
The connection between p-adic length scale hierarchy and hierarchy of Planck constants has been conjec-
tured already earlier but the recent form of the conjecture is the most quantitive one found hitherto.

1. It a connection exists, it could be due to a relationship between the inherent non-determinism of
Kéhler action and the generic p-adic non-determinism of differential equations. Skeptic could of
course counter-argue that in p-adic context both non-determinisms are present. One can however
argue that by the condition that p-adic space-time sheets are maps of real ones and vice versa, these
non-determinisms must be equivalent for preferred extremals.

2. Also p-adic non-determinism induces multi-furcations of preferred extremals. These two kinds
of multi-furcations should be consistent with each other. Also in p-adic context one can consider
”second quantization” allowing simultaneously several branches of multi-furcation. Suppose that the
p-adic non-determinism is characterized by integration pseudo-constants (functions with vanishing
derivatives), and that the first p* digits for these functions can be chosen freely. For each integration
pseudo-constant involved one would have p* branches so that for m independent variables there
would be p™* branches altogether.

(a) The argument based on the sum of Kéahler actions for n-branch states would suggests he s = nh,
1 < n < p*™ not consistent with hefr = p™Fh. Consistency between the two pictures is
achieved if all p™"* branches are realized simultaneously so that the state is analogous to a full
Fermi sphere. This option looks admittedly artificial.

(b) An alternative possibility is following. Suppose that the p-adic Planck constant is p"h,r <
km, and thus equivalent with kp"h for all k& mod p # 0, and that the allowed numbers for
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branches satisfy n = nip” < p™*, n; mod p # 0 so that Planck constant in p-adic sense is
equivalent with p"h. This would realize a correspondence between the number of branches of
multofurcation and the Planck constant associated with p-adic Lie algebras.

3. Note that also n-adic and even ¢ = m/n-adic topology is possible with norms given by powers of
integer or rational. Number field is however obtained only for primes. This suggests that if also
integer - and perhaps even rational valued scales are allowed for causal diamonds, they correspond
to effective n-adic or g-adic topologies and that powers of p are favored.

3. Integration again as the problem

The difficult questions concern again integration. The integrals reduce to sums over the discrete
subgroup of G multiplied with an integral over the p-adic variant G, ,, of the continuous Lie group. The
first integral - that is summation - is number theoretically universal. The latter integral is the problematic
one.

1. The easy way to solve the problem is to interpret the hierarchy of continuous p-adic Lie groups
G, as analogs of gauge groups. But if the wave functions are invariant under Gp, ,, what is
the situation with respect to G), ,,, for m < n? Infinitesimally one obtains that the commutator
algebras [Gp k, Gp.1] C Gp, k + 1 must annihilate the functions for k+1 > n. Does also Gp ., m < n
annihilate the functions for as a direct calculation demonstrates in the real case. If this is the case
also p-adically the hierarchy of groups G, , would have no physical implications. This would be
disappointing.

2. One must however be very cautious here. Lie algebra consists of first order differential operators
and in p-adic context the functions annihilated by these operators are pseudo-constants. It could
be that the wave functions annihilated by G, ,, are pseudo-constants depending on finite number of
pinary digits only so that one can imagine of defining an integral as a sum. In the recent case the
digits would naturally correspond to powers p™, m < n. The presence of these functions could be
purely p-adic phenomenon having no real counterpart and emerge when one leaves the intersections
of real and p-adic worlds. This would be just the non-determinism of imagination assigned to p-adic
physics in TGD inspired theory of consciousness.

Is there any hope that one could define harmonic analysis in G, ,, in a number theoretically universal
manner? Could one think of identifying discrete subgroups of G, ,, allowing also an interpretation as real
groups?

1. Exponentiation implies that in matrix representation the elements of G, ,, are of form g = Id+p"g;:
here Id represents real unit matrix. For compact groups like SU(2) or CP, the group elements in
real context are bounded above by unity so that this kind of sub-groups do not exist as real groups.
For non-compact groups like SL(2,C') and T* this kind of subgroups make sense also in real context.

2. Zero energy ontology suggests that discrete but infinite sub-groups I' of SL(2, C) satistying certain
additional conditions define hyperbolic spaces as factor spaces H?/I' (H? is hyperboloid of M*
lightcone). These spaces have constant sectional curvature and very many 3-manifolds allow a
hyperbolic metric with hyperbolic volume defining a topological invariant. The moduli space of
CDs contains the groups I' defining lattices of H?® replacing it in finite measurement resolution. One
could imagine hierarchies of wave functions restricted to these subgroups or H? lattices associated
with them. These wave functions would have the same form in both real and p-adic context so that
number theoretical universality would make sense and one could perhaps define the inner products
in terms of ”integrals” reducing to sums.

3. The inclusion hierarchy G, , O G n+1 would in the case of SL(2,C) have interpretation in terms of
finite measurement resolution for four-momentum. If G, ,, annihilate the physical states or creates
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zero norm states, this inclusion hierarchy corresponds to increasing IR cutoff (note that short length
scale in p-adic sense corresponds to long scale in real sense!). The hierarchy of groups G, , makes
sense also in the case of translation group T and also now the interpretation in terms of increasing
IR cutoff makes sense. This picture would provide a group theoretic realization for with the vision
that p-adic length scale hierarchies correspond to hierarchies of length scale measurement resolutions
in M* degrees of freedom.

4.3.6 What about general coordinate invariance?

In purely algebraic approach one must introduce some preferred coordinate system in which the action of
various symmetry transformations is simple: typically induced from linear transformations as in the case
of projective spaces. This requires physically preferred coordinate system if one hopes to avoid problems
with general coordinate invariance. This approach applies also to more general space-time surfaces.
A more general approach would assume general coordinate invariance only modulo finite measurement
resolution.

For H = M* x CP, preferred coordinate systems indeed exist but are determined only apart from
the isometries of H. For M* the preferred coordinates correspond most naturally to linear Minkowsksi
coordinates having simple behavior under isometries. Spherical coordinates are not favored since angles
cannot be represented p-adically without infinite-dimensional algebraic extension. For CP, complex
coordinates in which U(2) C SU(3) is represented linearly are preferred. The great virtue of sub-manifold
gravity is that preferred space-time coordinates can be chosen as a suitable subset of these coordinates
depending on the region of the space-time surface. This reduces the general coordinate transformations
to the isometries of the imbedding space but does yet not mean breaking of general coordinate invariance.

Suppose that one accepts the notion of preferred coordinates and assumes that partonic two-surfaces
(at least) can be expressed in terms of rational equations (for algebraic extensions rationals are generalized
rationals). General coordinate transformations must preserve this state of affairs. GCI must therefore
preserve the property of being a ratio of polynomials with rational coefficients. Only those isometries of
H are allowed, which respect the algebraic extensions of p-adic numbers used. This means that only a
discrete subgroup of isometries can induce general coordinate transformations in p-adic context.

There is however a continuum of choices of preferred coordinates induced by isometries of H so that
one obtains a continuum of choices not equivalent under allowed general coordinate transformations. It
would seem that general coordinate invariance is broken. The world containing a conscious observer who
has chosen coordinate system M differs from the world in which this coordinate system is Mo!

TGD inspired quantum measurement theory leads to this kind of symmetry breaking also in real sector
induced by a selection of quantization axis. In TGD framework this choice has a correlate at the level of
moduli space of CDs. For instance, the choice of a preferred rest frame forced also by number theoretical
vision and construction of preferred extremals would reflect itself in the properties of the interior of the
space-time surface even if it need not affect partonic 2-surfaces.

One can argue that it must be possible to realize general coordinate invariance in more general manner
than defining physics using preferred coordinates and simple cubic lattice structures for the imbedding
space. Maybe also general coordinate invariance should be defined in finite measurement resolution. The
lattice structures defining the discretization for imbedding space with non-preferred coordinates would
look deformed lattice structures in the preferred coordinates but difference would be vanishing in the
pinary resolution used.

5 How to define p-adic manifolds?

What p-adic manifolds are? This is the basic question also in TGD. What p-adic C' P, could mean, and
can one speak about p-adic space-time sheets and about solutions of p-adic field equations in p-adic
M* x CP,? Does WCW have p-adic counterpart?
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The TGD inspired vision about p-adic space-time sheets as correlates for cognition suggests an ap-
proach based on the identification of cognitive representations mapping real preferred extremal to its
p-adic counterpart and vice versa in finite pinary resolution so that one would map discrete set of rational
points to rational points (rational in algebraic extension of p-adic numbers). One would have real chart
leafs for p-adic preferred extremals instead of p-adic ones.

5.1 Algebraic and topological approaches to the notion of manifold

There are two approaches to the notion of manifold and they correspond to the division of mathematics to
algebra and topology: some-one has talked about the devil of algebra and angel of topology. In the case
of infinite-D WCW geometry and p-adic manifolds the roles of devil and angle seem to however change.

1. In the algebraic approach manifolds are regarded as purely algebraic objects - algebraic varieties -
and thus number theoretically universal: only algebraic equations are allowed. Inequalities are not
accepted. This notion of manifold is not so general as the topological notion and symmetries play
a crucial role. The homogenous spaces associated with pairs of groups and subgroups for which all
points are metrically equivalent is a good example about the power of the algebraic approach made
possible by maximal symmetries formulated by Klein as Erlangen program. In the construction of
WCW geometry this approach seems to be the only possible one, and gives hopes that infinite-D
geometric existence - and thus physics - is unique [15].

Standard sphere is this approach defined by condition z? + y? + 22 = R? and makes sense in all
number fields for rational values of R. Purely algebraic definition is especially suited for defining
sub-varieties. Linear spaces and projective spaces are however definable as manifolds purely alge-
braically. The natural topology for algebraic varieties is so called Zariski topology| [I2] in which
closed sets correspond to lower-dimensional sub-varieties. TGD can be seen as sub-manifold gravity
in M* x CP, with space-time surfaces identified as preferred extremals characterized purely alge-
braically: this strongly favors algebraic approach. Algebraic definition of the imbedding space as
a manifold and induction of space-time manifold structure from that for imbedding space is also
necessary if one wants to define TGD so that it makes sense in all number fields (p-adic space-time
sheets are interpreted as correlates for cognition, ”thought bubbles”).

A correspondence between p-adics and reals is however required and this suggests that purely
algebraic approach is not enough.

2. Second - extremely general - approach is topological but works as such nicely only in the real context.
Manifolds are constructed by gluing together open n-balls. Here the inequality so dangerous in p-
adic context enters the game: open ball consists of points with distance smaller than R from center.
Real sphere in this approach is obtained by gluing two disks having overlap around equator.

In p-adic context this approach fails since p-adic balls are either disjoint or nested. In fact, single
point is open ball p-adically so that one can decompose a candidate for a p-adic manifold with
p-adic coordinate charts to dust. It turns out that the replacement of p-adic norm with canonical
identification resolves the problem and one can induce real topology to p-adic context by using
canonical identification to define coordinate charts of the p-adic space-time surface as regions of
real space-time surface. The essentially new elements are the use of real coordinate charts instead
of p-adic ones and the notion of finite measurement resolution characterized by pinary cutoffs.

5.2 Could canonical identification allow construction of path connected topolo-
gies for p-adic manifolds?

The Berkovich approach [7, [8] is an attempt to overcome the difficulty caused by the weird properties
of p-adic balls by adding some points to p-adic balls so that its topology becomes path connected and
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the original p-adic ball is dense set in the Berkovich ball. Idea is same as in the completion of rationals
to reals: new points make rationals a continuum and one can build calculus. I do not understand how
Berkovich disks can be glued to manifolds - presumably the path connected topology implies that they
can have overlaps without being identical or nested: the overlaps should be through the added points.

The problem of the Berkovich construction is that from physics point of view it looks rather complex:
it is difficult to imagine physical realizations for the auxiliary spaces involved with the construction. Also
giving up the p-adic topology seems strange since non-Archimedean topology has - to my opinion - a nice
interpretation if one considers it as a correlate for cognition.

The Bruhat-Tits tree working for projective spaces does not seem to require completion. Path con-
nectedness is implied by the tree having in well-defined sense projective space as boundary. Points of the
p-adic projective space are represented by projective equivalence classes of lattices: this allows to connect
the points of p-adic manifold by edge paths and even the notion of geodesic line can be defined.

In the following TGD inspired topological approach to the construction of p-adic manifolds is discussed.
The proposal relies on the notion of canonical identification playing central role in TGD and means that
one makes maps about p-adic preferred extremal using - not p-adic but real coordinate charts defined
using canonical identification obeying the crucial triangle inequality. This approach allows also to make
p-adic chart maps about real preferred extremals for some values of p-adic prime. The ultrametric norms
of Berkovich for formal power series are replaced by Archimedean norms defining coordinate functions
and their information content is huge as compared to the Berkovich norms. The hierarchy of length scale
resolutions gives rise to a hierarchy of canonical identifications in finite pinary resolution and preferred
extremal property allows to complete the discrete image set consisting of rational points to a continuous
surface. One can say that path-connectedness at the p-adic side is realized by using discretized paths using
induced real topology defined by the canonical identification. This gives a resemblance with Bruhat-Tits
tree.

5.2.1 Basic facts about canonical identification

In TGD framework one of the basic physical problems has been the connection between p-adic numbers
and reals. Algebraic and topological approaches have been competing also here. The notion of canonical
identrification solves the conflict between algebra (in particular symmetries) and continuity. Canonical
identification combined with the identification of common rationals in finite pinary resolution suggests
also a natural replacement of p-adic topology with a path connected effective topology defined as real
topology induced to p-adic context by canonical identification used to build real chart leafs.

1. In TGD inspired theory of consciousness canonical identification or some of its variants is a good
candidate for defining cognitive representations as representations mapping real preferred extremals
to p-adic preferred extremals as also for the realization of intentional action as a quantum jump
replacing p-adic preferred extremal representing intention with a real preferred extremal representing
action. Could these cognitive representations and their inverses actually define real coordinate charts
for the p-adic "mind stuff” and vice versa?

2. Canonical identification I maps p-adic numbers ) z,p" to reals and is defined by the formula
I(x) = > x,p~™. I is a continuous map from p-adic numbers to reals. Its inverse is also continuous
but two-valued for a finite number of pinary digits since the pinary expansion of real number is not
unique (1 = .999999.. is example of this in 10-adic case). For a real number with a finite number of
pinary digits one can always choose the p-adic representative with a finite number of pinary digits.

3. Canonical identification has several variants. Assume that p-adic integers = are represented as
expansion of powers of p¥ as = p™* > z,,p*" with 2y # 0. One can map p-adic rational number
p"*m/n with m and n satisfying the analog of 2y # 0 regarded as a p-adic number to a real number
using I,gl: Il?’l(prkm/n) =p " (m) /I (n).
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One can also express p-adic number as expansion of powers fo p* and define canonical identification
Iy as Iy(3 wpp*™) = 3, xup*". Also the variant Ilgl(m/n) = It1(m)/Ix,(n) with | defining
pinary cutoff for m and [ makes sense. One can say that I,?l (m/n) identifies p-adic and real numbers
along common rationals for p-adic numbers with a pinafy cutoff defined by k and maps them to
rationals for pinary cutoff defined by [. Discrete subset of rational points on p-adic side is mapped
to a discrete subset of rational points on real side by this hybrid of canonical identification and

identification along common rationals. This form of canonical identification is the one needed in
TGD framework.

4. Canonical identification does not commute with rational symmetries unless one uses the map
I,?l(m/n) = Iy, 1(m) /1) ;(n) and also now only in finite resolution defined by k. For the large p-adic
pr’imes associated with elementary particles this is not a practical problem (electron corresponds to
Mi97 = 2127 —1). The generalization to algebraic extensions makes also sense. Canonical identifica-
tion breaks general coordinate invariance unless one uses group theoretically preferred coordinates
for M* and C'P, and subset of these for the space-time region considered.

5.2.2 The resolution of the conflict between symmetries and continuity

Consider now the resolution of the conflict between algebra and topology in more detail.

1. Algebraic approach suggests the identification of reals and various p-adic numbers along common
rationals defined by I C;Qo}oo but this correspondence is completely dis-continuous. Therefore one must
introduce a finite pinary cutoff p* so that one maps only integers smaller than p* to themselves.
Since I 1?,1 does not make sense for p-adic irrationals, one must introduce also second pinary cutoff

p! and use I ,? , so that only a finite subset of rational points is mapped to their real counterparts.

2. Topological approach relies on canonical identification and its variants mapping p-adic numbers to
reals in a continuous manner. I} o, applied to p-adics expressed as x = pFu, u = > z,p", where
1 has unit norm, defines such a correspondence. This correspondence does not however commute
with the basic symmetries as correspondence along common rationals would do for subgroups of the
symmetries represented in terms of rational matrices. Canonical identification fails also to commute
with the field equations and the real image fails to be differentiable.

Finite pinary cutoff (I,goo — I kQ ,) saves the situation. Below the lower pinary cutoff p* the pseudo-
constants of p-adic differential equations would naturally relate to the identification of p-adics and
reals along common rationals (plus common algebraics in the case of algebraic extensions).

The notion of finite measurement resolution allows therefore to find a compromise between the sym-
metries and continuity (that is, algebra and topology). I ,? , maps rationals to themselves only up to k
pinary digits and the remaining points up to [ digits are mapped to rationals but not to themselves.
Canonical identification thus maps only a skeleton of manifold formed by discrete point set from real to
p-adic context and the preferred extremals on both sides would contain this skeleton. There are many
manners to select this rational skeleton, which can also define a decomposition of the real manifold to
simplices or more general objects allowing to define homology theory in real context and to induce it to
p-adic context so that real homology would be inherited to p-adic context.

5.2.3 Definition of p-adic manifold in terms of canonical identification with pinary cutoff

What is remarkable is that canonical identification can be seen as a continuous generalization of the p-adic
norm defined as N,(x) = Ij;(x) having the highly desired Archimedean property. Iy ; is the most natural
variant of canonical identification for defining the chart maps from regions p-adic manifold to regions of
corresponding real mani-fold ( in particular, p-adic preferred extremals to their real counterparts).
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1. As already mentioned, one must restrict the p-adic points mapped to real rationals since I,?l(ac) is
not well-defined for p-adic irrationals having non-unique expression as ratios of p-adic integefs. For
the restriction to finite rationals the chart image on the real side would consist of rational points.
The cutoff means that these rationals are not dense in the set of reals. Preferred extremal property
could however allow to identify the chart leaf as a piece of preferred extremal containing the rational
points in the measurement resolution used. This would realize the dream of mapping p-adic p-adic
preferred extremals to real ones playing a key role in number theoretical universality. When one
cannot use preferred extremal property some other constraint would restrict the number of different
chart leafs.

2. Canonical identification for the various coordinates defines a chart map mapping regions of p-adic
manifold to R}. That each coordinate is mapped to a norm N,(x) means that the real coordinates
are always non-negative. If real spaces R! would provide only chart maps, it is not necessary to
require approximate commutativity with symmetries. Also Berkovich considers norms but for a
space of formal power series assigned with the p-adic disk: in this case however the norms have
extremely low information content.

3. I,gl indeed defines the analog of Archimedean norm in the sense that one has N (z+y) < NF!(z)+
Nz’f’l(y). This follows immediately from the fact that the sum of pinary digits can vanish modulo
p. The triangle inequality holds true also for the rational variant of I. N}!(z) is however not
multiplicative: only a milder condition N (p"*z) = NF! (p"*)NFL((x) = p~"*NF! () holds true.

4. Archimedean property gives excellent hopes that p-adic space provided with chart maps for the
coordinates defined by canonical identification inherits within pinary resolutions real topology and
its path connectedness as a discretized version. In purely topological approach forgetting algebra
and symmetries, a hierarchy of induced real topologies would be obtained as induced real topologies
and characterized by various norms defined by I; .. When symmetries and algebra are brought
in, I,?l gives a correspondence discretizing the connecting paths. This would give a very close
connection with physics.

5. The mapping of p-adic manifolds to real manifolds would make the construction of p-adic manifolds
very concrete. For instance, one can map real preferred subset of rational points of a real preferred
extremal to a p-adic one by the inverse of canonical identification by mapping the real points with
finite number of pinary digits to p-adic points with a finite number of pinary digits. This does not
of course guarantee that the p-adic preferred extremal is unique. One could however say that p-adic
preferred extremals possesses the topological invariants of corresponding real preferred extremal.

6. The maps between different real charts would be induced by the p-adically analytic maps between
the inverse images of these charts. At the real side the maps would be consistent with the p-adic
maps only in the discretization below pinary cutoff and could be also smooth.

7. An objection against this approach is the loss of general coordinate invariance. One can however
argue that one can require this only within the limits of finite measurement resolution. In TGD
framework the symmetries of imbedding space provide a very narrow set of preferred coordinates.

The idea that the discretized version of preferred extremal could lead to preferred extremal by adding
new points in iterative manner is not new. I have proposed assuming that preferred extremals can be also
regarded as quaternionic surfaces (tangent spaces are in well-defined sense hyper-quaterionic sub-space
of complexified octonionic space containing hyper-complex octonions as a preferred sub-space) [18].
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5.2.4 What about p-adic coordinate charts for a real preferred extremal and for p-adic
extremal in different p-adic number field?

What is remarkable that one can also build p-adic coordinate charts about real preferred extremal using
the inverse of the canonical identification assuming that finite rationals are mapped to finite rationals.
There are actually good reasons to expect that coordinate charts make sense in both directions.

Furthermore, if real preferred extremal can be mapped to to p-adic extremals corresponding to two
different primes p; and ps, then pi-adic preferred extremals serves as a chart for ps-adic preferred extremal
and vice versa (one can compose canonical identifications and their inverses to construct the chart maps).

Clearly, real and p-adic extremals define in this manner a category. Preferred extremals are the
objects. The arrows are the composites of canonical identification and its inverses mapping to each other
preferred extremals belonging to different number fields. This category would be very natural and have
profound physical meaning: usually the notion of category tends to be quite too general for the needs
of physicist. Category theoretical thinking suggests that full picture of physics is obtained only through
this category: this is certainly the case if physics is extended to include physical correlates of cognition
and intentionality.

Algebraic continuation from real to p-adic context is one good reason for p-adic chart maps. At the
real side one can calculate the values of various integrals like Kéahler action. This would favor p-adic
regions as map leafs. One can require that Kéhler action for Minkowskian and Euclidian regions (or
their appropriate exponents) make sense p-adically and define the values of these functions for the p-adic
preferred extremals by algebraic continuation. This could be very powerful criterion allowing to assign
only very few p-adic primes to a given real space-time surface. This would also allow to define p-adic
boundaries as images of real boundaries in finite measurement resolution. p-Adic path connectedness
would be induced from real path-connectedness.

In the intersection of real and p-adic worlds the correspondence is certainly unique and means that one
interprets the equations defining the p-adic space-time surface as real equations. The number of rational
points (with cutoff) for the p-adic preferred extremal becomes a measure for how unique the chart map
in the general case can be. For instance, for 2-D surfaces the surfaces ™ 4+ y™ = 2" allow no nontrivial
rational solutions for n > 2 for finite real integers. This criterion does not distinguish between different
p-adic primes and algebraic continuation is needed to make this distinction. The basic condition selecting
preferred p-adic primes is that the value of real Kédhler/Morse function or its real/imaginary exponent
(or both) makes sense also p-adically in some finite-dimensional extension of p-adic numbers.

5.2.5 Some examples about chart maps of p-adic manifolds

The real map leafs must be mutually consistent so that there must be maps relating coordinates used
in the overlapping regions of coordinate charts on both real and p-adic side. On p-adic side chart maps
between real map leafs are naturally induced by identifying the canonical image points of identified p-adic
points on the real side. For discrete chart maps [ ,? , with finite pinary cutoffs one one must complete the
real chart map to - say diffeomorphism. That this completion is not unique reflects the finite measurement
resolution.

In TGD framework the situation is dramatically simpler. For sub-manifolds the manifold structure is
induced from that of imbedding space and it is enough to construct the manifold structure M* x CP, in
a given measurement resolution (k,1). Due to the isometries of the factors of the imbedding space, the
chart maps in both real and p-adic case are known in preferred imbedding space coordinates. As already
discussed, this allows to achieve an almost complete general coordinate invariance by using subset of
imbedding space coordinates for the space-time surface. The breaking of GCI has interpretation in terms
of presence of cognition and selection of quantization axes.

For instance, in the case of Riemann sphere $? the holomorphism relating the complex coordinates
in which rotations act as Mobius tranformations and rotations around preferred axis act as phase mul-
tiplications - the coordinates z and w at Northern and Southern hemispheres are identified as w = 1/z
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restricted to rational points at both side. For C'P, one has three poles instead of two but the situation is
otherwise essentially the same.

5.3 Could canonical identification make possible definition of integrals in p-
adic context?

The notion of p-adic manifold using using real chart maps instead of p-adic ones allows an attractive
approach also to p-adic integration and to the problem of defining p-adic version of differential forms and
their integrals.

1. If one accepts the simplest form of canonical identification I(x) : Y z,p™ — > x,p~ ", the image
of the p-adic surface is continuous but not differentiable and only integers n < p are mapped to
themselves. One can define integrals of real functions along images of the p-adically analytic curves
and define the values of their p-adic counterparts as their algebraic continuation when it exists.

In TGD framework this does not however work. If one wants to define induced quantities - such as
metric and Kéhler form - on the real side one encounters a problem since the image surface is not
smooth and the presence of edges implies that these quantities containing derivatives of imbedding
space coordinates possess delta function singularities. These singularities could be even dense in
the integration region so that one would have no-where differentiable continuous functions and the
real integrals would reduce to a sum which do not make sense.

2. In TGD framework finite measurement resolution realized in terms of pinary cutoffs saves the
situation. Il?,l is a compromise between the direct identification along common rationals favored
by algebra and symmetries but being totally discontinuous without the cutoff . This cutoff breaks
symmetries slightly but guarantees continuity in finite measurement resolution defined by the pinary
cutoff [. Symmetry breaking can be made arbitrarily small and has interpretation in terms of
finite measurement resolution. Due to the pinary cutoff the chart map applied to various p-adic
coordinates takes discrete set of rationals to discrete set of rationals and preferred extremal property
can be used to make a completion to a real space-time surface. Uniqueness is achieved only in finite
measurement resolution and is indeed just what is needed. Also general coordinate invariance is
broken in finite measurement resolution. In TGD framework it is however possible to find preferred
coordinates in order to minimize this symmetry breaking.

3. The completion of the discrete image of p-adic preferred extremal under I/?,z to a real preferred
extremal is very natural. This preferred extremal can be said to be unique apart from a finite
measurement resolution represented by the pinary cutoffs £ and [. All induced quantities are well
defined on both sides.

p-Adic integrals can be defined as pullbacks of real integrals by algebraic continuation when this
is possible. The inverse image of the real integration region in canonical identification defines the
p-adic integration region.

4. The integrals of p-adic differential forms can be defined as pullbacks of the real integrals. The
integrals of closed forms, which are typically integers, would be the same integers but interpreted
as p-adic integers.

It is interesting to study the algebraic continuation of Kéhler action from real sector to p-adic sectors.

1. Kahler action for both Euclidian and Minkowskian regions reduces to the algebraic continuation
of the integral of Chern-Simons-Kéhler form over preferred 3-surfaces. The contributions from
Euclidian and Minkowskian regions reduce to integrals of Chern-Simons form over 3-surfaces.

The contribution from Euclidian regions defines Kéhler function of WCW and the contribution from
Minkowskian regions giving imaginary exponential of Kahler action has interpretation as Morse
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function, whose stationary points are expected to select special preferred extremals. One would
expect that both functions have a continuous spectrum of values. In the case of Kéahler function
this is necessary since Kéahler function defines the Kihler metric of WCW via its second derivatives
in complex coordinates by the well-known formula.

2. The algebraic continuation of the exponent of Kéhler function for a given p-adic prime is expected
to require the proportionality to p™ so that not all preferred extremals are expected to allow a
continuation to a given p-adic number field. This kind of assumption has been indeed made in the
case of deformations of C'P, type extremals in order to derive formula for the gravitational constant
in terms of basic parameters of TGD but without real justification [21].

3. The condition that the action exponential in the Minkowskian regions is a genuine phase factor
implies that it reduces to a root of unity (one must have an algebraic extension of p-adic numbers).
Therefore the contribution to the imaginary exponent Kahler action from these regions for the
p-adicizable preferred extremals should be of form 27w (k 4+ m/n).

If all preferred real extremals allow p-adic counterpart, the value spectrum of the Morse function
on the real side is discrete and could be forced by the preferred extremal property. If this were the
case the stationary phase approximation around extrema of Kahler function on the real side would
be replaced by sum with varying phase factors weighted by Kéahler function.

An alternative conclusion is that the algebraic continuation of Kéahler action to any p-adic number
field is possible only for a subset of preferred extremals with a quantized spectrum of Morse function.
One the real side stationary phase approximation would make sense. It however seems that the
stationary phases must obey the above discussed quantization rule.

Also holomorphic forms allow algebraic continuation and one can require that also their integrals over
cycles do so. An important example is provided by the holomorphic one-forms integrals over cycles of
partonic 2-surface defining the Teichmueller parameters characterizing the conformal equivalence class of
the partonic 2-surfaces as Riemann surface. The p-adic variants of these parameters exist if they allow
an algebraic continuation to a p-adic number. The algebraic continuation from the real side to the p-adic
side would be possible on for certain p-adic primes p if any: this would allow to assign p-adic prime
or primes to a given real preferred extremal. This justifies the assumptions of p-adic mass calculations
concerning the contribution of conformal modular degrees of freedom to mass squared [16].

5.4 Canonical identification and the definition of p-adic counterparts of Lie
groups

For Lie groups for which matrix elements satisfy algebraic equations, algebraic subgroups with rational
matrix elements could be regarded as belonging to the intersection of real and p-adic worlds, and algebraic
continuation by replacing rationals by reals or p-adics defines the real and p-adic counterparts of these
algebraic groups. The challenge is to construct the canonical identification map between these groups:
this map would identify the common rationals and possible common algebraic points on both sides and
could be seen also a projection induced by finite measurement resolution.

A proposal for a construction of the p-adic variants of Lie groups was discussed in previous section.
It was found that the p-adic variant of Lie group decomposes to a union of disjoint sets defined by a
discrete subgroup Gy multiplied by the p-adic counterpart G, , of the continuous Lie group G. The
representability of the discrete group requires an algebraic extension of p-adic numbers. The disturbing
feature of the construction is that the p-adic cosets are disjoint. Canonical identification Ij; suggests a
natural solution to the problem. The following is a rough sketch leaving a lot of details open.

1. Discrete p-adic subgroup Gy corresponds as such to its real counterpart represented by matrices in
algebraic extension of rationals. G, can be coordinatized separately by Lie algebra parameters for
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each element of Gy and canonical identification maps each Gy, ,, to a subset of real G. These subsets
intersect and the chart-to-chart identification maps between Lie algebra coordinates associated
with different elements of Gy are defined by these intersections. This correspondence induces the
correspondence in p-adic context by the inverse of canonical identification.

2. One should map the p-adic exponentials of Lie-group elements of G, ,, to their real counterparts by
some form of canonical identification.

(a) Consider first the basic form I = I; o, of canonical identification mapping all p-adics to their
real counterparts and maps only the p-adic integers 0 < k < p to themselves.
The gluing maps between groups G, , associated with elements g,, and g, of Gy would be
defined by the condition g,,I(exp(it,T*) = gnI(exp(iv,T*). Here t, and v, are Lie-algebra
coordinates for the groups at g, and g,. The delicacies related to the identification of p-adic
analog of imaginary unit have been discussed in the previous section. It is important that
Lie-algebra coordinates belong to the algebraic extension of p-adic numbers containing also
the roots of unity needed to represent g,. This condition allows to solve v, in terms of ¢, and
Vg = vq(tp) defines the chart map relating the two coordinate patches on the real side. The
inverse of the canonical identification in turn defines the p-adic variant of the chart map in
p-adic context. For I this map is not p-adically analytic as one might have guessed.

(b) The use of I,gl instead of I = I o gives hopes about analytic chart-to chart maps on both sides.

One must however restrict I kQ , to a subset of rational points (or generalized points in algebraic
extension with generalized rational defined as ratio of generalized integers in the extension).
Canonical identification respects group multiplication only if the integers defining the rationals
m/n appearing in the matrix elements of group representation are below the cutoff p*. The
points satisfying this condition do not in general form a rational subgroup. The real images of
rational points however generate a rational sub-group of the full Lie-group having a manifold
completion to the real Lie-group.

One can define the real chart-to chart maps between the real images of G at different
points of G using I,gl(e;vp(ivaT“) = g gm % I,gl(exp(itaT“). When real charts intersect, this
correspondence should allow solutions v,, t;, belonging to the algebraic extension and satisfying
the cutoff condition. If the rational point at the other side does not correspond to a rational
point it might be possible to perform pinary cutoff at the other side.

Real chart-to-chart maps induce via common rational points discrete p-adic chart-to-chart
maps between G, ;. This discrete correspondence should allow extension to a unique chart-to-
chart map the p-adic side. The idea about algebraic continuation suggests that an analytic form
for real chart-to-chart maps using rational functions makes sense also in the p-adic context.

3. p-Adic Lie-groups G, i, for an inclusion hierarchy with size characterized by p~F. For large values
of k£ the canonical image of G, for given point of Gy can therefore intersect its copies only for
a small number of neighboring points in Gy, whose size correlates with the size of the algebraic
extension. If the algebraic extension has small dimension or if £ becomes large for a given algebraic
extension, the number of intersection points can vanish. Therefore it seems that in the situations,
where chart-to-chart maps are possible, the power p* and the dimension of algebraic extension must
correlate. Very roughly, the order of magnitude for the minimum distance between elements of Gy
cannot be larger than p~**!. The interesting outcome is that the dimension of algebraic extension
would correlate with the pinary cutoff analogous to the IR cutoff defining measurement resolution
for four-momenta.
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6 What the notion of path connectedness could mean from quan-
tum point of view?

The notions of open set and path connectedness express something physical but perhaps in a highly
idealized form. Canonical identification for preferred extremals provides one promising approach to
the challenge of defining path connected topology and at the same time achieving a compromise with
symmetries and approximate correspondence via common rationals. The variant [ ,? for the canonical
identification with pinary cutoff can be used to map rational points of the real/p-adic preferred extremal
to p-adic/real space-time points to define a skeleton completed to a preferred extremal, which of course
need not be unique. In particular, real paths are mapped to p-adic paths in finite pinary cutoff so that the
images are always discrete paths consisting of rational points so that the notion of finite pinary resolution
is un-avodable.

One could also try to formulate path connectness more microscopically and physically using the tools
of quantum physics.

1. The basic point is that there are correlations between different points or physical events associated
with different points of manifold. Manifold is more like liquid than dust: one cannot pick up single
point from it. In the idealistic description based on real topology one can pick up only open ball.
This relates also to finite measurement resolution for lengths: it is not possible to specify single
point.

2. Quantum physicist would formulate this in terms of physical correlations. The correlation functions
for two fields defined in the manifold are non-vanishing even when the two fields are evaluated at
different points.

If one takes the suggestion of quantum physicist seriously, one should reformulate the notion of man-
ifold by bringing in quantum fields and their correlation functions. This approach is alternative to the
formulation of p-adic (real) manifold based on real (p-adic) coordinate charts defined by canonical iden-
tification.

6.1 Could correlation functions for fermion fields code data about geometric
objects?

Quantum TGD suggests another approach to the notion of path connectedness. What could the quantum
fields needed to formulate the notion of manifold be in TGD framework? In TGD framework there are
only very few choices to consider. Only the induced second quantized fermion fields can be considered
in both real and p-adic context. Their correlation functions defined as vacuum expectations of bi-local
bilinears are indeed well-defined in both real and p-adic context.

One can define classical bosonic correlation functions for the invariants formed from induce bosonic
field but this requires integration over the space-time surface and this might be problematic in p-adic
context unless one is able to algebraically continue the real correlation functions to p-adic context. Quan-
tum ergodicity states that these correlation functions characterizing sub-manifold geometry statistically
are identical for the space-time surfaces which can appear in the quantum superposition defining WCW
spinor field.

1. One could perhaps say:

Two points are ”"connected by path!” / have ”edge connecting them” as Bruhat and Tits would say /
belong to same space-time sheet/partonic 2-surface / belog to two distinct 3-surfaces forming part of
a boundary of the same connected space-time surface <+ there are non-vanishing fermion-antifermion
correlation functions for the point pair in question.
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2. Note that one must consider separately pure right-handed neutrino modes and the remaining spinor
modes. For the modified Dirac equation pure right-handed neutrino fields are covariantly constant
in CP, degrees of freedom and delocalized along entire space-time sheet. In space-time interior
the correlation functions for right-handed neutrinos should code for the geometry of the space-time
sheet.

The modes which do not represent pure right-handed neutrinos are restricted to 2-D string world
sheets. The conformal correlation functions for the spinor fields restricted to string world sheets
should code for the geometry of string world sheets.

3. Everything would reduce to fermionic correlation functions, which in principle are measurable in
particle physics experiments. This is in accordance with the general vision of TGD that fermion
fields provide all possible information about geometric objects. This would generalize the idea that
one can hear the shape of the drum that is deduce the geometry of drum from the correlation
functions for sound waves.

4. Real space-time topology would be only a highly idealized description of this physical connectedness,
in more physical approach it would be described in terms of fermionic correlation functions allowing
to decide whether two points belong to same geometric object or not.

6.2 p-Adic variant of WCW and M-matrix

In zero energy ontology (ZEO) the unitary U-matrix having non-unitary M-matrices are rows and allowing
interpretation as ”complex” square roots of hermitian density matrices are in key role. The unitary
S-matrix appears as a ”phase factor” of the ”complex” square root and its modulus corresponds to
Hermitian square roots of density matrix. What is essential is that M-matrices are multi-local functionals
of 3-surfaces defining boundary components of connected space-time surface at the light-like boundaries
of causal diamond.

By strong form of holography the information about three-surfaces reduces to data given at partonic
2-surfaces (and their tangent space data). The 3-D boundary components of space-time surface at the
boundaries of C'D define a coherent unit. The space-time surface takes the role of the path connecting two
disjoint 3-surfaces in zero energy ontology and WCW is more like a space formed by multi-points (unions
of several disjoint 3-surfaces). Hence the basic difficulty of p-adic manifold theory is circumvented.

Although WCW spinor fields are formally purely classical, the analogs of correlation functions as n-
point functions in WCW make sense since the notion of 3-surface is generalized in the manner described
above. M-matrix elements serve as building bricks of WCW spinor fields and they are are functionals
about the data at partonic 2-surfaces at the boundaries of CD and could have an interpretation as
correlation function in WCW giving rise to ”"path connectedness” in WCW in a number theoretically
universal manner.

6.3 A possible analog for the space of Berkovich norms in the approach based
on correlation functions

The idea about real preferred extremal as a coordinate chart for p-adic preferred extremal (and vice
versa) suggest that canonical identification with cutoff could define naturally p-adic preferred extremal
as a path connected space. It would also allow to map preferred real preferred extremals to their p-adic
counterparts for some preferred primes and at the same time algebraically continue various quantities
such as Kéahler action. The hierarchies of pinary cutoffs and resolutions in phase degrees of freedom
define a hierarchy of resolutions and the resulting Archimedean norms defined by the the hierarchy of
canonical identifications define the analog of the norm space of Berkovich.

Also the idea about correlation functions as counterpart for path connectedness suggests that the
ultrametric norm of K-valued field needed to defined Berkovich disk might be replaced with fermionic
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correlation functions. Could the space of the Berkovich norms have as an analog in this more general
approach? The notion of finite measurement resolution seems to lead naturally to this analog also for
this option.

One can define the correlation functions in various resolutions. This means varying angle resolution
and length scale resolution. Angle resolution -or rather phase resolution in p-adic context - means a
hierarchy of algebraic extensions for p-adic number fields bringing in roots of unity exp(i27/n) with
increasing values of n. Length scale resolution means increasing number of p-adic primes and C'Ds with
scales given by integer multiples of C'P, scale.

Fermionic Fock space defines a canonical example about hyper-finite factor of type Iy (HFF) [25] and
the inclusions of HFF's having interpretation in terms of finite measurement resolution should be involved
in the construction. The space of Berkovich norms is replaced with the correlation functions assignable
to HFF having fractal structure containing infinite inclusion hierarchies of HFF's.

7 Appendix: Technical aspects of Bruhat-Tits tree and Berkovich
disk

In the following more technical aspects of Bruhat-Tits tree and Berkovich disk are discussed.

7.1 Why notions like Bruhat-Tits tree and Berkovich disk?

The constructions like Bruhat-Tits tree and Berkovich disk remain totally incomprehensible unless one
understands the underlying motivations. If I have understood correctly, the motivation behind all these
strange and complicated looking structures is the attempt to generalize the notion of real manifold to
p-adic context using topological approach based on p-adic coordinate maps to p-adic disks which must
be completed to Berkovich disks (”disk” could quite well be replaced with ”ball”).

In the real context manifolds have open balls of R™ defining real topology as building bricks. One
glues these balls together along their intersection suitably and obtains global differential structures with
various topologies and manifold structures. For instance, sphere can be obtained by gluing two disks
having overlap around equator.

In the p-adic context the topology is however totally disconnected meaning that single point is the
smallest open set. One cannot build anything coherent from points: they are disjoint or identical unlike
the open balls in the real case. More generally: two p-adic balls are either disjoint or either one is
contained by another one! No gluing by overlap is possible!

This difficulty has stimulated various theories and Bruhat-Tits tree relates to the theory of Berkovich
generalizing the notion of open ball to Berkovich disk [7, [8] serving as a building brick of p-adic manifolds.
The naive p-adic disk is contained as a dense subset to Berkovich disk so that this is like replacing rationals
with reals and in this manner gluing them to continuum. Pragmatic physicist is not too enthusiastic about
this kind of completions, especially so because the original p-adic topology is replaced with a new one in
the completion.

7.2 Technical aspects of Bruhat-Tits tree

The construction of Bruhat-Tits tree for P!(Q,) and its generalizations to algebraic extensions can be
understood as follows.

1. One must be able to connect any pair of points of P'(Q,) by and edge path. The basic building
brick of edge path is single edge connecting nearby points of P1(Q,). One can start from a simpler
situtation first by considering Qz consisting of points (a,b). If one treats these points just as pairs
of p-adic numbers, one cannot do anything. One must represent these pairs as geometric objects in
order to define the notion of edge purely set theoretically. The Z, lattice generated having the pair
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(a,b) as basis vectors is indeed an object labelled by the pair (a,b). If one wants projective space
one must assume that the lattices different by scaling of (a,b) by a non-vanishing p-adic number
are equivalent but this is not absolutely essential for the argument.

Note: Also in TGD one has a space whose points are geometric objects. The geometric object is
now 3-surface and the space is the ”world of classical worlds” - the space formed by these 3-surfaces.

2. The projective space P1(C) = S? has a representation as a coset space PGI(2,C)/PGI(1,C) x
PGI(2,Z). This algebraic relation must generalize by replacing C' with ¢),. This means that
PGI(2,Qp) must act transitively in the set of the geometric objects associated with pairs (a,b).
The action on lattices is indeed well-defined and transitive and one can generate all lattices from
single lattice defined by the lattice characterized by (a,b) = (1,1). One has a discrete analog
of homogeneous space in the sense that its all points are geometrically equivalent because of the
transitive action of GI(2,Q,). This reduces the construction to single point, which is an enormous
simplification.

Note: Also the construction of the geometry of WCW [15] in TGD relies on symmetric/homogeneous
space property (actually the property of being a union of infinite-dimensional symmetric spaces)
making the hopeless task managable by reducing the construction to that at single point of WCW
and forcing infinite-dimensional symmetries (symplectic invariance imherited from the boundary of
CD x C'P, and generalization of conformal invariance for light-like 3-surfaces and light-like bound-
aries of C'D). Already in the case of loop spaces [2] Kédhler geometry exists only because of these
infinite-dimensional symmetries and is also unique [I0]. One can say that infinite-dimensional Kéhler
geometric existence is unique.

3. The really important idea is that the internal structure of the point pairs (a,b) allows to define
what the existence of "edge” between two nearby points of P'(Q,) could mean. The definition
is following. Two projective lattices [M] and [N] (projective equivalence classes of lattices) are
connected by an edge if there exist representatives M and N such that M D N C pM. Note that
this relation holds true only for some representatives, not all. It is also purely set-theoretic.

4. By reducing the situation to the simplest possible case M <« (a,b) = (1,1) one can easily find
the lattices N connected to M. The calculations reduce to the finite field F}, since the inclusion
condition implies that M/pM D> N/pM D> pM/pM = {0} and M/pM is just Fp2. The allowed N
correspond are in one-one correspondence with the Fj, subspaces of FI? and there are p + 1 of them
corresponding to space generated by F, multiples of (a,1), a =0,...p — 1 and (1,0). Therefore the
point (a,b) = (1,1) is connected to p + 1 neighbours by single edge. By symmetric space property
this is true for all points of P'(Q,). The conclusion is that edge paths correspond to a regular tree
with valence p + 1.

5. P1(Q,) is still totally disconnected in p-adic topology. The edge paths however provide P!(Q,)
with a path-connected topology. The example of Berkovich disk would suggest that one must
add to P'(Q,) something so that P'(Q,) remains a dense subset of this larger structure. The
situation would be same as for rationals: rationals become a path connected continuum if one adds
all irrational numbers to obtain reals. Rationals define a dense subset of reals and numerics uses
only them. In particular, integration becomes possible when irrationals are added. It is however
not clear to me whether this kind of completion is needed.

One can wonder what must be added to the set of Z, lattices in Qf, or to the set of their projective
equivalence classes to build the global differentiable structure. The answer perhaps comes from the
observation that the ends of Bruhat-Tits tree correspond to K-rationals expressible as ratios of two
K-integers - something that numerics can catch at least in real case. Could the completion mean
adding also the ends which are K-irrationals? If so then the situation would be very similar to that
in TGD inspired definition of p-adic manifolds.
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6. Every pair of points in the completion P!(Q,) is connected by an edge path consisting of some
minimal number n,,;, of edges and this edge path defines the analog of geodesic with length 1,y .
This number is p-adic integer and could be infinite as a real integer for the completion of the p-adic
manifold to a path connected manifold. Here the canonical identification > z,p™ — z,p~ " mapping
p-adic integers to real numbers and playing a key role in p-adic mass calculations could come into
play and allow to obtain a real valued finite distance measure. Real distances have continuous
spectrum in the interval [0, p). The objection is that this definition is not consistent with the idea
of algebraic continuation of integrals from real context.

This construction generalizes to algebraic extensions K of (), and also to higher-dimensional projective
spaces and symmetric spaces. In particular, the construction of the p-adic counterpart of C'P, becomes
possible. Now one replaces Q}% with Qg or K? allowing the action of some discrete subgroup of the
isometry group SU(3) of CP,. Lattices in K? replace the points of Qg and defines the counterpart of
Bruhat-Tits tree in exactly the same manner as for P!(K).

Physically the highly interesting point is that only a discrete subgroup of C'P; can be represented in the
algebraic extension so that symmetry breaking to discrete subgroup is un-avoidable. In TGD framework
the interpretation is in terms of finite measurement resolution forcing discretization and therefore also
symmetry breaking. This symmetry breaking is quite different from that defined by Higgs mechanism or
symmetry breaking taking place for the solutions of field equations for a variational principle characterized
by the unbroken symmetry group.

7.3 The lattice construction of Bruhat-Tits tree does not work for K" but
works for P"(K): something deep?

The naive expectation is that the construction of Bruhat-Tits tree should work also in the simplest possible
case that one can imagine: for p-adic numbers (), themselves. The naive guess is that the tree for p-adic
numbers with norm bounded by p™ the tree is just the p+1-valent tree with trunk and representing all
possible pinary expansions of these p-adic numbers. The lattice construction does not however give this
correspondence.

Zp lattices M in @), are parameterized by non-vanishing elements a of (), in this case. The multipli-
cation by p-adic integer n of unit norm does not affect a given lattice M a since one has nka = k1a where
n, k, k1 are p-adic integers. Therefore these lattices are not in one-one correspondence with @), but with
powers p": |g|, < p" for a given lattice. Therefore the lattice construction fails. It is essential that one
considers projective space P'(Q) instead of @,. For QIQ) the construction however seems to work.

Note: The condition M D N D pM for the existence of an edge between two lattices allows only two
solutions: the trivial solution N = M and the solution N = pM. The counterpart of Bruhat-Tits tree is
now 1-valent tree with edges labelled by powers of p.

Also in the case of ()} the correspondence between lattices and points of @ is 1-to-many since the
multiplication by an element of Z, with unit norm does not affect the lattice. As a matter fact, all
elements of Qp™ related by Si(n, Q) correspond to same lattice. Hence the replacement of points with
lattices must be restricted to the case of projective spaces.

Physicist might argue that the use of lattices is un-natural and quite too complicated from the point of
view of practical physics. I am not sure: it might be that the lattices have some nice physical interpretation
and perhaps the outcome - the tree - is more important than the lattices used to achieve it. The fact is
that p-adic projective spaces have this kind of ”skeleton”, and one might well argue that there is no need
for the ugly looking completion to a bigger space with path connected and non-ultrametric topology.

In TGD framework the p-adic variants of S? and C'P; are central and the existence of the ”skeleton”
might be of fundamental significance from the point of view of p-adic TGD and number theoretical
universality. Note that S? emerges naturally for the light-cone boundary in the case of M* (5Mi =
S? x R, , where R, represents light-like radial direction). For M™, n # 4, one obtains S¥="2 k # 2,
and this space is not projective space. Also in twistor Grassmannian approach to scattering amplitudes
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utilizing residue integrals in projective spaces Gl(n,C)/Gl(n — m,C) x Gl(m,C) this property for the
p-adic counterparts of these spaces might be of primary importance.

7.4 Some technicalities about Berkovich disk

Berkovich disk is a p-adic generalization of open ball and meant to serve as a building brick of p-adic
manifolds in the same manner as open ball is the building brick of real manifolds. The first guess is
that ordinary open ball for p-adic numbers defined by | — a] < r could work. As a matter fact, p-
adic distance is quantized: |z — a| = p™ holds true. The basic outcome of total disconnectedness of the
ultrametic topology is that two p-adic balls are either disjoint of the other one is contained by another
one. One cannot build manifolds by taking p-adic balls and allowing them to partially overlap to get
global differentiable structures and various topologies.

The construction of Berkovich disk - call it B - is motivated by the need to generalize the standard
approach to the construction of real manifolds. I do not know whether it is equivalent with the approach
based on Bruhat-Tits tree. The explicit realization of Berkovich disk as a completion of ultrametric unit
disk is something which one cannot guess easily but when one has understood that the basic premises are
satisfied for it, it begins to look less artificial.

I try to explain this construction described briefly in the lecture notes Buildings and Berkovich spaces
[8] by Annette Werner. I neglect all technical issues (I do not even understand them properly!). The
basic idea is to imbed ultrametric unit disk as a dense subset to some space possessing path connected
topology. The challenge is to guess what this space is.

1. Omne starts from p-adic unit disk D: |z|, < 1, which one wants to complete to Berkovich disk B
containing D as a dense subset and possessing path connected topology. One could also replace @,
with @) or K", where K is any algebraic extension (). In the explanation provided in the lecture
notes one considers for simplicity K, which is algebraically complete: this requires an algebraic
extension allowing containing all algebraic numbers. This is unrealistic but the construction is
possible also for general K but involves more technicalities.

2. One introduces the space of formal K-valued power series f(z) = > f,2™ in D(0,1) = D. One can
define for the an ultrametric norm as || f|| = Maz{|f.|x}. This is actually the supremum of p-adic
norm |f(z)|x in D(0,1). The p-adically largest coefficient f,, defines the norm known as Gauss
norm. This norm is multiplicative. For constant functions, which are in one-one correspondence
with points of K, this norm reduces to K-norm.

3. One considers also more general norms. In fact, the space of norms with attributes ultrametric,
bounded, and multiplicative and reducing for constant functions to K-norm ||k defines the Berkovich
unit disk B, which turns out to be a completion of the unit disk D containing D as a dense subset.
Furthermore, B turns out to have have path connected topology as required making possible global
differentiable structure and even hopes about p-adic integration.

4. Berkovich manages to construct these norms explicitly. The simplest norms of this kind are defined
by points a of D. The norm is simply |f(a)|kx. These norms are in one-one correspondence with
points of D and should define a dense subset of the entire space of norms. The points of K are
therefore mapped to subspace of the space of norms: this is absolutely essential.

5. There are also other multiplicative, ultrametric norms reducing to ||k for constant functions in D.
They are defined in terms of disks |z — a|x < r < 1. The Gauss norm corresponds to r = 1 and
the norm described in previous item to 7 = 0. These norms are analogous to irrationals numbers in
the case of completion of rationals to reals. The Berkovich disk B contains points of four different

types.

e Points of type 1: |f.| = |f(a)|x (imbedding of D to Berkovich disk B.
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e Points of type 2: |fl|ar = sup|f(z)|x for D(a,r) C D(0,1) and r € |K x|, the value spectrum
of K-norms (powers of p for @,). The Gauss norm corresponds to r = 1.

e Points of type 3: |flqr = sup|f(x)|x for D(a,r) C D(0,1) and r ¢ |K «|. There is a delicate
difference between types 2 and 3 which I fail to understand.

e Points of type 4: |flor = limn—oolfla,,r, for a nested sequence D(aq1,71) D D(ag,r2).... of
closed disks in D(0, 1).

6. The topology in Berkovich disk is defined by a pointwise convergence of the norm in the space of
functions f in D. This topology makes Berkovich disk path connected.

The above construction is rather complicated although and also assumes algebraic completeness. For
finite-dimensional algebraic extensions the construction is expected to be even more complicated. I do not
understand the possible connection between Bruhat-Tits tree and Berkovich construction: does Bruhat-
Tits tree follow from Berkovich construction or not?

7.5 Could the construction of Berkovich disk have a physical meaning?

For the physicist the obvious question is whether the function space associated with the K-disk D could
have some some physical interpretation? And what about the interpretation of the space of bounded
multiplicative ultrametric norms for this function space? Could these norms have some physical interpre-
tation?

Consider first basic criticism what might be represented by a physicist.

1. The ultrametric multiplicative norms in the function space carry extremely scarce information about
the functions. Just the norm of the value of the function at single point. If one wants information
in several points on must have a manifold consisting of large minimal number of Berkovich disks.
An alternative manner to get information about the function space is to combine the information
about all norms.

2. Physicists could also wonder what these K-valued functions are physically. Are they physical fields
perhaps? If so, why not consider p-adic variants of correlation functions instead of p-adic norms
scalars formed from these fields at single point. This forces however to ask whether the non-vanishing
of these physical correlation functions for these fields could code for the existence of ” connections”
between points of the p-adic manifold so that there would be no need for the completion to Berkovich
disk after all. Could the solution of the problem be achieved by bringing quantum physics a part
of the definition of the manifold structure.

It seems that in TGD framework there is no natural counterpart for the K-valued formal power
series and their norms. One must perform a stronger generalization and this leads to the use of
canonical identification mapping p-adic coordinate variables to their Archimedean norms defined
by canonical identification and serving as real coordinates. Another, very speculative approach
would be based on correlation functions of fermion fields as a possible manner to code the physical
counterpart of path connectedness.
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