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Abstract

There are two basic approaches to quantum TGD. The �rst approach, which is discussed in this article,

is a generalization of Einstein's geometrization program of physics to an in�nite-dimensional context. Second

approach is based on the identi�cation of physics as a generalized number theory. The �rst approach relies on the

vision of quantum physics as in�nite-dimensional Kähler geometry for the "world of classical worlds" (WCW)

identi�ed as the space of 3-surfaces in in certain 8-dimensional space. There are three separate approaches to

the challenge of constructing WCW Kähler geometry and spinor structure. The �rst approach relies on direct

guess of Kähler function. Second approach relies on the construction of Kähler form and metric utilizing the

huge symmetries of the geometry needed to guarantee the mathematical existence of Riemann connection. The

third approach relies on the construction of spinor structure based on the hypothesis that complexi�ed WCW

gamma matrices are representable as linear combinations of fermionic oscillator operator for second quantized

free spinor �elds at space-time surface and on the geometrization of super-conformal symmetries in terms of

WCW spinor structure.

In this article the proposal for Kähler function based on the requirement of 4-dimensional General Coordinate

Invariance implying that its de�nition must assign to a given 3-surface a unique space-time surface. Quantum

classical correspondence requires that this surface is a preferred extremal of some some general coordinate

invariant action, and so called Kähler action is a unique candidate in this respect. The preferred extremal has

interpretation as an analog of Bohr orbit so that classical physics becomes and exact part of WCW geometry

and therefore also quantum physics.

The basic challenge is the explicit calculation of WCW Kähler function K. Two assumptions lead to the

identi�cation of K as a sum of Chern-Simons type terms associated with the ends of the causal diamond and with

the light-like wormhole throats at which the signature of the induced metric changes. The �rst assumption is the

weak form of electric magnetic duality generalizing the standard electric-magnetic duality. Second assumption

is that the Kähler current for the preferred extremals is proportional to instanton current so that the Coulomb

interaction term in the Kähler action vanishes and it reduces to Chern-Simons term. This requires the condition

jK ∧ djK = 0 as integrability condition implying that the �ow parameter of the �ow lines of jK de�nes a global

space-time coordinate. This inspires a generalization of the earlier solution ansatz for the �eld equations to a

condition that various conserved currents are Beltrami �elds proportional to the instanton current. This would

realize the vision about reduction to almost topological QFT.

Second challenge is the understanding of the space-time correlates of quantum criticality. The realization

that the hierarchy of Planck constant realized in terms of coverings of the imbedding space follows from basic

quantum TGD leads to a further understanding. The extreme non-linearity of canonical momentum densities as

functions of time derivatives of the imbedding space coordinates implies that the correspondence between these

two variables is not 1-1 so that it is natural to introduce coverings of CD × CP2. This leads also to a precise

geometric characterization of the criticality of the preferred extremals.

Keywords: Kähler geometry, in�nite-dimensional geometry, quantum criticality, electric-magnetic duality,
Chern-Simons action, topological QFT.

1 Introduction

The motivation or the construction of con�guration space geometry is the postulate that physics reduces to the
geometry of classical spinor �elds in the the "world of the classical worlds" (WCW) identi�ed as the in�nite-
dimensional con�guration space of 3-surfaces of some subspace of M4 × CP2. The �rst candidates were M4

+ × CP2

and M4×CP2, where M4 and M4
+ denote Minkowski space and its light cone respectively. The recent identi�cation

of WCW is as the union of sub-WCWs consisting of light-like 3-surface representing generalized Feynman diagrams
in CD×CP2, where CD is intersection of future and past directed light-cones ofM4. The details of this identi�cation
will be discussed later.

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires that con�guration
space possesses [28]. One of the basic features of the Kähler geometry is that it is solely determined by the so called
Kähler function, which de�nes both the Kähler form J and the components of the Kähler metric g in complex
coordinates via the formulas [29]:

J = i∂k∂l̄Kdz
k ∧ dz̄l ,

ds2 = 2∂k∂l̄Kdz
kdz̄l . (1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary unit in the
tangent space of the con�guration space

JmrJ
rn = −g n

m . (1.2)

As a consequence Kähler form de�nes also symplectic structure in con�guration space [30].
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1.1 Con�guration space Kähler metric from Kähler function

The task of �nding Kähler geometry for the con�guration space reduces to that of �nding the Kähler function.
The main constraints on the Kähler function result from the requirement of General Coordinate Invariance (GCI)
-or more technically Di�4 symmetry and Di� degeneracy. GCI requires that the de�nition of the Kähler function
assigns to a given 3-surface X3 a unique space-time surface X4(X3), the generalized Bohr orbit de�ning the classical
physics associated with X3. The natural guess inspired by quantum classical correspondence is that Kähler function
is de�ned by what might be called Kähler action, which is essentially Maxwell action with Maxwell �eld expressible
in terms of CP2 coordinates and that the space-time surface corresponds to a preferred extremal of Kähler action.

One can end up with the identi�cation of the preferred extremal via several routes. Kähler action contains
Kähler coupling strength as a temperature like parameter and this leads to the idea of quantum criticality �xing
this parameter. One could go even even further, and require that space-time surfaces are critical in the sense that
there exist an in�nite number of vanishing second variations of Kähler action de�ning conserved Noether charges.
The approach based on the modi�ed Dirac action indeed leads naturally to this picture [10]. Kähler coupling strength
should be however visible in the solutions of �eld equations somehow before one can say that these two criticalities
have something to do with each other. Since Kähler coupling strength does not appear in the �eld equations it
can make its way to thge �eld equations only via boundary conditions. This is achieved if one accepts the weak
form of self-duality [10] generalizing the standard electric-magnetic duality [57]. The weak form of electric-magnetic
duality roughly states that for the partonic 2-surfaces the induced Kähler electric �eld is proportional to the Kähler
magnetic �eld strength. The proportionality constant turns out to be essentially the Kähler coupling strength. The
simplest hypothesis is that Kähler coupling strength has single universal value for given value of Planck constant
and the weak form of self-duality �xes it.

If Kähler action would de�ne a strictly deterministic variational principle, Di�4 degeneracy and invariance would
be achieved by restricting the consideration to 3-surfaces Y 3 at the boundary ofM4

+ and by de�ning Kähler function
for 3-surfaces X3 at X4(Y 3) and di�eo-related to Y 3 as K(X3) = K(Y 3). This reduction might be called quantum
gravitational holography. The classical non-determinism of the Kähler action introduces complications which might
be overcome in zero energy ontology (ZEO). ZEO and strong from of GCI lead to the e�ective replacement of
X3 with partonic 2-surfaces at the ends of CD plus the 4-D tangent space distribution associated with them as
basic geometric objects so that one can speak about e�ective 2-dimensionality and strong form of gravitational
holography.

1.2 Con�guration space metric from symmetries

A complementary approach to the problem of constructing con�guration space geometry is based on symmetries.
The work of Dan Freed [46] has demonstrated that the Kähler geometry of loop spaces is unique from the existence
of Riemann connection and �xed completely by the Kac Moody symmetries of the space. In 3-dimensional context
one has even better reasons to expect uniqueness. The guess is that con�guration space is a union symmetric
spaces [26] labeled by zero modes not appearing in the line element as di�erentials and having interpretations
as classical degrees providing a rigorous formulation of quantum measurement theory. The generalized conformal
invariance of metrically 2-dimensional light like 3-surfaces acting as causal determinants is the corner stone of the
construction. The construction works only for 4-dimensional space-time and imbedding space which is a product of
four-dimensional Minkowski space or its future light cone with CP2 [29].

1.3 Topics of the article

In the sequel I will �rst consider the basic properties of the con�guration space, propose an identi�cation of the
Kähler function as Kähler action for a preferred extremal of Kähler action and discuss various physical and mathe-
matical motivations behind the proposed de�nition. The key feature of the Kähler action is the failure of classical
determinism in its standard form, and various implications of the failure are discussed. In the last section represent-
ing the progress that has taken place during last months (and induced by the birds's eye of view forced by the writing
of this article series) the weak form of electric-magnetic duality and the argument reducing the hierarchy of Planck
constants to the non-linearity of Kähler action are discusssed. The basic results besides the understanding of the
hierarchy of Planck constants, are a concrete geometric understanding of the criticality of the preferred extremals
and the reduction of quantum TGD to almost topological TGD via the reduction of Kähler action to Chern-Simons
terms. This also leads to a generalization of the earlier solution ansatz for �eld equations [16].

2 Con�guration space

The view about con�guration space or world of classical worlds (WCW) has developed considerably during the last
two decades. Here only the recent view is summarized in order to not load reader with unessential details.

2.1 Basic notions

The notions of imbedding space, 3-surface (and 4-surface), and con�guration space or "world of classical worlds"
(WCW), are central to quantum TGD. The original idea was that 3-surfaces are space-like 3-surfaces of H =
M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-surfaces in H. The basic idea was that the
de�nition of Kähler metric of WCW assigns to each X3 a unique space-time surface X4(X3) allowing in this manner
to realize GCI. During years these notions have however evolved considerably.
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2.1.1 The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [17, 18, 19].

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic variants of imbedding
space together along rationals and common algebraic numbers. The generalized imbedding space has a book
like structure with reals and various p-adic number �elds [39] (including their algebraic extensions) representing
the pages of the book. As matter fact, this gluing idea generalizes to the level of WCW.

2. With the discovery of zero energy ontology [11, 9] it became clear that the so called causal diamonds (CDs)
interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones of M4 × CP2 de�ne correlates

for the quantum states. The position of the "lower" tip of CD characterizes the position of CD in H. If the
temporal distance between upper and lower tip of CD is quantized power of 2 multiples of CP2 length, p-adic
length scale hypothesis [14] follows as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2

resp. δM4
− × CP2 of CD can be regarded as the carrier of positive resp. negative energy part of the state.

All net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time surfaces
assignable to zero energy states would would reside inside CD×CP2s and have their 3-D ends at the light-like
boundaries of CD × CP2. Fractal structure is present in the sense that CDs can contains CDs within CDs,
and measurement resolution dictates the length scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [15] led to a further generalization of the notion of
imbedding space. Generalized imbedding space is obtained by gluing together Cartesian products of singular
coverings and possibly also factor spaces of CD and CP2 to form a book like structure. There are good
physical and mathematical arguments suggesting that only the singular coverings should be allowed [19, A6].
The particles at di�erent pages of this book behave like dark matter relative to each other. This generalization
also brings in the geometric correlate for the selection of quantization axes in the sense that the geometry of
the sectors of the generalized imbedding space with non-standard value of Planck constant involves symmetry
breaking reducing the isometries to Cartan subalgebra. Roughly speaking, each CD and CP2 is replaced
with a union of CDs and CP2s corresponding to di�erent choices of quantization axes so that no breaking of
Poincare and color symmetries occurs at the level of entire WCW.

2.1.2 The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the recent view is an outcome
of a long and tedious process involving many hastily done mis-interpretations.

1. The original identi�cation of 3-surfaces was as arbitrary space-like 3-surfaces subject to equivalence implied by
GCI. There was a problem related to the realization of GCI since it was not at all obvious why the preferred
extremal X4(Y 3) for Y 3 at X4(X3) and Di�4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic dynamical
objects, in particular for realizing the GCI in 4-D sense (obviously the identi�cation resolves the above men-
tioned problem) and understanding the conformal symmetries of the theory (for super-conformal theories see
[42]). Light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces. Therefore it seems that one must
choose between light-like and space-like 3-surfaces or assume generalized GCI requiring that equivalently either
space-like 3-surfaces or light-like 3-surfaces at the ends of CDs can be identi�ed as the fundamental geometric
objects. General GCI requires that the basic objects correspond to the partonic 2-surfaces identi�ed as inter-
sections of these 3-surfaces plus common 4-D tangent space distribution. At the level of WCW metric this
means that the components of the Kähler form and metric can be expressed in terms of data assignable to 2-D
partonic surfaces. Since the information about normal space of the 2-surface is needed one has only e�ective
2-dimensionality. Weak form of self-duality [7, A2] however implies that the normal data (�ux Hamiltonians
associated with Kähler electric �eld) reduces to magnetic �ux Hamiltonians. This is essential for conformal
symmetries and also simpli�es the construction enormously.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the sense that they
are analogous to Feynman diagrams. This means that the light-like 3-surfaces representing lines of Feynman
diagram can be glued along their 2-D ends playing the role of vertices to form what I call generalized Feynman
diagrams. The ends of lines are located at boundaries of sub-CDs. This brings in also a hierarchy of time
scales: the increase of the measurement resolution means introduction of sub-CDs containing sub-Feynman
diagrams. As the resolution is improved, new sub-Feynman diagrams emerge so that e�ective 2-D character
holds true in discretized sense and in given resolution scale only.

4. A further but inessential complication relates to the hierarchy of Planck constants forcing to generalize the
notion of imbedding space and also to the fact that for non-standard values of Planck constant there is
symmetry breaking due to preferred plane M2 preferred homologically trivial geodesic sphere of CP2 having
interpretation as geometric correlate for the selection of quantization axis. For given sector of CH this means
union over choices of this kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces correspond to preferred
extremals X4(X3) of Kähler action and are thus analogous to Bohr orbits. Kähler function K(X3) de�ning the
Kähler geometry of the world of classical worlds would correspond to the Kähler action for the preferred extremal.
The precise identi�cation of the preferred extremals actually has however remained open.
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The study of the modi�ed Dirac equation led to the realization that classical �eld equations for Kähler action can
be seen as consistency conditions for the modi�ed Dirac action and led to the identi�cation of preferred extremals
in terms of criticality. This identi�cation follows naturally also from quantum criticality.

1. The conjecture was that generalized eigen modes of the modi�ed Dirac operator DC−S associated with Chern-
Simons action [51] code for the information about preferred extremal of Kähler action and that vacuum
functional identi�ed as Dirac determinant de�ned as product of generalized eigenvalues equals to exponent of
Kähler action for a preferred extremal [9, A3].

2. The next step of progress was the realization that the requirement that the conservation of the Noether
currents associated with the modi�ed Dirac equation requires that the second variation of the Kähler action
vanishes. In strongest form this condition would be satis�ed for all variations and in weak sense only for those
de�ning dynamical symmetries. The interpretation is as a space-time correlate for quantum criticality and
the vacuum degeneracy of Kähler action makes the criticality plausible. The weak form of electric-magnetic
duality gives a precise formulation for how Kähler coupling strength is visible in the properties of the preferred
extremals. A generalization of the ideas of the catastrophe theory to in�nite-dimensional context results [8].
These conditions make sense also in p-adic context and have a number theoretical universal form.

The notion of number theoretical compactication led to important progress in the understanding of the preferred
extremals and the conjectures were consistent with what is known about the known extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⊂M8 a subspace M2(x) ⊂M4

having interpretation as the plane of non-physical polarizations. This in the case that the induced metric has
Minkowskian signature. If not, and if co-hyper-quaternionic surface is in question, similar assigned should be
possible in normal space. This means a close connection with super string models. Geometrically this would
mean that the deformations of 3-surface in the plane of non-physical polarizations would not contribute to
the line element of WCW. This is as it must be since complexi�cation does not make sense in M2 degrees of
freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-space of hyper-
octonions de�ned as 8-D subspace of complexi�ed octonions with the property that the metric de�ned by the
octonionic inner product has signature of M8 (for classical numbers �elds see [36, 37, 38]). The condition
M2(x) ⊂ T (X4(X3

l ))) in principle �xes the tangent space at X3
l , and one has good hopes that the boundary

value problem is well-de�ned and could �x X4(X3) at least partially as a preferred extremal of Kähler action.
This picture is rather convincing since the choice M2(x) ⊂M4 plays also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose that X4(X3
l )

has Minkowskian signature. One can assign to each point of the M4 projection PM4(X4(X3
l )) a sub-space

M2(x) ⊂M4 and its complement E2(x), and the distributions of these planes are integrable and de�ne what
I have called Hamilton-Jacobi coordinates which can be assigned to the known extremals of Kähler with
Minkowskian signature. This decomposition allows to slice space-time surfaces by string world sheets and
their 2-D partonic duals. Also a slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to
X3
l follows under certain conditions on the induced metric of X4(X3

l ). This decomposition exists for known
extremals and has played key role in the recent developments. Physically it means that 4-surface (3-surface)
reduces e�ectively to 3-D (2-D) surface and thus holography at space-time level.

4. The weakest form of number theoretic compacti�cation [18, A5] states that light-like 3-surfacesX3 ⊂ X4(X3) ⊂
M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can be mapped to light-like 3-surfaces
X3 ⊂ X4(X3) ⊂ M4 × CP2, where X4(X3) is now preferred extremum of Kähler action. The natural guess
is that X4(X3) ⊂ M8 is a preferred extremal of Kähler action associated with Kähler form of E4 in the
decomposition M8 = M4 × E4, where M4 corresponds to hyper-quaternions. The conjecture would be that
the value of the Kähler action in M8 is same as in M4 × CP2: in fact that 2-surface would have identical
induced metric and Kähler form so that this conjecture would follow trivial. M8 − H duality would in this
sense be Kähler isometry.

If one takes M−H duality seriously, one must conclude that one can choose any partonic 2-surface in the slicing
of X4 as a representative. This means gauge invariance re�ect in the de�nition of Kähler function as U(1) gauge
transformation K → K + f + f having no e�ect on Kähler metric and Kähler form.

Although the details of this vision might change it can be defended by its ability to fuse together all great visions
about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in M4

±×CP2. The basic outcome
is that Kähler metric is expressible using the data at partonic 2-surfaces X2 ⊂ δM4

+ × CP2. The generalization
to the actual physical situation requires the replacement of X2 ⊂ δM4

+ × CP2 with unions of partonic 2-surfaces
located at light-like boundaries of CDs and sub-CDs.

2.1.3 The notion of con�guration space

From the beginning there was a problem related to the precise de�nition of the con�guration space ("world of
classical worlds" (WCW)). Should one regard CH as the space of 3-surfaces of M4×CP2 or M4

+×CP2 or perhaps
something more delicate.
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1. For a long time I believed that the basis question is "M4
+ or M4?" and that this question had been settled in

favor ofM4
+ by the fact thatM4

+ has interpretation as empty Roberson-Walker cosmology. The huge conformal
symmetries assignable to δM4

+×CP2 were interpreted as cosmological rather than laboratory symmetries. The
work with the conceptual problems related to the notions of energy and time, and with the symmetries of
quantum TGD, however led gradually to the realization that there are strong reasons for considering M4

instead of M4
+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds (CDs) de�ne
excellent candidates for the fundamental building blocks of the con�guration space or "world of classical
worlds" (WCW). The spaces CD × CP2 regarded as subsets of H de�ned the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
± × CP2 as isometries of WCW. The gigantic

symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare invariance �ts very

elegantly with the two types of super-conformal symmetries of TGD. The �rst conformal symmetry corresponds
to the light-like surfaces δM4

± × CP2 of the imbedding space representing the upper and lower boundaries of
CD. Second conformal symmetry corresponds to light-like 3-surface X3

l , which can be boundaries of X4

and light-like surfaces separating space-time regions with di�erent signatures of the induced metric. This
symmetry is identi�able as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that con�guration space (WCW) is a union of con�guration spaces associated
with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy having interpretation in
terms of measurement resolution results. It must be however emphasized that Kähler function depends on partonic
2-surfaces at both ends of space-time surface so that WCW is topologically Cartesian product of corresponding
symmetric spaces. WCW metric must therefore have parts corresponding to the partonic 2-surfaces (free part) and
also an interaction term depending on the partonic 2-surface at the opposite ends of the light-like 3-surface. The
conclusion is that geometrization reduces to that for single like of generalized Feynman diagram containing partonic
2-surfaces at its ends. Since the complications due to p-adic sectors and hierarchy of Planck constants are not
relevant for the basic construction, it reduces to a high degree to a study of a simple special case corresponding to a
line of generalized Feynman diagram. One can also deduce the free part of the metric by restricting the consideration
to partonic 2-surfaces at single end of generalized Feynman diagram.

A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holography is accepted-
can be seen as a fundamental symplectic invariant so that the values of εαβJαβ at X2 de�ne local symplectic in-
variants not subject to quantum �uctuations in the sense that they would contribute to the con�guration space
metric. Hence only induced metric corresponds to quantum �uctuating degrees of freedom at con�guration
space level and TGD is a genuine theory of gravitation at this level.

2. Con�guration space can be divided into slices for which the induced Kähler forms of CP2 and δM4
± at the

partonic 2-surfaces X2 at the light-like boundaries of CDs are �xed. The symplectic group of δM4
± × CP2

parameterizes quantum �uctuating degrees of freedom in given scale (recall the presence of hierarchy of CDs).

3. This leads to the identi�cation of the coset space structure of the sub-con�guration space associated with given
CD in terms of the generalization of coset construction [45] for super-symplectic and super Kac-Moody type
algebras (symmetries respecting light-likeness of light-like 3-surfaces). Recall that super Kac-Moody algebras
[43] and super-Virasoro algebras [42] are central also for string models. Con�guration space in quantum
�uctuating degrees of freedom for given values of zero modes can be regarded as being obtained by dividing
symplectic group with Kac-Moody group. Formally, the local coset space S2 × CP2 is in question: this was
one of the �rst ideas about con�guration space which I gave up as too naive!

4. Generalized coset construction [45] and coset space structure have very deep physical meaning since they realize
Equivalence Principle at quantum level: the identical actions of Super Virasoro generators for super-symplectic
and super Kac-Moody algebras implies that inertial and gravitational four-momenta are identical.

2.2 Constraints on the con�guration space geometry

The constraints on the WCW result both from the in�nite dimension of the con�guration space and from physically
motivated symmetry requirements. There are three basic physical requirements on the con�guration space geometry:
namely four-dimensional GCI in strong form, Kähler property and the decomposition of con�guration space into
a union ∪iG/Hi of symmetric spaces G/Hi, each coset space allowing G-invariant metric such that G is subgroup
of some 'universal group' having natural action on 3-surfaces. Together with the in�nite dimensionality of the
con�guration space these requirements pose extremely strong constraints on the con�guration space geometry. In
the following we shall consider these requirements in more detail.

2.2.1 Di�4 invariance and Di�4 degeneracy

Di�4 plays fundamental role as the gauge group of General Relativity. In string models Diff 2 invariance (Diff 2

acts on the orbit of the string) plays central role in making possible the elimination of the time like and longitudinal
vibrational degrees of freedom of string. Also in the present case the elimination of the tachyons (time like oscillatory
modes of 3-surface) is a physical necessity and Di�4 invariance provides an obvious manner to do the job.

In the standard path l integral formulation the realization of Di�4 invariance is an easy task at the formal level.
The problem is however that path integral over four-surfaces is plagued by divergences and doesn't make sense.
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In the present case the con�guration space consists of 3-surfaces and only Diff 3 emerges automatically as the
group of re-parameterizations of 3-surface. Obviously one should somehow de�ne the action of Di�4 in the space
of 3-surfaces. Whatever the action of Di�4 is it must leave the con�guration space metric invariant. Furthermore,
the elimination of tachyons is expected to be possible only provided the time like deformations of the 3-surface
correspond to zero norm vector �elds of the con�guration space so that 3-surface and its Di�4 image have zero
distance. The conclusion is that con�guration space metric should be both Di�4 invariant and Di�4 degenerate.

The problem is how to de�ne the action of Di�4 in C(H). Obviously the only manner to achieve Di�4 invariance
is to require that the very de�nition of the con�guration space metric somehow associates a unique space time
surface to a given 3-surface for Di�4 to act on. The obvious physical interpretation of this space time surface is as
"classical space time" so that "Classical Physics" would be contained in con�guration space geometry. In fact, this
space-time surface is analogous to Bohr orbit so that semiclassical quantization rules become an exact part of the
quantum theory. It is this requirement, which has turned out to be decisive concerning the understanding of the
WCW geometry.

2.2.2 Decomposition of the con�guration space into a union of symmetric spaces G/H

The extremely beautiful theory of �nite-dimensional symmetric spaces constructed by Elie Cartan suggests that
con�guration space should possess decomposition into a union of coset spaces CH = ∪iG/Hi such that the metric
inside each coset spaceG/Hi is left invariant under the in�nite dimensional isometry groupG. The metric equivalence
of surfaces inside each coset space G/Hi does not mean that 3-surfaces inside G/Hi are physically equivalent. The
reason is that the vacuum functional is exponent of Kähler action which is not isometry invariant so that the 3-
surfaces, which correspond to maxima of Kähler function for a given orbit, are in a preferred position physically.
For instance, one can imagine of calculating functional integral around this maximum perturbatively. Symmetric
space property [26] actually allows also much more powerful non-perturbative approach based on harmonic analysis
[27] in symmetric spaces [10]. The sum of over i means actually integration over the zero modes of the metric (zero
modes correspond to coordinates not appearing as coordinate di�erentials in the metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions. Denoting the
decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its complement t by g = h ⊕ t,
one has

[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

This decomposition turn out to play crucial role in guaranteing that G indeed acts as isometries and that the metric
is Ricci �at.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of identifying G.
The point is that any 3-surface X3 is Diff 4 equivalent to the intersection of X4(X3) with the light cone boundary.
This in turn implies that 3-surfaces in the space δH = δM4

+ × CP2 should be all what is needed to construct
con�guration space geometry. The group G can be identi�ed as some subgroup of di�eomorphisms of δH and
Hi contains that subgroup of G, which acts as di�eomorphisms of the 3-surface X3. Since G preserves topology,
con�guration space must decompose into union ∪iG/Hi, where i labels 3-topologies and various zero modes of the
metric. For instance, the elements of the Lie-algebra of G invariant under con�guration space complexi�cation
correspond to zero modes.

The reduction to the light cone boundary, identi�able as the moment of big bang, looks perhaps odd at �rst.
In fact, it turns out that the classical non-determinism of Kähler action does not allow the complete reduction to
the light cone boundary: physically this is a highly desirable implication but means a considerable mathematical
challenge.

2.2.3 Kähler property

Kähler property implies that the tangent space of the con�guration space allows complexi�cation and that there
exists a covariantly constant two-form Jkl, which can be regarded as a representation of the imaginary unit in the
tangent space of the con�guration space:

J r
k Jrl = −Gkl . (2.1)

There are several physical and mathematical reasons suggesting that con�guration space metric should possess
Kähler property in some generalized sense.

1. The deepest motivation comes from the need to geometrize hermitian conjugation which is basic mathematical
operation of quantum theory.

2. Kähler property turns out to be a necessary prerequisite for de�ning divergence free con�guration space
integration. We will leave the demonstration of this fact later although the argument as such is completely
general.

3. Kähler property very probably implies an in�nite-dimensional isometry group. The study of the loop groups
Map(S1, G) [46] shows that loop group allows only single Kähler metric with well de�ned Riemann connection
and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3, H). The de�ning formula for
the connection is given by the expression
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2(∇XY, Z) = X(Y, Z) + Y (Z,X)− Z(X, Y )

+ ([X, Y ], Z) + ([Z,X], Y )− ([Y, Z], X) (2.2)

X, Y, Z are smooth vector �elds in Map(X3, G). This formula de�nes ∇XY uniquely provided the tangent
space of Map is complete with respect to Riemann metric. In the �nite-dimensional case completeness means
that the inverse of the covariant metric tensor exists so that one can solve the components of connection from
the conditions stating the covariant constancy of the metric. In the case of the loop spaces with Kähler metric
this is however not the case.

Now the symmetry comes into the game: if X, Y, Z are left (local gauge) invariant vector �elds de�ned by the
Lie-algebra of local G then the �rst three terms drop away since the scalar products of left invariant vector
�elds are constants. The expression for the covariant derivative is given by

∇XY = (AdXY − Ad∗XY − Ad∗YX)/2 (2.3)

where Ad∗X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed's argument does not force the isometry group of the
con�guration space to be Map(X3,M4 × SU(3))! Any symmetry group, whose Lie algebra is complete
with respect to the con�guration space metric ( in the sense that any tangent space vector is expressible as
superposition of isometry generators modulo a zero norm tangent vector) is an acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to the requirement
of left invariance as a mathematical consistency condition and we expect that dimension three makes no
exception in this respect. In 3-dimensional case the degeneracy of the metric turns out to be even larger
than in 1-dimensional case due to the four-dimensional Di� degeneracy. So we expect that the metric ought
to possess some in�nite-dimensional isometry group and that the above formula generalizes also to the 3-
dimensional case and to the case of local coset space. Note that in M4 degrees of freedom Map(X3,M4)
invariance would imply the �atness of the metric in M4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be underestimated. For ex-
ample, one natural looking manner to construct physical theory would be based on the idea that con�guration
space geometry is dynamical and this approach is followed in the attempts to construct string theories [56].
Various physical considerations (in particular the need to obtain oscillator operator algebra) seem to imply
that con�guration space geometry is necessarily Kähler. The above result however states that con�guration
space Kähler geometry cannot be dynamical quantity and is dictated solely by the requirement of internal
consistency. This result is extremely nice since it has been already found that the de�nition of the con�gu-
ration space metric must somehow associate a unique classical space time and "classical physics" to a given
3-surface: uniqueness of the geometry implies the uniqueness of the "classical physics".

4. The choice of the imbedding space becomes highly unique. In fact, the requirement that con�guration space
is not only symmetric space but also (contact) Kähler manifold inheriting its (degenerate) Kähler structure
from the imbedding space suggests that spaces, which are products of four-dimensional Minkowski space with
complex projective spaces CPn, are perhaps the only possible candidates for H. The reason for the unique
position of the four-dimensional Minkowski space turns out to be that the boundary of the light cone of D-
dimensional Minkowski space is metrically a sphere SD−2 despite its topological dimension D − 1: for D = 4
one obtains two-sphere allowing Kähler structure and in�nite parameter group of conformal symmetries!

5. It seems possible to understand the basic mathematical structures appearing in string model in terms of the
Kähler geometry rather nicely.

(a) The projective representations of the in�nite-dimensional isometry group (not necessarily Map!) cor-
respond to the ordinary representations of the corresponding centrally extended group [44]. The rep-
resentations of Kac Moody group indeed play central role in string models [53, 54] and con�guration
space approach would explain their occurrence, not as a result of some quantization procedure, but as a
consequence of symmetry of the underlying geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended Lie-algebra
generators of the isometry group acting on spinor �elds of the con�guration space.

(c) The "fermionic" �elds ( Ramond �elds, [53, 54]) should correspond to gamma matrices of the con�guration
space. Fermionic oscillator operators would correspond simply to contractions of isometry generators jkA
with complexi�ed gamma matrices of con�guration space

Γ±
A = jkAΓ±

k

Γ±
k = (Γk ± JklΓl)/

√
2 (2.4)

(Jkl is the Kähler form of the con�guration space) and would create various spin excitations of the
con�guration space spinor �eld. Γ±

k are the complexi�ed gamma matrices, complexi�cation made possible
by the Kähler structure of the con�guration space.
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This suggests that some generalization of the so called Super Kac Moody algebra of string models [53, 54] should
be regarded as a spectrum generating algebra for the solutions of �eld equations in con�guration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy counter argument
against the whole idea. Kähler structure necessitates complex structure in the tangent space of the con�guration
space. In CP2 degrees of freedom no obvious problems of principle are expected: con�guration space should inherit
in some sense the complex structure of CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious obstacle for
complexi�cation: somehow one should get rid of two degrees of freedom so that only two Euclidian degrees of
freedom remain. An analogous di�culty is encountered in quantum �eld theories: only two of the four possible
polarizations of gauge boson correspond to physical degrees of freedom: mathematically the wrong polarizations
correspond to zero norm states and transverse states span a complex Hilbert space with Euclidian metric. Also in
string model analogous situation occurs: in case of D-dimensional Minkowski space only D − 2 transversal degrees
of freedom are physical. The solution to the problem seems therefore obvious: con�guration space metric must be
degenerate so that each vibrational mode spans e�ectively a 2-dimensional Euclidian plane allowing complexi�cation.

We shall �nd that the de�nition of Kähler function to be proposed indeed provides a solution to this problem
and also to the problems listed before.

1. The de�nition of the metric doesn't di�erentiate between 1- and N-particle sectors, avoids spin statistics
di�culty and has the physically appealing property that one can associate to each 3-surface a unique classical
space time: classical physics is described by the geometry of the con�guration space and d the geometry of
the con�guration space is determined uniquely by the requirement of mathematical consistency.

2. Complexi�cation is possible only provided the dimension of the Minkowski space equals to four and is due to
the e�ective 3-dimensionality of light-cone boundary.

3. It is possible to identify a unique candidate for the necessary in�nite-dimensional isometry group G. G is sub-
group of the di�eomorphism group of δM4

+×CP2. Essential role is played by the fact that the boundary of the
four-dimensional light cone, which, despite being topologically 3-dimensional, is metrically two-dimensional
Euclidian sphere, and therefore allows in�nite-parameter groups of isometries as well as conformal and sym-
plectic symmetries and also Kähler structure unlike the higher-dimensional light cone boundaries. Therefore
con�guration space metric is Kähler only in the case of four-dimensional Minkowski space and allows sym-
plectic U(1) central extension without con�ict with the no-go theorems about higher dimensional central
extensions.

The study of the vacuum degeneracy of Kähler function de�ned by Kähler action forces to conclude that the
isometry group must consist of the symplectic transformations of δH = δM4

+ × CP2. The corresponding Lie
algebra can be regarded as a loop algebra associated with the symplectic group of S2 × CP2, where S2 is
rM = constant sphere of light cone boundary. Thus the �nite-dimensional group G de�ning loop group in
case of string models extends to an in�nite-dimensional group in TGD context. This group has a monstrous
size. The radial Virasoro localized with respect to S2×CP2 de�nes naturally complexi�cation for both G and
H. The general form of the Kähler metric deduced on basis of this symmetry has same qualitative properties
as that deduced from Kähler function identi�ed as preferred extremal of Kähler action. Also the zero modes,
among them isometry invariants, can be identi�ed.

4. The construction of the con�guration space spinor structure is based on the identi�cation of the con�guration
space gamma matrices as linear superpositions of the oscillator operators associated with the second quantized
induced spinor �elds. The extension of the symplectic invariance to super symplectic invariance �xes the
anti-commutation relations of the induced spinor �elds, and con�guration space gamma matrices correspond
directly to the super generators. Physics as number theory vision suggests strongly that con�guration space
geometry exists for 8-dimensional imbedding space only and that the choice M4

+ × CP2 for the imbedding
space is the only possible one.

3 Identi�cation of the Kähler function

There are three approaches to the construction of the WCW geometry: a direct physics based guess of the Kähler
function, a group theoretic approach based on the hypothesis that CH can be regarded as a union of symmetric
spaces, and the approach based on the construction of WCW spinor structure �rst by second quantization of induced
spinor �elds. Here the �rst approach is discussed.

3.1 De�nition of Kähler function

3.1.1 Kähler metric in terms of Kähler function

Quite generally, Kähler function K de�nes Kähler metric in complex coordinates via the following formula

Jkl = igkl = i∂k∂lK . (3.1)

Kähler function is de�ned only modulo a real part of holomorphic function so that one has the gauge symmetry

K → K + f + f . (3.2)
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Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold: X4 ⊃ X3. The
4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty boundary δX3 then the boundary of
X3 belongs to the boundary of X4: δX3 ⊂ δX4.

3.1.2 Induced Kähler form and its physical interpretation

Induced Kähler form de�nes a Maxwell �eld and it is important to characterize precisely its relationship to the
gauge �elds as they are de�ned in gauge theories. Kähler form J is related to the corresponding Maxwell �eld F
via the formula

J = xF , x =
gK
~

. (3.3)

Similar relationship holds true also for the other induced gauge �elds. The inverse proportionality of J to ~ does
not matter in the ordinary gauge theory context where one routinely choses units by putting ~ = 1 but becomes
very important when one considers a hierachy of Planck constants [15].

Unless one has J = (gK/~0), where ~0 corresponds to the ordinary value of Planck constant, αK = g2
K/4π~

together the large Planck constant means weaker interactions and convergence of the functional integral de�ned by
the exponent of Kähler function and one can argue that the convergence of the functional integral is what forces the
hierarchy of Planck constants. This is in accordance with the vision that Mother Nature likes theoreticians and takes
care that the perturbation theory works by making a phase transition increasing the value of the Planck constant
in the situation when perturbation theory fails. This leads to a replacement of the M4 (or more precisely, causal
diamond CD) and CP2 factors of the imbedding space (CD × CP2) with its r = ~/~0-fold singular covering (one
can consider also singular factor spaces). If the components of the space-time surfaces at the sheets of the covering
are identical, one can interpret r-fold value of Kähler action as a sum of r identical contributions from the sheets
of the covering with ordinary value of Planck constant and forget the presence of the covering. Physical states are
however di�erent even in the case that one assumes that sheets carry identical quantum states and anyonic phase
could correspond to this kind of phase [22].

3.1.3 Kähler action

One can associate to Kähler form Maxwell action and also Chern-Simons anomaly term proportional to
∫
X4 J ∧ J

in well known manner. Chern Simons term is purely topological term and well de�ned for orientable 4-manifolds,
only. Since there is no deep reason for excluding non-orientable space-time surfaces it seems reasonable to drop
Chern Simons term from consideration. Therefore Kähler action SK(X4) can be de�ned as

SK(X4) = k1

∫
X4;X3⊂X4

J ∧ (∗J) . (3.4)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is de�ned in such a
manner that the action density is negative for the Euclidian signature of the induced metric and such that for a
Minkowskian signature of the induced metric Kähler electric �eld gives a negative contribution to the action density.

The notational convention

k1 ≡
1

16παK
, (3.5)

where αK will be referred as Kähler coupling strength will be used in the sequel. If the preferred extremals
minimize/maximize [18, A5] the absolute value of the action in each region where action density has a de�nite sign,
the value of αK can depend on space-time sheet.

3.1.4 Kähler function

One can de�ne the Kähler function in the following manner. Consider �rst the case H = M4
+ × CP2 and neglect

for a moment the non-determinism of Kähler action. Let X3 be a 3-surface at the light-cone boundary δM4
+×CP2.

De�ne the value K(X3) of Kähler function K as the value of the Kähler action for some preferred extremal in the
set of four-surfaces containing X3 as a sub-manifold:

K(X3) = K(X4
pref ) , X4

pref ⊂ {X4|X3 ⊂ X4} . (3.6)

The most plausible identi�cation of preferred extremals is in terms of quantum criticality in the sense that the
preferred extremals allow an in�nite number of deformations for which the second variation of Kähler action vanishes.
Combined with the weak form of electric-magnetic duality forcing appearence of Kähler coupling strength in the
boundary conditions at partonic 2-surfaces this condition might be enough to �x preferred extremals completely.
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3.2 What are the values of the Kähler coupling strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the Kähler function,
the dynamics depends on the normalization of the Kähler function. Since the Theory of Everything should be
unique it would be highly desirable to �nd arguments �xing the normalization or equivalently the possible values
of the Kähler coupling strength αK . Also a discrete spectrum of values is acceptable.

The quantization of Kähler form could result in the following manner. It will be found that Abelian extension
of the isometry group results by coupling spinors of the con�guration space to a multiple of Kähler potential. This
means that Kähler potential plays role of gauge connection so that Kähler form must be integer valued by Dirac
quantization condition for magnetic charge. So, if Kähler form is co-homologically nontrivial it is quantized.

Unfortunately, the exact de�nition of renormalization group concept is not at all obvious. There is however a
much more general but more or less equivalent manner to formulate the condition �xing the value of αK . Vacuum
functional exp(K) is analogous to the exponent exp(−H/T ) appearing in the de�nition of the partition func-
tion of a statistical system and S-matrix elements and other interesting physical quantities are integrals of type
〈O〉 =

∫
exp(K)O

√
GdV and therefore analogous to the thermal averages of various observables. αK is completely

analogous to temperature. The critical points of a statistical system correspond to critical temperatures Tc for which
the partition function is nonanalytic function of T − Tc and according RGE hypothesis critical systems correspond
to �xed points of renormalization group evolution. Therefore, a mathematically more precise manner to �x the
value of αK is to require that some integrals of type 〈O〉 (not necessary S-matrix elements) become nonanalytic at
1/αK − 1/αcK .

This analogy suggests also a physical motivation for the unique value or value spectrum of αK . Below the
critical temperature critical systems su�er something analogous to spontaneous magnetization. At the critical point
critical systems are characterized by long range correlations and arbitrarily large volumes of magnetized and non-
magnetized phases are present. Spontaneous magnetization might correspond to the generation of Kähler magnetic
�elds: the most probable 3-surfaces are Kähler magnetized for subcritical values of αK . At the critical values of αK
the most probable 3-surfaces contain regions dominated by either Kähler electric and or Kähler magnetic �elds: by
the compactness of CP2 these regions have in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and with outer
boundaries) are possible and they have su�ered topological condensation on each other. Therefore the critical value
of αK allows the richest possible topological structure for the most probable 3-space. In fact, this hierarchical
structure is in accordance with the basic ideas about renormalization group invariance. This hypothesis has highly
nontrivial consequences even at the level of ordinary condensed matter physics.

Renormalization group invariance is closely related with criticality. The self duality of the Kähler form and Weyl
tensor of CP2 indeed suggest RG invariance. The point is that in N = 4 super-symmetric �eld theories duality
transformation relates the strong coupling limit for ordinary particles with the weak coupling limit for magnetic
monopoles and vice versa. If the theory is self-dual these limits must be identical so that action and coupling
strength must be RG invariant quantities. This form of self-duality cannot hold true in TGD. The weak form
of self-duality discussed in [7, A2] roughly states that for the partonic 2-surface the induce Kähler electric �eld
is proportional to the Kähler magnetic �eld strength. The proportionality constant is essentially Kähler coupling
strength. The simplest hypothesis is that Kähler coupling strength has single universal valiue and the weak form of
self-duality �xes it. The proportionality αK = g2

K/4π~ and the proposed quantization of Planck constant requiring
a generalization of the imbedding space imply that Kähler coupling strength varies but is constant at a given page
of the "Big Book" de�ned by the generalized imbedding space [15] .

3.3 What preferred extremal property means?

The requirement that the 4-surface having given 3-surface as its sub-manifold is absolute minimum of the Kähler
action is the most obvious guess for the principle selecting the preferred extremals and has been taken as a working
hypothesis for about one and half decades. Quantum criticality of Quantum TGD should have however led to the
idea that preferred extremals are critical in the sense that space-time surface allows deformations for which second
variation of Kähler action vanishes so that the corresponding Noether currents are conserved.

Further insights emerged through the realization that Noether currents assignable to the modi�ed Dirac equation
are conserved only if the �rst variation of the modi�ed Dirac operator DK de�ned by Kähler action vanishes. This
is equivalent with the vanishing of the second variation of Kähler action -at least for the variations corresponding
to dynamical symmetries having interpretation as dynamical degrees of freedom which are below measurement
resolution and therefore e�ectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum criticality

so that the basic vision about quantum dynamics of quantum TGD would lead directly to a precise identi�cation
of the preferred extremals.

The vanishing of second variations of preferred extremals -at least for deformations representing dynamical sym-
metries, suggests a generalization of catastrophe theory of Thom, where the rank of the matrix de�ned by the second
derivatives of potential function de�nes a hierarchy of criticalities with the tip of bifurcation set of the catastrophe
representing the complete vanishing of this matrix. In the recent case this theory would be generalized to in�nite-
dimensional context. There are three kind of variables now but quantum classical correspondence (holography)
allows to reduce the types of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like boundaries of causal
diamonds CD would represent behavior variables. At least the vacuum extremals of Kähler action would
represent extremals for which the second variation vanishes identically (the "tip" of the multi-furcation set).
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2. The zero modes of Kähler function would de�ne the control variables interpreted as classical degrees of freedom
necessary in quantum measurement theory. By e�ective 2-dimensionality (or holography or quantum classical
correspondence) meaning that the con�guration space metric is determined by the data coming from partonic
2-surfaces X2 at intersections of X3

l with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of
CDs in rough sense correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexi�ed and thus cannot contribute to the Kähler metric of
con�guration space represent zero modes. Fixing the interior of the 3-surface would mean �xing of control
variables. Extremum property would �x the 4-surface and behavior variables if boundary conditions are �xed
to su�cient degree.

3. The complex variables characterizing X2 would represent third kind of variables identi�ed as quantum �uc-
tuating degrees of freedom contributing to the con�guration space metric. Quantum classical correspondence
requires 1-1 correspondence between zero modes and these variables. This would be essentially holography
stating that the 2-D "causal boundary" X2 of X3(X2) codes for the interior. Preferred extremal property
identi�ed as criticality condition would realize the holography by �xing the values of zero modes once X2

is known and give rise to the holographic correspondence X2 → X3(X2). The values of behavior variables
determined by extremization would �x then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quantum criticality,
quantum classical correspondence, holography, and preferred extremal property would all represent more or
less the same thing. One must of course be very cautious since the boundary conditions at X3

l involve normal
derivative and might bring in delicacies forcing to modify the simplest heuristic picture.

One must be very cautious with what one means with the preferred extremal property and criticality.

1. Does one assign criticality with the partonic 2-surfaces at the ends of CDs? Does one restrict it with the
throats for which light-like 3-surface has also degenerate induced 4-metric? Or does one assume stronger form
of holography requiring a slicing of space-time surface by partonic 2-surfaces and string world sheets and
assign criticality to all partonic 2-surfaces. This kind of slicing is suggested by the study of the extremals [16],
required by the number theoretic vision (M8 −H duality [19, A6]), and also by the purely physical condition
that a stringy realization of GCI is possible.

2. What is the exact meaning of the preferred extremal property? The assumption that the variations of
Kähler action leaving 3-surfaces at the ends of CDs invariant would not be consistent with the e�ective 2-
dimensionality. The assumption that the critical deformations leave invariant only partonic 2-surfaces would
imply genuine 2-dimensionality. Should one assume that critical deformations leave invariant partonic 2-
surface and 3-D tangent space in the direction of space-like 3-surface or light-like 3-surface but not both. This
would be consistent with e�ective 3-dimensionality and would explain why Kac-Moody symmetries associated
with the light-like 3-surfaces act as gauge symmetries. This is also essential for the realization of Poincare
invariance since the quantization of the light-cone proper time distance between CDs implies that in�nitesimal
Poincare transformations lead out of CD unless compensated by Kac-Moody type transformations acting like
gauge transformations. In the similar manner it would explain why symplectic transformations of δCD act
like gauge transformations.

3. Could one pose the criticality condition for all partonic 2-surfaces in the slicing or only for the throats of
light-like 3-surfaces? This hypothesis looks natural but is not necessary. Light-like throats are very singular
objects criticality might apply only to their variations only in the limiting sense and it might be necesary to
assume criticality for all partonic 2-surfaces.

3.4 Why non-local Kähler function?

Kähler function is nonlocal functional of 3-surface. Non-locality of the Kähler function seems to be at odds with
basic assumptions of local quantum �eld theories. Why this rather radical departure from the basic assumptions of
local quantum �eld theory? The answer is shortly given: con�guration space integration appears in the de�nition
of the inner product for WCW spinor �elds and this inner product must be free from perturbative divergences.
Consider now the argument more closely.

In the case of �nite-dimensional symmetric space with Kähler structure the representations of the isometry
group necessitate the modi�cation of the integration measure de�ning the inner product so that the integration
measure becomes proportional to the exponent exp(K) of the Kähler function [47]. The generalization to in�nite-
dimensional case is obvious. Also the requirement of Kac-Moody symmetry leads to the presence of this kind
of vacuum functional as will be found later. The exponent is in fact uniquely �xed by �niteness requirement.
Con�guration space integral is of the following form

∫
S̄1exp(K)S1

√
gdX . (3.7)

One can develop perturbation theory using local complex coordinates around a given 3-surface in the following
manner. The (1, 1)-part of the second variation of the Kähler function de�nes the metric and therefore propagagator
as contravariant metric and the remaining (2, 0)− and (0, 2)-parts of the second variation are treated perturbatively.
The most natural choice for the 3-surface are obviously the 3-surfaces, which correspond to extrema of the Kähler
function.

When perturbation theory is developed around the 3-surface one obtains two ill-de�ned determinants.
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1. The Gaussian determinant coming from the exponent, which is just the inverse square root for the matrix
de�ned by the metric de�ning (1, 1)-part of the second variation of the Kähler function in local coordinates.

2. The metric determinant. The matrix representing covariant metric is however same as the matrix appearing in
Gaussian determinant by the de�ning property of the Kähler metric: in local complex coordinates the matrix
de�ned by second derivatives is of type (1, 1). Therefore these two ill de�ned determinants (recall the presence
of Di� degeneracy) cancel each other exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one encounters the
standard perturbative divergences. Since most local actions (Chern-Simons term is perhaps an exception [52]) for
induced geometric quantities are extremely nonlinear there is no hope of obtaining a �nite theory. For nonlocal
action the situation is however completely di�erent. There are no local interaction vertices and therefore no products
of delta functions in perturbation theory.

A further nice feature of the perturbation theory is that the propagator for small deformations is nothing but
the contravariant metric. Also the various vertices of the theory are closely related to the metric of the con�guration
space since they are determined by the Kähler function so that perturbation theory would have a beautiful geometric
interpretation. Furthermore, since four-dimensional Di� degeneracy implies that the propagator doesn't couple to
un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern Simons term
from vacuum functional de�ned as imaginary exponent of exp(ik2

∫
X4 J ∧ J). The term is not well de�ned for

non-orientable space-time surfaces and one must assume that k2 vanishes for these surfaces. The presence of this
term might provide �rst principle explanation for CP breaking. If k2 is integer multiple of 1/(8π) Chern Simons
term gives trivial contribution for closed space-time surfaces since instanton number is in question. By adding a
suitable boundary term of form exp(ik3

∫
δX3 J ∧ A) it is possible to guarantee that the exponent is integer valued

for 4-surfaces with boundary, too.
There are two arguments suggesting that local Chern Simons term would not introduce divergences. First,

3-dimensional Chern Simons term for ordinary Abelian gauge �eld is known to de�ne a divergence free �eld theory
[52]. The term doesn't depend at all on the induced metric and therefore contains no dimensional parameters (CP2

radius) and its expansion in terms of CP2 coordinate variables is of the form allowed by renormalizable �eld theory
in the sense that only quartic terms appear. This is seen by noticing that there always exist symplectic coordinates,
where the expression of the Kähler potential is of the form

A =
∑
k

PkdQ
k . (3.8)

The expression for Chern-Simons term in these coordinates is given by

k2

∫
X3

∑
k,l

PldPk ∧ dQk ∧ dQl , (3.9)

and clearly quartic CP2 coordinates. A further nice property of the Chern Simons term is that this term is invariant
under symplectic transformations of CP2, which are realized as U(1) gauge transformation for the Kähler potential.

4 Some properties of Kähler action

In this section some properties of Kähler action and Kähler function are discussed in light of experienced gained
during about 15 years after the introduction of the notion.

4.1 Vacuum degeneracy and some of its implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kähler action. Although it is not associated
with the preferred extremals of Kähler action, there are good reasons to expect that it has deep consequences
concerning the structure of the theory.

4.1.1 Vacuum degeneracy of the Kähler action

The basic reason for choosing Kähler action is its enormous vacuum degeneracy, which makes long range interactions
possible (the well known problem of the membrane theories is the absence of massless particles [55]). The Kähler
form of CP2 de�nes symplectic structure and any 4-surface for which CP2 projection is so called Lagrangian sub-
manifold [31] (at most two dimensional manifold with vanishing induced Kähler form), is vacuum extremal due
to the vanishing of the induced Kähler form. More explicitly, in the local coordinates, where the vector potential
A associated with the Kähler form reads as A =

∑
k PkdQ

k. Lagrangian manifolds are expressible locally in the
following form

Pk = ∂kf(Qi) . (4.1)

where the function f is arbitrary. Notice that for the general YM action surfaces with one-dimensional CP2

projection are vacuum extremals but for Kähler action one obtains additional degeneracy.
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There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle physics. The so
called CP2 type vacuum extremals are warped imbeddings X4 of CP2 to H such that Minkowski coordinates are
functions of a single CP2 coordinate, and the one-dimensional projection of X4 is random light like curve. These
extremals have a non-vanishing action but vanishing Poincare charges. Their small deformations are identi�ed
as space-time counterparts of fermions and their super partners. Wormhole throats identi�ed as pieces of these
extremals are identi�ed as bosons and their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string models and this actually
led to the eventualo realization that conformal invariance [40] is a basic symmetry of TGD and that WCW can be
regarded as a union of symmetric spaces with isometry groups having identi�cation as symplectic and Kac-Moody
type groups assignable to the partonic 2-surfaces.

4.1.2 Approximate symplectic invariance

Vacuum extremals have di�eomorphisms of M4
+ and M4

+ local symplectic transformations as symmetries. For non-
vacuum extremals these symmetries leave induced Kähler form invariant and only induced metric breaks these
symmetries. Symplectic transformations of CP2 act on the Maxwell �eld de�ned by the induced Kähler form in the
same manner as ordinary U(1) gauge symmetries. They are however not gauge symmetries since gauge invariance is
still present. In fact, the construction of the con�guration space geometry relies on the assumption that symplectic
transformations of δM4

+ × CP2 which in�nitesimally correspond to combinations of M4
+ local CP2 symplectic and

CP2-local M4
+ symplectic transformations act as isometries of the con�guration space. In zero energy ontology

these transformations act simultanoeusly on all partonic 2-surfaces characterizing the space-time sheet representing
a generalized Feynman diagram inside CD.

The fact that CP2 symplectic transformations do not act as genuine gauge transformations means that U(1)
gauge invariance is e�ectively broken. This has non-trivial implications. The �eld equations allow purely geometric
vacuum 4-currents not possible in Maxwell's electrodynamics [16]. For the known extremals (massless extremals)
they are light-like and a possible interpretation is in terms of Bose-Einstein condensates of collinear massless bosons.

4.1.3 Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to M4
+ × Y 2, Y 2 any Lagrangian sub-manifold of CP2 are

vacua irrespective of the topology and that symplectic transformations of CP2 generate new surfaces Y 2. If preferred
extremals are obtained as small deformations of vacuum extremals (for which the criticality is maximal), one expects
therefore enormous ground state degeneracy, which could be seen as 4-dimensional counterpart of the spin glass
degeneracy. This degeneracy corresponds to the hypothesis that con�guration space is a union of symmetric spaces
labeled by zero modes which do not appear at the line-element of the con�guration space metric.

Zero modes de�ne what might be called the counterpart of spin glass energy landscape and the maxima Kähler
function as a function of zero modes de�ne a discrete set which might be called reduced con�guration space. Spin
glass degeneracy turns out to be crucial element for understanding how macro-temporal quantum coherence emerges
in TGD framework. One of the basic ideas about p-adicization is that the maxima of Kähler function de�ne the
TGD counterpart of spin glass energy landscape [17, 20]. The hierarchy of discretizations of the symmetric spaces
corresponding to a hierarchy of measurement resolutions [10] could allow an identi�cation in terms of a hierarchy
spin glass energy landscapes so that the algebraic points of the WCW would correspond to the maxima of Kähler
function. The hierarchical structure would be due to the failure of strict non-determinism of Kähler action allowing
in zero energy ontology to add endlessly details to the space-time sheets representing zero energy states in shorter
scale.

4.1.4 Generalized quantum gravitational holography

The original naive belief was that the construction of the con�guration space geometry reduces to δH = δM4
+×CP2.

An analogous idea in string model context became later known as quantum gravitational holography. The basic
implication of the vacuum degeneracy is classical non-determinism, which is expected to re�ect itself as the properties
of the Kähler function and con�guration space geometry. Obviously classical non-determinism challenges the notion
of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the degeneracy and save
quantum gravitational holography in its simplest form. This would mean that one just replaces space-like 3-surfaces
with "association sequences" consisting of sequences of space-like 3-surfaces with time like separations as causal
determinants. This would mean that the absolute minima of Kähler function would become degenerate: same space-
like 3-surface at δH would correspond to several association sequences with the same value of Kähler function.

The life turned out to be more complex than this. CP2 type extremals have Euclidian signature of the induced
metric and therefore CP2 type extremals glued to space-time sheet with Minkowskian signature of the induced metric
are surrounded by light like surfaces X3

l , which might be called elementary particle horizons. The non-determinism
of the CP2 type extremals suggests strongly that also elementary particle horizons behave non-deterministically
and must be regarded as causal determinants having time like projection in M4

+. Pieces of CP2 type extremals are
good candidates for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also
surrounded by an elementary particle horizons and non-determinism is also now present. That this non-determinism
would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of CDs seems to provide the most plausible treatment of the
non-determinism and has indeed led to a breakthrough in the construction and understanding of quantum TGD. At
the level of generalized Feynman diagrams sub-CDs containing zero energy states represent a hierarchy of radiative
corrections so that the classical determinism is direct correlate for the quantum non-determinism. Determinism

ISSN: 2153-8301

Prespacetime Journal
Published by QuantumDream, Inc.

www.prespacetime.com



Prespacetime Journal July 2010 Vol. 1 Issue 4 Page 543 -564
Pitkänen, M. Physics as In�nite-dimensional Geometry I: Identi�cation of the Con�guration Space Kähler

Function 556

makes sense only when one has speci�ed the length scale of measurement resolution. One can always add a CD
containing a vacuum extremal to get a new zero energy state and a preferred extremal containing more details.

4.1.5 Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must for several reasons.
Quantum classical correspondence, which has become a basic guide line in the development of TGD, states that
all quantum phenomena have classical space-time correlates. This is not new as far as properties of quantum
states are considered. What is new that also quantum jumps and quantum jump sequences which de�ne conscious
existence in TGD Universe, should have classical space-time correlates: somewhat like written language is correlate
for the contents of consciousness of the writer. Classical non-determinism indeed makes this possible. Classical non-
determinism makes also possible the realization of statistical ensembles as ensembles formed by strictly deterministic
pieces of the space-time sheet so that even thermodynamics has space-time representations. Space-time surface can
thus be seen as symbolic representations for the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum gravitational
holography would work in the most strict sense, time would be lost also in TGD since all relevant information about
quantum states would be determined by the moment of big bang. More precisely, geometro-temporal localization
for the contents of conscious experience would not be possible. Classical non-determinism together with quantum-
classical correspondence however suggests that it is possible to have quantum jumps in which non-determinism is
concentrated in space-time region so that also conscious experience contains information about this region only.

4.2 Four-dimensional General Coordinate Invariance

The proposed de�nition of the Kähler function is consistent with GCI and implies also 4-dimensional Di� degeneracy
of the Kähler metric. Zero energy ontology inspires strengthening of the GCI in the sense that space-like 3-surfaces
at the boundaries of CD are physically equivalent with the light-like 3-surfaces connecting the ends. This imples
that basic geometric objects are partonic 2-surfaces at the boundaries of CDs identi�ed as the intersections of these
two kinds of surfaces. Besides this the distribution of 4-D tangent planes at partonic 2-surfaces would code for
physics so that one would have only e�ective 2-dimensionality. The failure of the non-determinism of Kähler action
in the standard sense of the word a�ects the situation also and one must allow a fractal hierarchy of CDs inside
CDs having interpretation in terms of radiative corrections.

4.2.1 Resolution of tachyon di�culty and absence of Di� anomalies

In TGD as in string models the tachyon di�culty is potentially present: unless the time like vibrational excitations
possess zero norm they contribute tachyonic term to the mass squared operator of Super Kac Moody algebra. This
di�culty is familiar already from string models [53, 54].

The degeneracy of the metric with respect to the time like vibrational excitations guarantees that time like
excitations do not contribute to the mass squared operator so that mass spectrum is tachyon free. It also implies
the decoupling of the tachyons from physical states: the propagator of the theory corresponds essentially to the
inverse of the Kähler metric and therefore decouples from time like vibrational excitations. The experience with
string model suggests that if metric is degenerate with respect to di�eomorphisms of X4(X3) there are indeed good
hopes that time like excitations possess vanishing norm with respect to con�guration space metric.

The four-dimensional Di� invariance of the Kähler function implies that Di� invariance is guaranteed in the
strong sense since the scalar product of two Di� vector �elds given by the matrix associated with (1, 1) part of the
second variation of the Kähler action vanishes identically. This property gives hopes of obtaining theory, which is
free from Di� anomalies: in fact loop space metric is not Di� degenerate and this might be the underlying reason
to the problems encountered in string models [53, 54].

4.2.2 Complexi�cation of the con�guration space

Strong form of GCI plays a fundamental role in the complexi�cation of the con�guration space. GCI in strong
form reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their 4-D tangent space data
associated with ends of light-like 3-surface at light-like boundaries of CD. At boths end the imbedding space is
e�ectively reduces to δM4

+ × CP2 (forgetting the complications due to non-determinism of Kähler action). Light
cone boundary in turn is metrically 2-dimensional Euclidian sphere allowing in�nite-dimensional group of conformal
symmetries and Kähler structure. Therefore one can say that in certain sense con�guration space metric inherits
the Kähler structure of S2×CP2. This mechanism works in case of four-dimensional Minkowski space only: higher-
dimensional spheres do not possess even Kähler structure. In fact, it turns out that the quantum �uctuating degrees
of freedom can be regarded in well-de�ned sense as a local variant of S2 × CP2 and thus as an in�nite-dimensional
analog of symmetric space as the considerations of [7, A2] demonstrate.

The details of the complexi�cation were understood only after the construction of con�guration space geometry
and spinor structure in terms of second quantized induced spinor �elds [9, A3]. This also allows to make detailed
statements about complexi�cation [7, A2].

4.2.3 Contravariant metric and Di�4 degeneracy

Di� degeneracy implies that the de�nition of the contravariant metric, which corresponds to the propagator associ-
ated to small deformations of minimizing surface is not quite straightforward. We believe that this problem is only
technical. Certainly this problem is not new, being encountered in both GRT and gauge theories [48]. In TGD
a solution of the problem is provided by the existence of in�nite-dimensional isometry group. If the generators of
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this group form a complete set in the sense that any vector of the tangent space is expressible as as sum of these
generators plus some zero norm vector �elds then one can restrict the consideration to this subspace and in this
subspace the matrix g(X, Y ) de�ned by the components of the metric tensor indeed indeed possesses well de�ned
inverse g−1(X, Y ). This procedure is analogous to gauge �xing conditions in gauge theories and coordinate �xing
conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes possible an approach to
WCW integration based on harmonic analysis replacing the perturbative approach based on perturbative functional
integral. This approach allows also a p-adic variant and leads an e�ective discretization in terms of discrete variants
of WCW for which the points of symmetric space consist of algebraic points. There is an in�nite number of these
discretizations [17] and the interpretation is in terms of �nite measurement resolution. This gives a connection
with the p-adicization program, in�nite primes, inclusions of hyper-�nite factors as representation of the �nite
measurement resolution, and the hierarchy of Planck constants [19, A6] so that various approaches to quantum
TGD converge nicely.

4.2.4 General Coordinate Invariance and WCW spinor �elds

GCI applies also at the level of quantum states. WCW spinor �elds are Di�4 invariant. This in fact �xes not only
classical but also quantum dynamics completely. The point is that the values of the con�guration space spinor �elds
must be essentially same for all Di�4 related 3-surfaces at the orbit X4 associated with a given 3-surface. This
would mean that the time development of Di�4 invariant con�guration spinor �eld is completely determined by its
initial value at the moment of the big bang!

This is of course a naive over statement. The non-determinism of Kähler action and zero energy ontology force
to take the causal diamond (CD) de�ned by the intersection of future and past directed light-cones as the basic
structural unit of con�guration space, and there is fractal hierarchy of CDs within CDs so that the above statement
makes sense only for giving CD in measurement resolution neglecting the presence of smaller CDs. Strong form
of GCI also implies factorization of WCW spinor �elds into a sum of products associated with various partonic
2-surfaces. In particular, one obtains time-like entanglement between positive and negative energy parts of zero
energy states and entanglement coe�cients de�ne what can be identi�ed as M -matrix expressible as a "complex
square root" of density matrix and reducing to a product of positive de�nite diagonal square root of density matrix
and unitary S-matrix. The collection of orthonormal M -matrices in turn de�ne unitary U -matrix between zero
energy states. M -matrix is the basic object measured in particle physics laboratory.

4.3 Holomorphic factorization of Kähler function

One can guess the general form of the core part of the Kähler function as function of complex coordinates assignable
to the partonic surfaces at positive and negative energy ends of CD. It its convenient to restrict the consideration
to the simplest possible non-trivial case which is represented by single propagator line connecting the ends of CD.

1. The propagator line corresponds to a symmetric space de�ned as a coset space G/H of the symplectic group
[30] and Kac-Moody group [43]. This coset space is as a manifold Cartesian product (G/H) × (G/H) of
symmetric spaces G/H associated with ends of the line. Kähler metric contains also an interaction term
between the factors of the Cartesian product so that Kähler function can be said to reduce to a sum of
"kinetic" terms and interaction term.

2. The exponent of Kähler function depends on both ends of the line and this means that the geometries at the
ends are correlated in the sense that that Kähler form contains interaction terms between the line ends. It is
however not quite clear whether it contains separate "kinetic" or self interaction terms assignable to the line
ends. For Kähler function the kinetic and interaction terms should have the following general expressions as
functions of complex WCW coordinates:

Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (4.2)

Here Kkin,i de�ne "kinetic" terms and Kint de�nes interaction term. One would have what might be called
holomorphic factorization suggesting a connection with conformal �eld theories. Kkin would correspond to
the Chern-Simons term assignable to the ends of the line and Kint to the Chern-Simons terms assignable to
the wormhole throats.

4.4 Could the dynamics of Kähler action predict the hierarchy of Planck constants?

The original justi�cation for the hierarchy of Planck constants came from the indications that Planck constant
could have large values in both astrophysical systems involving dark matter and also in biology. The realization
of the hierarchy in terms of the singular coverings and possibly also factor spaces of CD and CP2 emerged from
consistency conditions. The formula for the Planck constant involves heuristic guess work and physical plausibility
arguments. There are good arguments in favor of the hypothesis that only coverings are possible. Only a �nite
number of pages of the Big Book correspond to a given value of Planck constant, biological evolution corresponds to
a gradual dispersion to the pages of the Big Book with larger Planck constant, and a connection with the hierarchy
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of in�nite primes and p-adicization program based on the mathematical realization of �nite measurement resolution
emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD rather than
as a separate hypothesis. The following arguments suggest that this might be possible. One �nds also a precise
geometric interpretation of preferred extremal property interpreted as criticality in zero energy ontology.

4.4.1 1-1 correspondence between canonical momentum densities and time derivatives fails for Käh-

ler action

The basic motivation for the geometrization program was the observation that canonical quantization for TGD fails.
To see what is involved let us try to perform a canonical quantization in zero energy ontology at the 3-D surfaces
located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k denotes the

time derivative of imbedding space coordinate, are the physically natural quantities in terms of which to �x
the initial values: once their value distribution is �xed also conserved charges are �xed. Also the weak form
of electric-magnetic duality given by J03√g4 = 4παKJ12 and a mild generalization of this condition to be
discussed below can be interpreted as a manner to �x the values of conserved gauge charges (not Noether
charges) to their quantized values since Kähler magnetic �ux equals to the integer giving the homology class
of the (wormhole) throat. This condition alone need not characterize criticality, which requires an in�nite
number of deformations of X4 for which the second variation of the Kähler action vanishes and implies in�nite
number conserved charges. This in fact gives hopes of replacing πk with these conserved Noether charges.

2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation de�ning

πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares the equations reduces

to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant and covariant metric at most
quadratically and in the induced Kähler electric �eld linearly and by multplying the equations by det(g4)3

one can transform the equations to a polynomial form so that in principle ∂0h
k can obtained as a solution of

polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates as the
coordinates of the spacetime surface so that the initial value conditions reduce to those for the canonical
momentum densities associated with the remaining four coordinates. For instance, for space-time surfaces
representable as mapM4 → CP2 M

4 coordinates are natural and the time derivatives ∂0s
k of CP2 coordinates

are multivalued. One would obtain four polynomial equations with ∂0s
k as unknowns. In regions where CP2

projection is 4-dimensional -in particular for the deformations of CP2 vacuum extremals the natural coordinates
are CP2 coordinates and one can regard ∂0m

k as unknows. For the deformations of cosmic strings, which are
of form X4 = X2 × Y 2 ⊂ M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere as
natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of other obtaining N
roots. Then one would substitute these roots to the remaining 3 conditions to obtain algebraic equations from
which one solves then second variable. Obviously situation is very complex without additional symmetries.
The criticality of the preferred extremals might however give additional conditions allowing simpli�cations.
The reasons for giving up the canonical quantization program was following. For the vacuum extremals of
Kähler action πk are however identically vanishing and this means that there is an in�nite number of value
distributions for ∂0h

k. For small deformations of vacuum extremals one might however hope a �nite number
of solutions to the conditions and thus �nite number of space-time surfaces carrying same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat the the
many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of space-like 4-surfaces
corresponding to di�erent roots ∂0h

k = F k(πl) with four-surfaces in the covering space of CD×CP2 corresponding
to di�erent branches of the many-valued function ∂0h

k = F (πl) co-inciding at the ends of CD.

4.4.2 Do the coverings forces by the many-valuedness of ∂0h
k correspond to the coverings associated

with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces associated with
the hierarchy of Planck constants. This would conform with quantum classical correspondence. The hierarchy of
Planck constants and hierarchy of covering spaces was introduced to cure the failure of the perturbation theory at
quantum level. At classical level the multivaluedness of ∂0h

k means a failure of perturbative canonical quantization
and forces the introduction of the covering spaces. The interpretation would be that when the density of matter
becomes critical the space-time surface splits to several branches so that the density at each branches is sub-critical.
It is of course not at all obvious whether the proposed structure of the Big Book is really consistent with this
hypothesis and one also consider modi�cations of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers assignable to
CD and CP2 degrees of freedom are however needed. How these two coverings could emerge?
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(a) One should �x also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal coordinate at the

wormhole throats. If one requires that charges do not �ow between regions with di�erent signatures of
the metric the natural condition is πnk = 0 and allows also multi-valued solution. Since wormhole throats
carry magnetic charge and since weak form of electric-magnetic duality is assumed, one can assume that
CP2 projection is four-dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows.
The basic idea about topological condensation in turn suggests that M4 projection can be assumed to
be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-surfaces one would
have conditions for both π0

k and π
n
k . One might hope that the numbers of solutions are �nite for preferred

extremals because of their symmetries and given by na for ∂0m
k and by nb for ∂0s

k. The optimistic
guess is that na and nb corresponds to the numbers of sheets for singular coverings of CD and CP2. The
covering could be visualized as replacement of space-time surfaces with space-time surfaces which have
nanb branches. nb branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The �xing of π0
k and πnk should relate closely to the e�ective 2-

dimensionality as an additional condition perhaps crucial for criticality. One could argue that both π0
k

and πnk must be �xed at X3 and X3
l in order to e�ectively bring in dynamics in two directions so that

X3 could be interpreted as a an orbit of partonic 2-surface in space-like direction and X3
l as its orbit

in light-like direction. The additional conditions could be seen as gauge conditions made possible by
symplectic and Kac-Moody type conformal symmetries. The conditions for πk0 would give nb branches in
CP2 degrees of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could relate also very
closely to the slicing of the space-time sheets by string world sheets and partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time surface? The
treatment as a single surface seems to be the correct thing to do. Classically the conserved changes would be
nanb times larger than for single branch. Kähler action need not (but could!) be same for di�erent branches
but the total action is nanb times the average action and this e�ectively corresponds to the replacement of the
~0/g

2
K factor of the action with ~/g2

K , r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional
to ~ one could argue that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only e�ectively nanb fold. This is of course poor man's argument but might
catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed below in this
framework? The �rst observation is that the total Kähler electric charge is by αK ∝ 1/(nanb) same always.
The interpretation would be in terms of charge fractionization meaning that each branch would carry Kähler
electric charge QK = ngK/nanb. I have indeed suggested explanation of charge fractionization and quantum
Hall e�ect based on this picture [15].

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding space metric.
The assumption that the M4 covariant metric is proportional to ~2 follows from the physical idea about ~
scaling of quantum lengths as what Compton length is. One can always introduce scaled M4 coordinates
bringing M4 metric into the standard form by scaling up the M4 size of CD. It is not clear whether the
scaling up of CD size follows automatically from the proposed scenario. The basic question is why the M4

size scale of the critical extremals must scale like nanb? This should somehow relate to the weak self-duality
conditions implying that Kähler �eld at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and Jnβ

√
g4 by

1/k. The scaling of CD should be due to the scaling up of the M4 time interval during which the branched
light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce to single-sheeted
coverings at M2 ⊂M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any homologically trivial geodesic sphere
of CP2 and has vanishing Kähler form. Weak self-duality condition is indeed consistent with any value of ~ and
impies that the vacuum property for the partonic 2-surface implies vacuum property for the entire space-time
sheet as holography indeed requires. This condition however generalizes. In weak self-duality conditions the
value of ~ is free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse to single
branch when their M4 projection belongs to M2. Magnetically charged light-light-like throats cannot have
M4 projection in M2 so that self-duality conditions for di�erent values of ~ do not lead to inconsistencies.
For spacelike 3-surfaces at the boundaries of CD the condition would mean that the M4 projection becomes
light-like geodesic. Straight cosmic strings would haveM2 asM4 projection. Also CP2 type vacuum extremals
for which the random light-like projection in M4 belongs to M2 would represent this of situation. One can
ask whether the degeneration of branches actually takes place along any string like object X2×Y 2, where X2

de�nes a minimal surface in M4. For these the weak self-duality condition would imply ~ =∞ at the ends of
the string. It is very plausible that string like objects feed their magnetic �uxes to larger space-times sheets
through wormhole contacts so that these conditions are not encountered.

4.4.3 Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests itself. Criticality
for the preferred extremals must be a property of space-like 3-surfaces and light-like 3-surfaces with degenerate
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4-metric and the degeneration of the nanb branches of the space-time surface at the its ends and at wormhole
throats is exactly what happens at criticality. For instance, in catastrophe theory roots of the polynomial equation
giving extrema of a potential as function of control parameters co-incide at criticality. If this picture is correct the
hierarchy of Planck constants would be an outcome of criticality and of preferred extremal property and preferred
extremals would be just those multi-branched space-time surfaces for which branches co-incide at the boundaries of
CD × CP2 and at the throats.

5 Weak form of electric-magnetic duality and explicit calculation of

Kähler function

The basic technical problem of quantum TGD has been the explicit calculation of the Kähler function [10]. Here
only the overall view is discussed. The identi�cation as a Kähler action for a preferred extremal of Kähler action
does not look a very practical approach since even the question what "preferred" means has been far from obvious.
The notion which I have christened as a weak form of electric-magnetic duality however led to a dramatic progress
in this problem [10]. One ends up to an expression of Kähler function as a Chern-Simons action for its extremal
de�ned by the ends of the space-time sheet and wormhole throats and also to an expression as a Dirac determinant
[A4, 10] and there are excellent hopes that a longstanding technical problem has been �nally solved. Also the notion
of preferred extremal �nds a precise de�nition in terms of general solution ansatz for �eld equations forced by the
reduction of TGD to almost topological quantum �eld theory and the theory can be solved also in the fermionic
sector.

The notion of electric-magnetic duality [57] was proposed �rst by Olive and Montonen and is central in N = 4
supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles are two di�erent phases of
theory and that the description in terms of monopoles can be applied at the limit when the running gauge coupling
constant becomes very large and perturbation theory fails to converge. The notion of electric-magnetic self-duality
is more natural since for CP2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler
electric monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant rather
than running coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago in
the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a considerable step of
progress took place in the understanding of this notion [7]. What seems to be essential is that one adopts a weaker
form of the self-duality applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept leads to
precise predictions. The point is that elementary particles do not generate monopole �elds in macroscopic length
scales: at least when one considers visible matter. The �rst question is whether elementary particles could have
vanishing magnetic charges: this turns out to be impossible. The next question is how the screening of the magnetic
charges could take place and leads to an identi�cation of the physical particles as string like objects identi�ed as
pairs magnetic charged wormhole throats connected by magnetic �ux tubes.

1. The �rst implication is a new view about electro-weak massivation reducing it to weak con�nement in TGD
framework. The second end of the string contains particle having electroweak isospin neutralizing that of
elementary fermion and the size scale of the string is electro-weak scale would be in question. Hence the
screening of electro-weak force takes place via weak con�nement realized in terms of magnetic con�nement.

2. This picture generalizes to the case of color con�nement. Also quarks correspond to pairs of magnetic
monopoles but the charges need not vanish now. Rather, valence quarks would be connected by �ux tubes
of length of order hadron size such that magnetic charges sum up to zero. For instance, for baryonic valence
quarks these charges could be (2,−1,−1) and could be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary particles
are string like objects in electro-weak scale: this should become manifest at LHC energies.

The weak form of electric-magnetic duality has equally dramatic implications concerning the mathematical
understanding of the basic theory and its calculability.

1. The weak form electric-magnetic duality together with Beltrami �ow property [58] of Kähler current leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological QFT and
that Kähler function is explicitly calculable [A4, 10]. This has an enormous impact concerning the calculability
of the theory. The basic observation is that if Kähler current is proportional to instanton current then the
Coulomb interaction term in the decomposition of the Kähler action to interior and boundary terms vanishes
and Kähler action reduces to a mere boundary term, which by the weak form of electric magnetic duality
reduces to a Chern-Simons term. The proportionality of the Kähler current to instanton current implies
also the vanishing of the 4-D Lorentz force if the CP2 projection of the space-time surface has dimension
less than four and has been conjectured to be a general property of solutions of �eld equations [16] so that
the reduction to almost topological QFT has been implicitly prediction of TGD for almost decade but has
remained unrecognized.

2. The requirement that WCWKähler metric is non-trivial inM4 degrees of freedom forces to replace CP2 Kähler
form with the sum of CP2 and S2 Kähler forms. The latter de�nes a magnetic monopole �eld of a monopole
residing at the time-like line connecting the tips of CD. The non-vacuum extremals remain extremals and
the vacuum extremals representable as graphs M4 → CP2 are replaced with vacuum extremals for which the
induced Kähler forms of CP2 sum up to zero. The most general extremals of this kind have 3-D CP2 projection
which is a good news from the point of view of TGD based description of the classical gravitation.
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3. One ends up also to a general solution ansatz for �eld equations from the condition that the theory reduces to
almost topological QFT [A4, 10, 16]. The solution ansatz makes more detailed the older solution ansatz and
is inspired by the idea that all isometry currents are proportional to Kähler current which is integrable in the
sense that the �ow parameter associated with its �ow lines de�nes a global coordinate. Kähler current in turn
must be proportional to instanton current to achieve the vanishing of Coulomb term in Kähler action implying
a reduction to almost topological QFT. The proposed solution ansatz would describe a hydrodynamical �ow
with the property that isometry charges are conserved along the �ow lines (Beltrami �ow [58]) assignable to
the instanton current. A general ansatz satisfying the integrability conditions is found.

The solution ansatz applies also to the extremals of Chern-Simons action and to the conserved currents
associated with the modi�ed Dirac equation de�ned as contractions of the modi�ed gamma matrices between
the solutions of the modi�ed Dirac equation. The strongest form of the solution ansatz states that various
classical and quantum currents �ow along �ow lines of the Beltrami �ow de�ned by Kähler current (Kähler
magnetic �eld associated with Chern-Simons action). Intuitively this picture is attractive. A more general
ansatz would allow several Beltrami �ows meaning multi-hydrodynamics but Kähler current must still be
proportional to instanton current. The integrability conditions boil down to two scalar functions: the �rst
one satis�es massless d'Alembert equation in the induced metric and the radients of the scalar functions are
orthogonal. The interpretation in terms of momentum and polarization directions is natural. This means dual
interpretations in terms of hydrodynamics and �eld theory.

4. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac equation and
reduces them to ordinary di�erential equations along �ow lines. The induced spinor �elds are simply constant
along �ow lines of indued spinor �eld for Dirac equation in suitable gauge. Also the generalized eigen modes
of the modi�ed Chern-Simons Dirac operator can be deduced explicitly if the throats and the ends of space-
time surface at the boundaries of CD are extremals of Chern-Simons action. Chern-Simons Dirac equation
reduces to ordinary di�erential equations along �ow lines. One can deduce the general form of the spectrum
and the explicit representation of the Dirac determinant in terms of geometric quantities characterizing the
3-surface (eigenvalues are inversely proportional to the lengths of strands of the �ow lines in the e�ective
metric de�ned by the modi�ed gamma matrices). The resulting general form of Kähler function is consistent
with the expression of the Kähler action of CP2 type vacuum extremals conjectured from the argument leading
to a general formula for gravitational constant.

5. Connections with various conjectures emerge. In�nite-primes [19, A7] provide a highly suggestive charac-
terization for the spectrum of the eigenvalues expressible in terms of M2 pseudo-momenta identi�able as
hyper-complex primes of the projections of hyper-octonionic primes to hyper-complex plane M2. This would
also mean a number theoretical characterization of the geometry of 3-surfaces de�ning the lines of the gen-
eralized Feynman diagram. An arithmetic quantum �eld theory de�ned by in�nite primes would correlate
via the conservation of number theoretic momentum

∑
nilog(pi) the geometries for the lines of the gener-

alized Feynman diagram arriving at a given vertex realizing therefore quantum classical correspondence. A
precise connection with the p-adic length scale hypothesis and hierarchy of Planck constants emerges. Even
the notion of number theoretic braid emerges also unavoidably so that it is fair to say that a large bundle of
"must-be-trues" reduces to consequences of the weak form of electric-magnetic duality.

To sum up, the weak form of electric-magnetic duality gives excellent hopes that quantum TGD is exactly
solvable theory. Of course, it must be made clear that the proportionalty of all conserved currents to instanton
current de�ning Beltrami �ow is very strong and the mathematical proof that this reduction almost obvious in the
hydrodynamical picture is really possible is lacking.
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