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Abstract 
The two features of the behavior of bodies and fields in mechanics, electromagnetic theory, 
quantum theory and theory of gravity are compared in the article: the optical-mechanical analogy 
and the wave-particle dualism. It is shown that in terms of mathematical description the two 
features are similar in all cases. On this basis, it can hypothesized that the gravitational equation 
of general relativity is a generalization of the wave equation of the gravitational field.  
Convincing reasons are given to justify this hypothesis. It is assumed that the wave equation of 
the nonlinear theory of elementary particles (NTEP) can be considered as a contender for the role 
of gravitational equations. 
  
Keywords: gravitation theory, Lorentz-invariant gravitation theory, non-linear quantum theory, 
space-time background, physical vacuum. 
 
Abbreviations: NTEP - nonlinear theory of elementary particles, EM - electromagnetic; HJE - Hamilton-Jacobi equation, 
HEE - Hilbert-Einstein equations of general relativity. 
 

1.0. Introduction: Statement of subject 
The general problem of our research is the construction of a theory of gravity based on the 
achievements of the Hilbert-Einstein gravitation theory that would save all the achievements of the 
last, but would lack theirs drawbacks (see (Logunov, 2006; Kyriakos, 2012a)). 
 
Because of the extremely low values of gravity force for the masses of elementary particles, gravity 
applies to macrophenomena and must be described by classical physics. On the other hand, a body 
mass is the sum of the masses of the elementary particles that make up this body. In the modern 
theory and the nonlinear theory of elementary particles (NTEP) (see articles in the "Prespacetime 
Journal") the production of mass of elementary particles is described by a special mechanism. 
However, the mechanics of elementary particles is the wave mechanics. At the same time, the 
mechanics of the motion of bodies in a gravitational field is the mechanics of macroscopic bodies 
and thus the classical mechanics. In this case what is the connection between them, from the physical 
point of view and from the point of view of mathematical description? 
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From a physical point of view, the relationship between the wave theory and mechanics of particles, 
in the form of optical-mechanical analogy of equations (recall that optics is the science of 
electromagnetic waves of the light range) was first discovered by R. Hamilton 
 
Based on the study of the general laws of motion of classical mechanics, Hamilton came to the 
conclusion that motion along a trajectory   of a massive particle in a field corresponds to the motion 
of a massless particle - photon - along the ray of light in a medium with a variable index of refraction. 
In the absence of the field or at constant refractive index of medium, the one and the other particles 
move in a straight line. In another words, at free motion a particle moves in a Euclidean space, but at 
non-free motion it moves in a curved space, which, in general is a Riemannian space. 
 
Mathematically the equation of motion of a material body is the Hamilton-Jacobi equation (HJE). In 
this way, as we mentioned in the review (Kyriakos, 2012a), it is used in GRT (Landau and Lifshitz, 
1980). Hamilton noted that this equation also describes the motion of light rays. The dual use of this 
equation is namely the mathematical expression of the optical-mechanical analogy. 
 
But this analogy was not complete. Conventional optics is divided into wave and geometrical (ray) 
optics. The geometrical optics is the limited case of wave optics at very high frequencies of waves. 
Namely in this limit, the analogy between the equations of motion of the particle and the equation of 
the light beam is detected . But this analogy is not related to the connection of the equations of 
motion of a particle with the wave equation of light; so it has long been considered nothing more 
than an interesting mathematical conclusion. 
 
De Broglie was the first who pointed out the possibility of an extended analogy, at least, for 
elementary particles. Based on Lorentz transformations he has shown that the elementary particles 
(such as electron) must have wave properties. In other words, de Broglie showed that the analogy 
between light and a material particle is complete: light and particle have both wave  and particle 
properties (which is called "wave-particle dualism"). De Broglie showed mathematically that the 
motion of an electron in a hydrogen atom can be regarded as a movement of the waves according to 
Fermat's principle for light waves. The existence of the wave properties of electrons has been 
confirmed by experiment and raised questions about the mathematical description of the motion of 
the electron as a wave. 
 
As is known, the equation of motion - the wave equation of motion of the electron (for non-
relativistic speeds) was found by Schrödinger (Schroedinger, 1982).. The most important for us are 
the two pointsont which Schrödinger relied (see Schrodinger. First and second posts): 
 
1) Schrödinger derived his equation from HJE, postulating the proportionality of the HJE main 
function (“action”) with the phase of the electron wave. 
 
2) Schrödinger noted the link of the spatial interval with the action, following from HJE . 
Later, the link of HJE, as a ray equation, with the theory of gravity was investigated by V. Fock 
(Fock, 1964). The connection between the theory of gravity with the wave equation was not 
discussed, since it concerns macrobodies, which practically do not have wave properties. However, 
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the full optical-mechanical analogy raises the question of the relation of the body motion in the 
gravitational field with the wave equation and we come back to this question later. 
 
In his book V. Fock showed that a Lorentz transformation should be considered as invariant 
transformations of HJE. Using this approach, he pointed out that the space-time interval in the 
pseudo-Euclidean space is determined by  the HJE main function, i.e. by action. 
 
Unfortunately, the relationship of HJE with the space-time interval in the case of a curved space-time 
(in particular, in the pseudo-Riemannian space) not considered by V.Fock. This problem has not 
been solved and is one of the subjects to study. To take some steps in this direction, let us consider 
briefly the results of the above studies in terms of our problem. 

 

2.0. Action function and its physical meaning. 
 

2.1. Classical mechanics 
 
The notion of function as "action" (the name given by Leibniz) was the result of the work of many 
famous scientists for nearly 200 years (Polak, 1959). The task in which the need occur for such a 
function is called the problem of functional extremum. The problem can be  briefly stated  as 
follows: 
 
1) It is needed to find the equation of motion of a massive particle under the action of any forces 
between two points A and B. Clearly, the number of possible paths of motion between A and B can be 
infinite. But it was verified experimentally that the particle moves according to the Newton's law (or 
one of its equivalents), only along one definite path. Therefore, the question arose: 
 
2) is there a physical value ( )tzyxS ,,,  that determines the choice from a set of trajectories, only the 
trajectory that corresponds to the task. 
 
For some tasks was found, the function sp ∆⋅  , where p   is momentum of the body, and s∆   is the 

element of path, so that the function  ∫∑ ⋅=∆⋅=
→∆

B

As

dspspS
0

'   must have the extremum value 

(maximum or minimum) for real trajectory. Function S   was called "action." For other problems was 
found function  tT∆  ,  where T  is the kinetic energy of the particle,  t∆  is time traffic, so that action 

∫∑ ⋅=∆⋅=
→∆

2

10

''
t

tt

dtTtTS  . Later, for a wide range of mechanics problems was found the function  

( ) tVTtL ∆−=∆ ,  where V   is the potential energy, and  VTL −=    is called the Lagrange 

function, so that action ( )∫ −= dtVTS '''  (note the fact that the action includes products "momentum 

x distance" and "energy x time". 



Prespacetime Journal| October 2012 | Volume 3 | Issue 11 | pp. 1028-1051 
Kyriakos, A. G.  On Lorentz-invariant Theory of Gravitation Part 3: Optical-mechanical Analogy and the Particle-wave Duality in 

the Theory of Gravity 
 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

1031

The real trajectory of motion is determined by the variation of the action is equal to zero:  0=Sδ . 
The consequence of this equation is the Euler-Lagrange equation. But Hamilton found that the 
equation of motion can be written in the form of Hamilton-Jacobi (HJE) by means of action function. 
Its physical meaning is found in quantum mechanics - from the wave theory of the electron (a 
question, which we will discuss later). Next, look at specific forms HJE for different physical 
problems. 
 

2.1.1. Relativistic and non-relativistic Hamilton-Jacobi e quation  (Landau and Lifshitz, 
1980) 
We can say that at the free movement (i.e. in absence of field) the particles move in a pseudo-
Euclidean space, and in the case of motion in the field  - in a curved space (which  generally is a 
Riemannian space). 
 
In the absence of the field (in the case of a photon it is equivalent to the presence of constant 
refractive index of the medium), the  massless (photon) and massive (electron) particles move in a 
straight line. 
 
In the case of massless particles – the photon - the equation of the wave front of light is the 
homogenous Hamilton-Jacobi equation (HJE) and has the form: 
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which is an equation of first order and second degree. As is well known (Landau and Lifshitz, Field 

Theory), the action  S  is associated with the momentum p
r

 and Hamiltonian  Ĥ  (total energy) by 
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Considering the action as a phase of the wave, we see that the wave vector plays in geometrical 
optics the role of the particle's momentum in mechanics, and frequency plays the role of the 
Hamiltonian, i.e. of the total energy of the particle. 
 
This equation can be written in linearized form as: 
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One can assume that the motion of a photon in an external field with the energy-momentum  

exex p
r

  ,ε , is described by HJE of  type: 
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 (note that exex p
r

  ,ε  can represent any field: electromagnetic, gravitational, etc.). This corresponds to 

the motion of a photon in an inhomogeneous medium with a refractive index that depends on 
coordinates and time. Obviously, the trajectory will not be a straight line, but a curve. 
 
In the case of the free motion of a massive relativistic particle with mass m  (such as an electron 
without external field) it is easy to obtain the relativistic HJE: 
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which can be written more concisely in vector form ( ) 222
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In the case of the motion of a massive particle in an external field with the energy-momentum 

exex p
r

  ,ε , HJE is: 
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In the nonrelativistic case, this equation in Cartesian coordinate system is: 
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2.2. Quantum mechanics 
 
Schrödinger as the starting point of his search of the electron wave equation took the HJE equation. 
The latter is not a wave equation, but, as it appears, it is closely connected with it. Consider this 
relationship according to Schrödinger. 
 

2.2.1. The geometric representation of the particle motion  as wave and as 
particles  
 
In his Nobel lecture Schrödinger described the basic idea of wave mechanics as follows 
(Schrödinger, 1933): “I would define the present state of our knowledge as follows. The ray or the 
particle path corresponds to a longitudinal relationship of the propagation process (i.e. in the 
direction of propagation), the wave surface on the other hand to a transversal relationship (i.e. 
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norma1 to it). Both relationships are without doubt real; one is proved by photographed particle 
paths, the other by interference experiments. To combine both in a uniform system has proved 
impossible so far. Only in extreme cases does either the transversal, shell-shaped or the radial, 
longitudinal relationship predominate to such an extent that we think we can make do with the wave 
theory alone or with the particle theory alone”. 
 
 “According to the wave theory of light, the light rays, strictly speaking, have only fictitious 
significance. They are not the physical paths of some particles of light, but are a mathematical 
device, the so-called orthogonal trajectories of wave surfaces, imaginary guide lines as it were, which 
point in the direction normal to the wave surface in which the latter advances (cf. Fig. 1 which shows 
the simplest case of concentric spherical wave surfaces and accordingly rectilinear rays, whereas Fig. 
2 illustrates the case of curved rays)”. 
 

    
                       Fig. 1              Fig. 2 
 
Thus, on the one hand we have the wave pattern of motion (Schrödinger, Nobel lecture), which 
results in the following conclusion (Schrödinger, 1933): 
 
“We identify the area of interference, the diffraction halo, with the atom; we assert that the atom in 
reality is merely the diffraction phenomenon of an electron wave captured us it were by the nucleus 
of the atom. It is no longer a matter of chance that the size of the atom and the wavelength are of the 
same order of magnitude: it is a matter of course”. 
 
On the other hand, we have the motion of the electron as a particle. But the differentiation of these 
movements is a difficult task (Schroedinger, 1982, second part): 
 
It is clear that then the " system path " in the sense of classical mechanics, i.e. the path of the point of 
exact phase agreement, will completely lose its prerogative, because there exists a whole continuum 
of points before, behind, and near the particular point, in which there is almost as complete phase 
agreement, and which describe totally different " paths ". In other words, the wave group not only 
fills the whole path domain all at once but also stretches far beyond it in all directions. 
 
In this sense do I interpret the "phase waves" which, according to de Broglie, accompany the path of 
the electron; in the sense, therefore, that no special meaning is to be attached to the electronic path 
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itself (at any rate, in the interior of the atom), and still less to the position of the electron on its path. 
And in this sense I explain the conviction, increasingly evident to-day, firstly, that real meaning has 
to be denied to the phase of electronic motions in the atom ; secondly, that we can never assert that 
the electron at a definite instant is to be found on any definite one of the quantum paths, specialised 
by the quantum conditions; and thirdly, that the true laws of quantum mechanics do not consist of 
definite rules for the single path, but that in these laws the elements of the whole manifold of paths of 
a system are bound together by equations, so that apparently a certain reciprocal action exists 
between the different paths. 
 
It is not incomprehensible that a careful analysis of the experimentally known quantities should lead 
to assertions of this kind, if the experimentally known facts are the outcome of such a structure of the 
real process as is here represented. All these assertions systematically contribute to the relinquishing 
of the ideas of "place of the electron" and "path of the electron". If these are not given up, 
contradictions remain. This contradiction has been so strongly felt that it has even been doubted 
whether what goes on in the atom could ever be described within the scheme of space and time. 
From the philosophical standpoint… 
I   would   consider   a   conclusive   decision,  in  this sense as equivalent to a complete surrender. 
For we cannot really alter our manner of thinking in space and time, and what we cannot 
comprehend within it we cannot understand at all. There are such things — but I do not believe that 
atomic structure is one of them. From our standpoint, however, there is no reason for such doubt, 
although or rather because its appearance is extraordinarily comprehensible. So might a person 
versed in geometrical optics, after many attempts to explain diffraction phenomena by means of the 
idea of the ray (trustworthy for his macroscopic optics), which always came to nothing, at last think 
that the Laws of Geometry are not applicable to diffraction, since he continually finds that light rays, 
which he imagines as rectilinear and independent of each other, now suddenly show, even in 
homogeneous media, the most remarkable curvatures, and obviously mutually influence one 
another».  
 
From this analysis follows that the particle motion as a wave and the particle motion as a material 
body determine one another. It can be assumed that a particle in physical vacuum at each 
infinitesimal step of motion selects its direction, by "touching" with waves the state of physical 
vacuum around himself. 

 

2.2.2. Relationship between the differential equation of p article motion as 
mechanical body and as corresponding wave  
 
The Hamiltonian analogy between mechanics and optics in quantum mechanics, Schrödinger 
considered in detail (Schroedinger, 1982, first and second parts): 
 
“Let us throw more light on the general correspondence which exists between the Hamilton-Jacobi 
differential equation of a mechanical problem and the "allied" wave equation.  
 
The inner connection between Hamilton's theory and the process of wave propagation is anything but 
a new idea. It was not only well known to Hamilton, but it also served him as the starting-point for 
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his theory of mechanics, which grew out of his Optics of Non-homogeneous Media. Hamilton's 
variation principle can be shown to correspond to Format's Principle for a wave propagation in con-
figuration space (q-space), and the Hamilton-Jacobi equation expresses Huygens' Principle for this 
wave propagation. Unfortunately this powerful and momentous conception of Hamilton is deprived, 
in most modem reproductions, of its beautiful raiment as a superfluous accessory, in favour of a more 
colourless representation of the analytical correspondence”. 
 
On this basis, Schroedinger derived his famous wave equation of the electron. 
 
Let us consider the derivation of the Schrödinger wave equation as the steady state equation of  atom 
(Stanyukovich, Kolesnikov et al., 1968). 
 
For definiteness we consider a hydrogen atom, which consists of one proton (assuming it is 
immobile) and the electron moving around it (assuming it is a point with coordinates zyx ,, ). Let the 
total energy of the system be equal to const=ε . The task is to identify the values ε , which make 
the system stable. 
 
We assume that the instantaneous (momentary) value of the total energy of the system is given by:   
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Substituting the values of the projections of momentum in the action, we find 
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We will now define the difference at evry point zyx ,, : 
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Let us integrate this difference over all possible values of the coordinates: 
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It is natural now to assume  that the stable movements of our system meet the minimum value of the 
integral ε~∆  as a functional of the function ( )zyxS ,, . Varying ε∆  with respect to S  and equating 
the variation to zero, we obtain: 

 0  )~(
2

2

2

2

2

2

=







++=∆ ∫ dxdydzS

z

S

y

S

x

S δ
∂
∂

∂
∂

∂
∂εδ ,    (3.2.10)  

From this follows the condition for the stability of motion of our system (condition of Lyapunov-
Chetaev) 



Prespacetime Journal| October 2012 | Volume 3 | Issue 11 | pp. 1028-1051 
Kyriakos, A. G.  On Lorentz-invariant Theory of Gravitation Part 3: Optical-mechanical Analogy and the Particle-wave Duality in 

the Theory of Gravity 
 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

1036

 0
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2

2

=∆=++ S
z

S

y

S

x

S

∂
∂

∂
∂

∂
∂

,    (3.2.11) 

This equation, however, does not contains the value of the constant  ε , which makes the motion of 
the system stable. Therefore, Schrödinger considered transformation of the desired function 

 ( ) ( )zyxAzyxS ,,ln,, ψ= ,     (3.2.12) 

As result of the transformation we obtain: 

 ( ) ε
∂

ψ∂
∂

ψ∂
∂

ψ∂
ψ

ε −−
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
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



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

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
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

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












=∆

r

e

zyxm

A
zyx

2
222

2

2

2
,, ,    (3.2.13) 

Next Schrödinger considered another integral 

 ( ) ( )∫∆=∆ dxdydzzyxzyx  ,, ,, 2ψεε ,    (3.2.4) 

Varying it on ψ  and setting the result to zero, Schrödinger received the wave equation: 

 0
2 2

22

2

2

2

2

2

=







++++ ψε

∂
ψ∂

∂
ψ∂

∂
ψ∂

r

e

A

m

zyx
,    (3.2.15) 

where was found that hiA −=  
 
Note that equation (3.2.11) is equivalent to (3.2.15) if we use (3.2.12) in the form 

( ) ( )zyxizyxS ,,ln,, ψh−= . It is easy to show this by direct substitution. 

 

2.2.3. The geometric representation of the Schrödinger (no n-relativistic) equation  
(Schroedinger,  1982, second part, p.14, etc). 
 
“Let us consider the general problem of conservative systems in classical mechanics.   The Hamilton-
Jacobi equation runs 

 ( ) 0, =+








∂
∂+

∂
∂

k
k

k qV
q

S
qT

t

S
,    (3.2.16) 

where S is the action function, i.e. the time integral of the Lagrange function T - V along a path of the 
system as a function of the end points and the time, kq is a representative position co-ordinate; T is 

the kinetic energy as function of the q's and momenta, being a quadratic form of the latter, for which, 

as prescribed, the partial derivatives of S with respect to the q's 
kq

S

∂
∂

 are written. V   is the potential 

energy…. 
 
Suppose that a function S  has been found. Then this function can be clearly represented for every 
definite t, if the family of surfaces constS = , be described in q -space and to each member a value 
of S  be ascribed…. 
 



Prespacetime Journal| October 2012 | Volume 3 | Issue 11 | pp. 1028-1051 
Kyriakos, A. G.  On Lorentz-invariant Theory of Gravitation Part 3: Optical-mechanical Analogy and the Particle-wave Duality in 

the Theory of Gravity 
 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

1037

Let the value 0S  be given in Fig. 3 to an arbitrary surface.  

 
 

Fig. 3 
 
In order to find the surface  00 dSS + , take side of the given surface as the positive one, the step 

 
( )V

dS
ds

−
=

ε2
0 ,    (3.2.17) 

The locus of the end points of the steps is the surface 00 dSS + . Similarly, the family of surfaces may 

be constructed successively on both sides. 
 
Now it is seen that our system of surfacesconstS = , can be conceived as the system of wave 
surfaces of a progressive but stationary wave motion in q-space. 
 
The function of action S  plays the part of the phase of our wave system. The Hamilton-Jacobi 
equation is the expression of Huygens' principle. 
 
We may sum up that S  denotes, apart from a universal constant 1/h, the phase angle of the wave 
function. 
 
We have thus shown: The point of phase agreement for certain infinitesimal manifolds of wave 
systems, containing n  parameters, moves according to the same laws as the image point of the 
mechanical system”. 
 
2.2.4. The description of the electron motion by means the  Hamilton-Jacobi 
equations  (Landau and Lifshitz, 1980, p.100) 
 
“We consider the motion of a particle with mass  and charge  in the field produced by a second 
charge 'e ; we assume that the mass of this second charge is so large that it can be considered as 
fixed. Then our problem becomes the study of the motion of a charge e in a centrally symmetric 
electric field with potential re'=ϕ . The total energy of the particle is equal to 

 
r

cmpc
αε ++= 222 ,    (3.2.18) 

where 'ee=α . If we use polar coordinates in the plane of motion of the particle, then as we know 
from mechanics, 
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 2
2

2
2

rp
r

M
p += ,    (3.2.19) 

Where rp  is the radial component of the momentum, and M  is the constant angular momentum of 
the particle. Then 

 
r

cmp
r

M
c r

αε +++= 222
2

2

,    (3.2.20) 

A complete determination of the motion of a charge in a Coulomb field starts most conveniently 
from the Hamilton- Jacobi equation. We choose polar coordinates ϕ,r  in the plane of the motion.  
 
The Hamilton-Jacobi equation has the form 

 22

2

2

22

2

11
cm

S

rr

S

rt

S

c
=














−














−














+

ϕ∂
∂

∂
∂α

∂
∂

,    (3.2.21) 

We seek an S  of the form 

 ( )rfMtS ++−= ϕε ,    (3.2.22) 

where M,ε are the constant energy and angular momentum of the moving particle. The result is 

 ∫ ⋅−−






 −++−= drcm
r

M

rc
MtS 22

2

22

2

1 αεϕε ,    (3.2.22) 

The trajectory is determined by the equation const
M

S =
∂
∂

. Integration of (3.2.22) leads to the 

trajectory. The integration constant is contained in the arbitrary choice of the reference line for 
measurement of the angle ϕ ”. (In detail see the book)  

 

2.2.5. Waves and particles: dualism of description  
 
We will write down some of the results of the Schrödinger research (including generalizations made 
later.) 
 
1. The connection between the path and the wave equations is the connection between the movement 
of the wave surface and the motion of a point of surface along a certain line. 
 
2. The motion of a particle as a wave, is described by the wave equation. The motion of a particle as 
a massive body (ray or trajectory) is described by the equation of motion of  the point of the wave 
front - HJE. 
 
3. The main function of HJE is a function ( )tzyxS ,,, , called "action." 
 



Prespacetime Journal| October 2012 | Volume 3 | Issue 11 | pp. 1028-1051 
Kyriakos, A. G.  On Lorentz-invariant Theory of Gravitation Part 3: Optical-mechanical Analogy and the Particle-wave Duality in 

the Theory of Gravity 
 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

1039

4. Function ( )tzyxS ,,,  is instantaneously a function, which describes the surface of the wave front, 
or, equivalently, the surface of constant value of the phase of the wave. 
 
5. In terms of the vector field theory, the function ( )tzyxS ,,,  can be regarded as a vector, the 

direction of which at each point is determined by the normal to the surface ( )ntzyxSS
r

r

,,,= . 
 
6. With a accuracy up to the Planck constant, the action S  is the phase of the wave 

)  (

0
)  (

rpt
i

rkti
o ee

rr

h
rr −−−− Φ=Φ=Φ

εω ,  i.e. )  ()  ( rptrktS
rrrr

h −=−= εω . In the case of electron ψ=
Φ
Φ

0

. 

7. From this follows the transformation ( ) ( )
0

,,,
ln,,,

Φ
Φ= tzyx

itzyxS h , by which Schrödinger went 

from HJE to the wave equation. 
 
8. The trajectory (ray) of the point of the surface ( )tzyxS ,,,  can be considered as the radius vector 

nsr
rr = , where s  is the path traveled by the set point 0r

r

. 

9. Denote the phase of the wave with letter theta: ( ) ( )rktrpt
rrrr

h
−=−=   

1 ωεϑ . It is obvious that 

ψϑ lni
S ==
h

. Using the equation of energy conservation 42222 cmpc =−ε , we can get the wave 

front equation for a massive particle: 

  ( )
2

42
2

2

 

 1

h

cm
grad

tc
=−







 ϑ
∂

ϑ∂
. 

For massless particles (EM waves), when m  = 0, this equation is: 

  ( ) 0
 

 1 2
2

=−






 ϑ
∂

ϑ∂
grad

tc
. 

 Characteristically, the values ε
∂

ϑ∂ =⋅
t 

 
h  and pgrad

r
h −=⋅ ϑ  constitute a 4-vector. This indicates 

that the four-dimensional world of the theory of relativity is a consequence of the wave origin of the 
material particles. 
 
10. From dimensional analysis follows that HJE is described by integral physical values, and the 
wave equation - by differential physical values. Specifically, the action has the dimension of angular 
momentum =  product of momentum on the path = product of the energy on the time. According to 
NTEP the square of the wave function is, in absolute terms, the dimensions of density of energy-
momentum (energy / volume of space) = pressure or tension (force / area), and in relative terms, the 
square of wave function is the probability density  (dimensionless). 
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3.0. Wave and a particle in the gravitational theory (Fock, 1964). 
 

3.1. The Law of Propagation of an Electromagnetic Wave Front 
“The laws of propagation of light in empty space are thoroughly understood. They find their 
expression in the well-known equations of Maxwell 
 
However, we are not interested in the general case of light propagation, but only in the propagation 
of a signal advancing with maximum speed, i.e. the propagation of a wave front. Ahead of the front 
of the wave all components of the field vanish. Behind it some of them are different from zero. 
Therefore, some of the field components must be discontinuous at the front. 
On the other hand, given the field on some surface moving in space, the derivatives of the field on 
the surface are, in general, determined by Maxwell's equations.  
 
Such a surface is called a characteristic surface or, briefly, a characteristic. Thus, discontinuities of 
the field can occur only on a characteristic, but since there must certainly be discontinuities at a wave 
front, such a front is clearly a characteristic. 
 
Let us determine the equation of a characteristic for the system of Maxwell's equations. 
Let the value of the field be given for those points and instants whose coordinates are related by the 
equation 

 ( )zyxf
c

t ,,
1= ,    (3.3.1) 

In particular, if 0=f  this amounts to stating initial conditions. Equation (3.3.1) may be looked upon 
as the equation of a certain hypersurface in the four-dimensional space-time manifold. When 

( ) 12 >gradf  the same equation can be considered as the equation of an ordinary surface moving 
through space. Assume that on the hypersurface (3.3.1) the values of a certain function u are given 

 ( )zyxu
c

f
zyxu ,,,,, 0=







 ,   (3.3.2)” 

 

3.2. The photon trajectory (equations for rays) 
 
“The equation describing the propagation of a wave front can be written in the linear form 

 

222














+









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




=

z
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y
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S
c

t

S

∂
∂

∂
∂

∂
∂

∂
∂

,    (3.3.3) 

(for definiteness we have chosen the plus sign before the square root). 

In mechanics S play the role of the action function and the derivatives 
r

S
p

r

r

∂
∂= -  the momenta , 

zyx ppp ,, . Corresponding to the Hamiltonian we have here the expression 
t

S
H

∂
∂−=ˆ  or 
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,    (3.3.4) 

To the trajectories of mechanics there correspond light rays. The equations for them are analogous 
to Hamilton's equations. They can be written 
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, etc. ,    (3.3.5) 
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, etc ,    (3.3.6) 

Equation (3.3.6) shows that the quantities 
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  ,  , are constant along a  ray, though 

they can, of course, vary from one ray to another. Therefore the rays will be straight 
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,    etc.,               (3.3.7) 

which, according to mechanical-optical analogy, is the equation of motion of a point along the ray. 

If the sign of S , and hence of 

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S
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∂
∂

  ,  , , is changed, the direction of the ray is 

reversed ; the sign must be chosen according to the given sense of direction of the ray”. 

 

3.3. Connection of action with space-time interval (Fock, 1964) 
 
“Any wave surface can be considered as formed of points moving along the rays with the speed of 
light according to (3.3.7). 
 
We thus have the possibility of constructing a wave surface at time t  when its form at time t  is 
known.  
 
Let the equation of the wave surface at time 0t  have the form 

 ( ) 0,, 000
0 =zyxS  ,                                   (3.3.8) 
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where 000 ,, zyx  are coordinates varying over this surface. Knowing the equation of the surface we 

can calculate the quantities 
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α , etc.,    (3.3.9) 

Here the sign of the right-hand sides is determined by the given direction of wave propagation. The 
equation of the ray passing through the point ( 000 ,, zyx ) of the initial wave surface is 

 

( )
( ) ( )

( ) 







−=−
=++−=−

−=−

00

222
00

00

1    ,

ttczz

ttcyy

ttcxx

γ
γβαβ

α
,     (3.3.10) 

The quantities zyx ,,  give the positions of the point to which the point ( 000 ,, zyx ) moves at time t . 

Allowing 000 ,, zyx  to take on all values which satisfy (3.3.8), we obtain from (3.3.10) all points 

which at time t  lie on the wave surface. 
 
If we solve (3.3.10) for 000 ,, zyx  and insert the functions 

 ( )000 ,,, ttzyxxx −= ,  etc.,                       (3.3.11) 

into the wave surface equation (3.3.8),  we get the relation 

 ( ) 0,,, 0 =− ttzyxS ,                            (3.3.12) 

which is the explicit form of the equation of the wave surface at time t . At 0tt −  obviously, 

zzyyxx === 000 ,,  and equation (3.3.12) reduces to (3.3.8), which is the equation of the initially 

given wave surface. 
 
From the ray equation (3.3.7) there follows the relation 

     ( ) ( ) ( ) ( )[ ] 02
0

2
0

2
0

2
0

2 =−+−+−−− zzyyxxttc ,        (3.3.13) 

which connects the coordinates of the initial and final points on each ray. It is the equation of a 
sphere centred at the point 000 ,, zyx  and of a radius ( )0ttcR −=  that increases linearly with time. 

Just as Hamilton-Jacobi equation, from which we started, this equation expresses the fact that the 
velocity of light propagation is constant. 
 
For points infinitesimally separated relation (3.3.13) takes on the form 

 ( ) 022222 =++− dzdydxdtc ,                         (3.3.13’) 

In this form the equation follows directly from Hamilton's equation (3.3.5)”.  
A frame for which  
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,    (3.3.14) 

is valid may be called inertial in the electromagnetic sense”.  

 

3.4. Features of the gravitational field 
 
“The principle of the universal limiting velocity can be made mathematically precise as follows: 
For any kind of wave advancing with limiting velocity and capable of transmitting signals the 
equation offront propagation is the same as the equation for the front of a light wave. 
 
Thus the equation (3.3.14) acquires a general character; it is more general than Maxwell's equations 
from which we derived it. 
 
The presence of a gravitational field somewhat alters the appearance of the equation of the 
characteristics from the form (3.3.14), but in this case one and the same equation still governs the 
propafgation of all kinds of wave fronts travelling with limiting velocity, including electromagnetic 
and gravitational ones. 
 
Let us considere the expressions 

   ( ) ∑
= ∂

∂
∂
∂=∇

3

0,

2

νµ νµ

µν

x

S

x

S
gS ,    (3.3.15) 

   ∑
=

∂∂=
0,

2

νµ
νµ

µν xxgds ,    (3.3.16) 

which were obtained from the usual expressions of Relativity Theory by introducing variables x1, x2, 
x3 and x0 in place of the space and time coordinates x, y, z, t. We established the conditions subject to 
which the variable x0 can characterize a sequence of events in time and the variables x1, x2, x3  their 
location in space. 
 
By itself, the introduction of new variables can naturally not influence the physical consequences of 
the theory; it is merely a mathematical device. 
 
We shall call equations generally covariant, if they are valid for any arbitrary choice of independent 
variables. 
 
The most essential characteristic of the gravitational field by which it differs from all other fields 
known to physics reveals itself in the effect of the field on the motion of a freely moving body or 
mass point. In a gravitational field all otherwise free bodies move in the same manner, provided the 
initial conditions of their motion, i.e. their initial positions and velocities, are the same. 
 
According to Newton the gravitational field can be characterized by the gravitational potential U(x, y, 
z). The gravitational potential produced by an solated spherically symmetric mass M at points 
exterior to itself is 
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r

M
g

γϕ = ,    (3.3.17) 

where r  is the distance from the centre of the mass. The quantity γ  is the Newtonian constant of 
gravitation—in c.g.s. units it has the value 

 
2

3

15000000

1

cecg

cm

⋅
=γ ,     (3.3.18) 

Thus gϕ  has the dimensions of the square of a velocity. We note immediately that in all cases 

encountered in Nature, even on the surface of the Sun or of super-dense stars, the quantity gϕ  is very 

small compared to the square of the speed of light 

 2cg <<ϕ  ,    (3.3.19) 

In the general case of an arbitrary mass distribution the Newtonian potential U it produces satisfies 
Poisson's equation 

 mg πγρϕ 4−=∆  ,    (3.3.20) 

where mρ  is the mass density. The Newtonian potentiall gϕ  is fully determined by Poisson's 

equation together with continuity and boundary conditions which are as follows : the function gϕ  

and its first derivatives must be finite, singlevalued and continuous throughout space and must tend 
to zero at infinity. 
 
As a result of the equality of inertial and gravitational mass the equation of motion 

 ggradw ϕ= ,      (3.3.21) 

where w  is  acceleration, has universal character”. 

 

3.5. The space-time interval and the space-time metric 
 
“The phenomenon of universal gravitation forces us to widen the framework of the theory of space 
and time which was the subject of the Newton theory. The necessity of this widening becomes clear 
from the following considerations. It follows from the equation of wave front propagation, which can 
be stated in the form  
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,    (3.3.22) 

that light is propagated in straight lines. But light possesses energy and by the law of proportionality 
of mass and energy all energy is indissolubly connected with mass. Therefore fight must possess 
mass. On the other hand, by the law of universal gravitation, any mass located in a gravitational field 
must experience the action of that field and in general its motion will therefore not be rectilinear, 
Hence it follows that in a gravitational field the law of wave front propagation must have a form 
somewhat different from the one given above.  
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But the equation of wave front propagation is a basic characteristic of the properties of space and 
time. Hence it follows that the presence of the gravitational field must affect the properties of space 
and time and their metric is then not a rigid one. This is indeed the conclusion reached in the theory 
of gravitation which we now begin to construct. 
 
As was shown, the equation of wave front propagation (3.3.22) with some additional assumptions, 
leads to the following expression for the square of the interval: 

 ( )222222 dzdydxdtcds ++−= ,    (3.3.23) 

The influence of the gravitational field on the properties of space and time must have the 
consequence that the coefficients in the equation of wave front propagation and in the expression for 
the square of the interval will differ from the constant values appearing in (3.3.22) and (3.3.23). 
We must now find an approximate form for the square of the interval in a gravitational field of 
Newtonian potential gϕ . 

 
We shall thus now assume that space-time is in the main Euclidean, or rather pseudo-Euclidean, and 
that any deviation of space-time geometry from Euclidean geometry is a result of the presence of a 
gravitational field. Whereever there is no gravitational field, geometry must be Euclidean. For an 
insular distribution of masses the gravitational field must tend to zero at infinity and therefore we 
have to assume that at points far removed from the masses the geometry of space-time becomes 
Euclidean. 
 
We shall now try to find a metric such that these equations coincide approximately with the 
Newtonian equations of motion for a free body in a given gravitational field. If this attempt is 
successful it will enable us to introduce the hypothesis that in a space-time with given metric a free 
body (mass point) moves along a geodesic ; in this way the connection between the law of motion 
and the metric will be established. 
 
As we know, the equation of a geodesic may be derived from the variational principle 

 0=∫dsδ ,     (3.3.24) 

If the squared interval is of the form (3.3.23) we have 

 ( )dtcds 22 υ−= ,     (3.3.25) 

or, for small velocities, 

 dt
c

cds 







−=

2

2υ
,      (3.3.26) 

Inserting (3.3.25) or (3.3.26) into (3.3.24) gives equations that describe motion with constant 
velocity, which indeed is free motion in the absence of a gravitational field. We can now assume that 
for small velocities and weak gravitational fields ( 2cU << ) the expression for the interval takes the 
form 

 ( )dtcds g
22 2 υϕ −−= ,     (3.3.27) 
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or 

 dt
c
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 +−= ϕυ 2

2

11
,     (3.3.28) 

in place of (3.3.25) or (3.3.26). Since neither an additive constant nor a constant multiplier are of any 
importance in a Lagrangian the variational principle (3.3.24), with ds taken from (3.3.28), gives the 
same result as the variational principle 

 0
2

1 2 =



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

 +∫ dtgϕυδ ,     (3.3.29) 

but this did indeed describe free motion of a body in a gravitational field. It is true that just because 
additive constants and multiplicative factors in a Lagrangian are immaterial equation (3.3.29) could 
be obtained from (3.3.24) and (3.3.27) with any sufficiently large value of the constant c  
 
These arguments give us good reason to assume that under the conditions 
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 υ ,    (3.3.30) 

the square of the interval differs little from the form 

 ( ) ( )222222 2 dzdydxdtcds g ++−−= ϕ ,     (3.3.31) 

The theory of gravitation gives the more exact expression 

 ( ) ( )222
2

222
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ϕ
ϕ ,    (3.3.31)” 

 

4.0. The description methods  of motion of bodies in gravitational field 
“We consider (Fock, 1964).  a problem of an astronomical type, relating to the motion of celestial 
bodies in empty space. 
 
Our problem is simplified in the first place by the fact that the metric nowhere deviates greatly from 
the Euclidean ; the table given below gives an idea of how small the deviation is. 
 

 

where  
2c

Mγα =   is the gravitational radius of the mass M . For the Sun, and even more so for the 

planets, the gravitational radius α  is much smaller than the geometric radius  L, which may be 
defined as the radius of a sphere of volume equal to that of the body. 
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A further simplifying circumstance is that at all significant distances from the bodies, the metric does 
not depend on the detailed internal structure of the latter, but only on certain overall characteristics. 
Such characteristics are the total mass of the body, its moments of inertia, the position and velocity of 
its mass centre and so on. The Newtonian potential of a body depends on these same quantities. 
To solve Einstein's equations we shall use a method of approximation. It is based on an expansion of 
all required functions in inverse powers of the speed of light. An expansion that can formally be so 
described will, in fact, be an expansion in powers of certain dimensionless quantities, such as 

2cgϕ and 22 cυ , where gϕ  is the Newtonian potential and υ  the square of some velocity, say the 

velocity of one of the bodies... 
 
If we solve wave equations by introducing corrections for retardation we imply that the dimensions 
of the system are small compared to the wavelength of the waves emitted, which in this case are 
gravitational waves.” 
 
Let us refer once again to the analysis of the structure of GR, made by M.-A. Tonnela (Tonnelat, 
1966): 
 
"All the predictions of general relativity follow from the field equations and the laws of geodesic 
motion: 

 αβµνµνµν χ gTRgR →=−
2

1
,   (3.4.1) 

 0=∫dsδ ,   (3.4.2) 

The first allow us to define µνg  and put this value in (3.4.2). All the present-day predictions follow 

from the below mentioned values µνg : 
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−= ,               (3.4.3)” 

From our analysis it follows that the equation (3.4.2) is equivalent to HJE; HJE and the expression 
for the interval  ds are connected between them: according to Fock (see above) from HJE can be 
obtained  ds. But then we must conclude that HJE in some sense is equivalent to HEE (3.4.1). The 
question arises, if both equivalences can  take place, and if so, in what way? 
 
HJE describes the motion of a body in an external field. In a Cartesian coordinate system, it has the 
form (3.2.5)  
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where the external field is given by functions of energy exε   and momentum  exp
r

 (note that, 

generally, the equation (3.2.5) should be written in covariant form). But the function exε   and  exp
r

 

must be pre-found from the equation of a field source. Therefore, the equation of the field source in 
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some sense must be equivalent to the HEE. But there are differences here: the HEE gives the metric 
tensor, while the quantities exε   and  exp

r

 are not expressed directly through the metric tensor. To 

compare with the solutions of general relativity equation, it is necessary to show that this expression 
is possible, though it, for the solution of  HJE this may not be necessary. 

 

4.2. Description of the gravitational field as a perturbation 
 
Let us leave aside the question of the field source equation to the next section, and try to find out if 
there are in physics, methods of problem solving, which would provide the necessary trajectory, 
corresponding to (3.4.2) and (3.4.3). 
 
For our  search of solution of this problem, the following assumption of M.-A. Tonnela is noteworthy 
(Tonnela, 1966): 
 
"We assume that the laws of motion can be derived from the geodesic law. The experiment would 
allow then to recreate with a consistent approximation the structures ( 0=µνR   in a vacuum)of non-

Euclidean space. But we can, on the contrary, suggests that this geodesic law is invalid, or at least, is 
shown in a simple Euclidean space, which has phenomenological properties, that is, some distortion, 
or, if desired, a polarization of empty space by means of gravitational field. Then the action of the 
gravitational field on light will be the result of special interaction,  not  the propagation of light in the 
empty space (but a curvilinear one) . 
 
One might think that in this empty Euclidean space - though polarized by matter - there is an "index 
of emptiness," which justifies the expressions (3.4.1) and (3.4.2), in case of change of the interval  

''' ndsds= ”. 
 
In other words (see also (Kyriakos, 2012b)), we can consider the gravitational field as a perturbation 
of the empty (in the absence of fields) physical vacuum, described by Euclidean geometry. In this 
case, we can use perturbation theory to calculate the motion of bodies in this field. 
 
How does then the statement of the problem look like? 
 
Here we can use the method of Fock (see above), which “is based on an expansion of all required 
functions in inverse powers of the speed of light. An expansion that can formally be so described 
will, in fact, be an expansion in powers of certain dimensionless quantities, such as 2cgϕ and 

22 cυ , where gϕ  is the Newtonian potential and υ  the square of some velocity, say the velocity of 

one of the bodies”. 
 
In the general formulation, this method can be described as follows (Tonnela, 1966): 
Assume that the field equations are unknown, i.e. structural conditions are unknown that must be 
prescribed by a non-Euclidean space. We could search in the reverse order the structure of space, 



Prespacetime Journal| October 2012 | Volume 3 | Issue 11 | pp. 1028-1051 
Kyriakos, A. G.  On Lorentz-invariant Theory of Gravitation Part 3: Optical-mechanical Analogy and the Particle-wave Duality in 

the Theory of Gravity 
 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

1049

based on experimental results. For this, it would be sufficient to use the power series expansion with 

the parameter  
rc

M
cg 2

2
γ

ϕ = , characterizing the influence of sources. We obtain: 
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,    (3.4.4) 

 0=∫dsδ ,   (3.4.5)  

In this case the coefficients ,...,,,...;,,...;,,...;, 21212121 ddccbbaa   should be consistently determined 
on the basis of  perturbation theory: in first approximation - the first coefficient, then the second, and 
so on. In this case the test can serve the values from (3.4.3) according to general relativity. In 
particular: 
 
 1) Newton's law of gravity and gravitational shift, dictate 1a  ( 1a = - 2); 
 
 2) The bending of light rays in a gravitational field, dictates 11 ab −=  ( 1a = 2, 1b = 2). 
 
 3) the precession of the perihelion of Mercury's, dictates ( ) 02111 =+− aaba  ( 1a = 2, 1b = 2, 2a = 0). 
 
All other factors in these problems are equal to zero. It is clear that they are not necessarily equal to 
zero for other tasks. For example, in the case of the experiments with the gyroscope, the combination 
( ( )112 ab −  ) arises. Also the new coefficients arise, which are introduced by the form  , which does 
not have spherical symmetry. Such is, for example, the effect of the rotating  central body, which 
introduces the term (хdу - уdх), the influence of which can be foreseen by theory and measured with 
experiment. 
 
Our problem can be formulated as follows: how to build HJE, in such a form that on the basis of the 
perturbation theory, it would  be possible to obtain in the interval, the abovementioned terms, which 
are other than the pseudo-Euclidian interval? 
 
Since the time of Poincaré,  the planetary motion in the solar system is considered on the basis of 
perturbation theory. Recall also that on the basis of perturbation theory many problems of quantum 
field theory are solved  . Is it possible to use this method in this case, selecting as the initial state the 
one that is given by Newton's theory and adding members, which follow from the relativistic 
corrections? 
 
To the analysis of this pathway we will devote a separate study. In the next section we will consider 
the question about the source equation of gravitational field, which can replace HEE equation. 
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5.0. The equation of gravity of Hilbert-Einstein as a generalization of 
the wave equation 
Thus, we have seen that the motion of bodies in a gravitational field is described by the Hamilton-
Jacobi  equation if the source is calculated according to the theory of Hilbert-Einstein 
Now remember that according to optical-mechanical analogy it is assumed that the HJE associated 
with wave equation. 
 
On the other hand, in quantum theory the particle-wave duality implies that the Hamilton-Jacobi 
equation is associated with a wave of an elementary particle, and hence - with the wave equation of 
particles.  
 
At the same time, we noted (see (Kyriakos, 2012a)), in the theory of Maxwell-Lorentz that the  
d'Alembert wave equation contains a source of the electromagnetic field and allows to calculate the 
electromagnetic field of this source. Similarly, the gravity equation of Hilbert-Einstein contains as a 
source of the gravitational field, the generalization of mass in the form of the energy-momentum 
tensor, which allows to calculate the corresponding gravitational field. 
 
The question arises: is it possible to compare in the gravitational theory, the Hamilton-Jacobi 
equation with a wave equation? 
 
By analogy with the abovementioned facts we can assume that the Hilbert-Einstein equations is 
a generalization of the tensor wave equation in covariant record. In other words, we can 
assume that the covariant HJE and the  HEE are two sides of the optical-mechanical analogy 
(or of dualism wave-particle) in Gravity. 
 
Are there any results to prove this assumption? Yes, indeed, such results exist. 
According to (Fock, 1964, p. 194) “the equation:  

 0=
∂
∂

∂
∂

νµ

µν

x

S

x

S
g ,    (3.5.1)  

for the propagation of a gravitational wave-front is the same as the corresponding equation for the 
front of a light wave in empty space on which the whole theory of space and time, starting from the 
generally covariant form of Maxwell's equations. Briefly one can say that gravitation is propagated 
with the speed of light as EM waves”.  
 
Thus (Fock, 1964) “we see that Einstein's equations are of the type of the wave equation, because 
their main terms involve the d'Alembert operator”. 
 
In many textbooks on the theory of gravity is shown that the equation of the HEE in the Newtonian 
approximation is the inhomogeneous wave equation of D'Alembert: 
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where gϕ  is connected with 00g  by the relationship 
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This assumption does not also conflict the alternative gravitation theory of A. Logunov, which gives 
the same results as the Hilbert-Einstein theory. Indeed, the basic equation of this theory can be 
represented in the form of a wave equation with a source, like a wave equation of the EM field (see 
(Logunov, 2002; Kyriakos, 2012a)). 
 
Let us remember also that from the nonlinear theory of elementary particles (NTEP) follows that the 
sources of the EM field and the gravitational field (electric charge or mass) arise in a nonlinear wave 
equation of particles. This gives us a reason to look for the equation of gravity as a generalization of 
the nonlinear wave equations of elementary particles. 
 
Further research on this issue, will be continue in future articles. 
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