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Abstract
The two features of the behavior of bodies anddéieh mechanics, electromagnetic theory,
guantum theory and theory of gravity are companetthé article: the optical-mechanical analogy
and the wave-particle dualism. It is shown thatarms of mathematical description the two
features are similar in all cases. On this basisam hypothesized that the gravitational equation
of general relativity is a generalization of the wwaequation of the gravitational field.
Convincing reasons are given to justify this hyesik. It is assumed that the wave equation of
the nonlinear theory of elementary particles (NTE#®) be considered as a contender for the role
of gravitational equations.
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Abbreviations: NTEP - nonlinear theory of elementary particlel] - electromagnetic; HIJE - Hamilton-Jacobi equmgtio
HEE - Hilbert-Einstein equations of general relativ

1.0. Introduction: Statement of subject

The general problem of our research is the corigiruof a theory of gravity based on the
achievements of the Hilbert-Einstein gravitatioadty that would save all the achievements of the
last, but would lack theirs drawbacks (see (Logu2096; Kyriakos, 2012a)).

Because of the extremely low values of gravity édiar the masses of elementary particles, gravity
applies to macrophenomena and must be describethssical physics. On the other hand, a body
mass is the sum of the masses of the elementatiglgmithat make up this body. In the modern
theory and the nonlinear theory of elementary gadi(NTEP) (see articles in the "Prespacetime
Journal") the production of mass of elementaryigest is described by a special mechanism.
However, the mechanics of elementary particledhés wave mechanics. At the same time, the
mechanics of the motion of bodies in a gravitafidiedd is the mechanics of macroscopic bodies
and thus the classical mechanics. In this case iwlfa connection between them, from the physical
point of view and from the point of view of matheioal description?
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From a physical point of view, the relationshipviestn the wave theory and mechanics of particles,
in the form of optical-mechanical analogy of equadi (recall that optics is the science of
electromagnetic waves of the light range) was @ilstovered by R. Hamilton

Based on the study of the general laws of motiokla$sical mechanics, Hamilton came to the
conclusion that motion along a trajectory of assige patrticle in a field corresponds to the motion
of a massless particle - photon - along the rdiglbf in a medium with a variable index of refracti

In the absence of the field or at constant refradgtidex of medium, the one and the other particles
move in a straight line. In another words, at frestion a particle moves in a Euclidean space, tout a
non-free motion it moves in a curved space, whitgeneral is a Riemannian space.

Mathematically the equation of motion of a mateiadly is the Hamilton-Jacobi equation (HJE). In
this way, as we mentioned in the review (Kyriak&®]2a), it is used in GRT (Landau and Lifshitz,
1980). Hamilton noted that this equation also dessrthe motion of light rays. The dual use of this
equation is namely the mathematical expressioheobptical-mechanical analogy.

But this analogy was not complete. Conventionalceps divided into wave and geometrical (ray)

optics. The geometrical optics is the limited cakevave optics at very high frequencies of waves.
Namely in this limit, the analogy between the emuet of motion of the particle and the equation of
the light beam is detected . But this analogy isretated to the connection of the equations of
motion of a particle with the wave equation of tigbo it has long been considered nothing more
than an interesting mathematical conclusion.

De Broglie was the first who pointed out the pasgmbof an extended analogy, at least, for
elementary particles. Based on Lorentz transfoonathe has shown that the elementary particles
(such as electron) must have wave properties.heratords, de Broglie showed that the analogy
between light and a material particle is compléggtt and particle have both wave and patrticle
properties (which is called "wave-particle dualignDe Broglie showed mathematically that the
motion of an electron in a hydrogen atom can bartegl as a movement of the waves according to
Fermat's principle for light waves. The existendéeth® wave properties of electrons has been
confirmed by experiment and raised questions ath@utmathematical description of the motion of
the electron as a wave.

As is known, the equation of motion - the wave déiqnaof motion of the electron (for non-
relativistic speeds) was found by Schrodinger (&ethinger, 1982).. The most important for us are
the two pointsont which Schrodinger relied (seer&@tlinger. First and second posts):

1) Schrodinger derived his equation from HJE, pashg the proportionality of the HIJE main
function (“action”) with the phase of the electnwave.

2) Schradinger noted the link of the spatial intémwith the action, following from HIE .

Later, the link of HIE, as a ray equation, with theory of gravity was investigated by V. Fock
(Fock, 1964). The connection between the theongrality with the wave equation was not
discussed, since it concerns macrobodies, whiattigafly do not have wave properties. However,

Prespacetime Journal www.prespacetime.com
Published by QuantumDream, Inc.



Prespacetime Journal| October 2012 | Volume 3i¢1%4 | pp. 1028-1051 1030
Kyriakos, A. G. On Lorentz-invariant Theory of Gravitation Part 3: Optical-mechanical Analogy and the Particle-wave Duality in
the Theory of Gravity

the full optical-mechanical analogy raises the tioesof the relation of the body motion in the
gravitational field with the wave equation and veene back to this question later.

In his book V. Fock showed that a Lorentz transfirom should be considered as invariant
transformations of HJE. Using this approach, hentpdi out that the space-time interval in the
pseudo-Euclidean space is determined by the Haiforection, i.e. by action.

Unfortunately, the relationship of HJE with the gpdéime interval in the case of a curved space-time
(in particular, in the pseudo-Riemannian space)coosidered by V.Fock. This problem has not
been solved and is one of the subjects to studyak@ some steps in this direction, let us consider
briefly the results of the above studies in terfinsup problem.

2.0. Action function and its physical meaning.

2.1. Classical mechanics

The notion of function as "action” (the name gi\mnLeibniz) was the result of the work of many

famous scientists for nearly 200 years (Polak, 1958e task in which the need occur for such a
function is called the problem of functional exttem The problem can be briefly stated as
follows:

1) It is needed to find the equation of motion ahassive particle under the action of any forces
between two pointd andB. Clearly, the number of possible paths of motietwleenA andB can be
infinite. But it was verified experimentally thdttet particle moves according to the Newton's law (or
one of its equivalents), only along one definitthp@herefore, the question arose:

2) is there a physical valu‘é(x, Y, z,t) that determines the choice from a set of trajextponly the
trajectory that corresponds to the task.

For some tasks was found, the functiphAs , where p is momentum of the body, adss is the

B
element of path, so that the functiol®'= Z p[As = jpms must have the extremum value
As-0 A

(maximum or minimum) for real trajectory. Functi@ was called "action.” For other problems was
found function TAt , whereT is the kinetic energy of the particlét is time traffic, so that action

t2
S'= ZT LAt = IT [dt . Later, for a wide range of mechanics problems feand the function
1

At-0 t

LAt :(T —V)At, whereV is the potential energy, and. =T -V is called the Lagrange
function, so that actio®"'= J' (T -V)dt (note the fact that the action includes prosltictomentum
x distance" and "energy x time".
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The real trajectory of motion is determined by ¥iagation of the action is equal to zer@s = 0.
The consequence of this equation is the Euler-lrggraequation. But Hamilton found that the
equation of motion can be written in the form ohhildon-Jacobi (HJE) by means of action function.
Its physical meaning is found in quantum mechanié®m the wave theory of the electron (a
guestion, which we will discuss later). Next, loak specific forms HJE for different physical
problems.

2.1.1. Relativistic and non-relativistic Hamilton-Jacobi e quation (Landau and Lifshitz,
1980)

We can say that at the free movement (i.e. in aesen field) the particles move in a pseudo-
Euclidean space, and in the case of motion initié f- in a curved space (which generally is a
Riemannian space).

In the absence of the field (in the case of a phatas equivalent to the presence of constant
refractive index of the medium), the massless tph)oand massive (electron) particles move in a
straight line.

In the case of massless particles — the photore -etjuation of the wave front of light is the
homogenous Hamilton-Jacobi equation (HJE) andheafotm:

1(as) (as) (as) (asY
= - — - =0, (321)
c°|dt Jd X ay Jz
which is an equation of first order and second eeghs is well known (Landau and Lifshitz, Field
Theory), the actionS is associated with the momentum and Hamiltonian H (total energy) by
Jds 0SS S _ Js oS

, oS . - :
the relations:p=— (.e. —=¢, =p,, —=p,) and H=—-— _Inthis
T P 57 =P ot

caseH = H (qu...,qn; pl...,pn;t), ands = S(ql’...,qn,t). The relationshi|d-A| = —% , considering

= ? , actually is the HJE.
r

Considering the action as a phase of the wave,eedhat the wave vector plays in geometrical
optics the role of the particle's momentum in madsa and frequency plays the role of the
Hamiltonian, i.e. of the total energy of the pagtic

This equation can be written in linearized form as:

7S \/(a s)z (a SJZ (a SJZ
=c + + , (3.2.2)
Jt Jd X ay Jz

One can assume that the motion of a photon in @erret field with the energy-momentum
E.» Doy, IS described by HIE of type:
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1(9s, * (ds > (ds * (ds ? . 623
—| =t | | =—- | == | == =0, 2.
C2 dt ex ﬂ X pxex d y py ex d 7 pz ex

(note thate,,, p., can represent any field: electromagnetic, graeitat, etc.). This corresponds to

the motion of a photon in an inhomogeneous mediuth w refractive index that depends on
coordinates and time. Obviously, the trajectory mok be a straight line, but a curve.

In the case of the free motion of a massive redtiivparticle with massn (such as an electron
without external field) it is easy to obtain th&atwistic HIE:

1(&3)2 (ds)z (ﬂS}Z (as}z -
pes - - - =m'c, (3.2.4)
c'\oat d X ay

Jz
2
. . . . 1(2S - _\2 5 o . .
which can be written more concisely in vector fof T - (DS) =m-c® or in covariant form
o

(25w
X\ 0y

In the case of the motion of a massive particlannexternal field with the energy-momentum
Eorr Poyy HIE is:

1(ds, ) _(os * (ss * (ds o, 629
—| =t | | =—- | == | == =m?c?, 2.
C2 dt ex ﬂx pxex ﬂ y pyex d 7 pzex

In the nonrelativistic case, this equation in Ga#e coordinate system is:
2 2 2
Js Js Js Js
+ Z 1 [ + + ==V, (3.2.6)
Jt 2m1 Jd X ay

0z
2.2. Quantum mechanics

Schrédinger as the starting point of his search@felectron wave equation took the HJE equation.
The latter is not a wave equation, but, as it appetis closely connected with it. Consider this
relationship according to Schrodinger.

2.2.1. The geometric representation of the particle motion as wave and as
particles

In his Nobel lecture Schrédinger described the chadea of wave mechanics as follows
(Schrodinger, 1933): “I would define the preseatesiof our knowledge as follows. The ray or the
particle path corresponds to lengitudinal relationship of the propagation process (ire.the
direction of propagation), the wave surface on the other Hand transversalrelationship (i.e.
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normalto it). Both relationships are without doubt real; one is prolagdphotographed particle
paths, the other by interference experiments. Tmbawe both in a uniform system has proved
impossible so far. Only in extreme cases does rettiee transversal, shell-shaped or the radial,
longitudinal relationship predominate to such aremxthat wehink we can make do with the wave
theory alone or with the particle theory alone”.

“According to the wave theory of light, the lighays, strictly speaking, have only fictitious
significance. They are not the physical paths ohesgarticles of light, but are a mathematical
device, the so-called orthogonal trajectories ofensurfaces, imaginary guide lines as it were, whic
point in the direction normal to the wave surfatghich the latter advances (cf. Fig. 1 which shows
the simplest case of concentric spherical wavesesfand accordingly rectilinear rays, whereas Fig.
2 illustrates the case of curved rays)”.

Fig. 1 Fig. 2

Thus, on the one hand we have the wave patternoabm(Schrodinger, Nobel lecture), which
results in the following conclusion (Schrédinged33):

“We identify the area of interference, the difffranthalo, with the atom; we assert that the atom in
reality is merely the diffraction phenomenon ofedectron wave captured us it were by the nucleus
of the atom. It is no longer a matter of chancettasize of the atom and the wavelength areeof th

same order of magnitude: it is a matter of course”.

On the other hand, we have the motion of the elecis a particle. But the differentiation of these
movements is a difficult task (Schroedinger, 1382ond part):

It is clear that then the " system path " in thesseof classical mechanic®. the path of the point of
exact phase agreement, will completely lose iteogagive, because there exists a whole continuum
of points before, behind, and near the particutantpin which there is almost as complete phase
agreement, and which describe totally differenaithp ". In other words, the wave group not only
fills the whole path domain all at once but algetshes far beyond it in all directions.

In this sense do | interpret the "phase waves" which, detgto de Broglie, accompany the path of
the electron; in the sense, therefore, that noidp@eaning is to be attached to the electronib pat
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itself (at any rate, in the interior of the atomd still less to the position of the electron tsrpath.
And in this sense | explain the conviction, incnegly evident to-dayfirstly, that real meaning has
to be denied to thphaseof electronic motions in the atonsecondlythat we can never assert that
the electron at a definite instant is to be founcuay definite onef the quantum paths, specialised
by the quantum conditions; aigirdly, that the true laws of quantum mechanics do notisibas
definite rules for thaingle pathput that in these laws the elements of the wholeifld of paths of

a system are bound together by equations, so pprently a certain reciprocal action exists
between the different paths.

It is not incomprehensible that a careful analgéithe experimentally known quantities should lead
to assertions of this kind, if the experimentalyptn facts are the outcome of such a structureeof t
real process as is here represented. All thesgiassesystematically contribute to the relinquighi

of the ideas of "place of the electron” and "pathth® electron”. If these are not given up,
contradictions remain. This contradiction has bserstrongly felt that it has even been doubted
whether what goes on in the atom could ever beribescwithin the scheme of space and time.
From the philosophical standpoint...

| would consider a conclusive decisiam, this sense as equivalent to a complete surrende
For we cannot really alter our manner of thinkimg gpace and time, and what we cannot
comprehend within it we cannot understand at &léréare such things — but | do not believe that
atomic structure is one of them. From our standpbiowever, there is no reason for such doubt,
although or rathebecausets appearance is extraordinarily comprehensibte.ntigght a person
versed in geometrical optics, after many attempexplain diffraction phenomena by means of the
idea of the ray (trustworthy for his macroscopiticg), which always came to nothing, at last think
that theLaws of Geometrgire not applicable to diffraction, since he cordlhyufinds that light rays,
which he imagines aeectilinear and independenbf each other, now suddenly show, even in
homogeneous media, the most remarkatlevatures, and obviously mutually influenceone
another».

From this analysis follows that the particle motasa wave and the particle motion as a material
body determine one another. It can be assumedathparticle in physical vacuum at each
infinitesimal step of motion selects its directidoy, "touching” with waves the state of physical
vacuum around himself.

2.2.2. Relationship between the differential equation of p article motion as
mechanical body and as corresponding wave

The Hamiltonian analogy between mechanics and pticquantum mechanics, Schroédinger
considered in detail (Schroedinger, 1982, first sewbnd parts):

“Let us throw more light on thgeneralcorrespondence which exists between the Hamiltoobia
differential equation of a mechanical problem drel"tallied"wave equation

Theinner connection between Hamilton's theory and the psooEwave propagation is anything but
a new idea. It was not only well known to Hamiltbuf it also served him as the starting-point for
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his theory of mechanics, which grew out of Riptics of Non-homogeneous Mediamilton's
variation principle can be shown to corresponddorfat'sPrinciple for a wave propagation in con-
figuration spacecftspace), and the Hamilton-Jacobi equation exprddaggensPrinciple for this
wave propagation. Unfortunately this powerful anohmentous conception of Hamilton is deprived,
in most modem reproductions, of its beautiful rantrees a superfluous accessory, in favour of a more
colourless representation of the analytical cooedpnce”.

On this basis, Schroedinger derived his famous wguation of the electron.

Let us consider the derivation of the Schrodingavevequation as the steady state equation of atom
(Stanyukovich, Kolesnikov et al., 1968).

For definiteness we consider a hydrogen atom, wiimhsists of one proton (assuming it is
immobile) and the electron moving around it (assniti is a point with coordinates, y, z). Let the

total energy of the system be equalste cons . The task is to identify the values, which make
the system stable.

We assume that the instantaneous (momentary) gathe total energy of the system is given by:
2

p’ 1(. 2 2\ _€
E,=T+V=—+VI(X, ¥, 2)=—A\p, + P, + P;)——, 3.2.7
. o (y)Zm(p |oy|0)r (3.2.7)
Substituting the values of the projections of moimenin the action, we find
1{(0s) (as) (as)] e
£ =— + + -, (3.2.7"
2m|| d x ay Jz r

We will now define the difference at evry poity, z:

As(x,y,z)=£m—£:i{d SJ +(d SJ +(d SJ —e—z—g, (3.2.8)

2m|| 2 x ay oz r

Let us integrate this difference over all possiuakies of the coordinates:

AE‘IAE(X z)dxd dz—j 1 dSZ+ dSZ+ osY —ez—e xdydz, (3.2.9)
Y y 2m|| J x ay 0z r yos (5.

It is natural now to assume that the stable mowésraf our system meet the minimum value of the

integral A as a functional of the functioﬁ(x, Y, z). Varying Ae with respect toS and equating
the variation to zero, we obtain:

2 2 2
S(AF) = j(i(%i/f@ij
From this follows the condition for the stability motion of our system (condition of Lyapunov-
Chetaev)

J A5 dxdydz=0, (3.2.10)
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2 2 2
0;}(;S+2/28+0;228=AS=0, (3.2.11)

This equation, however, does not contains the \alltlee constants , which makes the motion of
the system stable. Therefore, Schrédinger consldexesformation of the desired function

S(x, y,z)= Alng(x, v, 2), (3.2.12)
As result of the transformation we obtain:

Ag(x, y,2) = A {M/J +[M'J +(M1J —e_z—g, (3.2.13)

omp?|\dx) oy (dz)[

Next Schrodinger considered another integral

(ne) = IAe(x, v, z)2(x, v, z) dxdydz, (3.2.4)
Varying it onyg/ and setting the result to zero, Schrodinger reckilie wave equation:
2 2 2 2
OY oW oY 2L =0, (3.2.15)
X o V774 A r

where was found tha = —-i#

Note that equation (3.2.11) is equivalent to (&R.if we use (3.2.12) in the form
S(x, Y, z) =-ih Int//(x, Y, z). It is easy to show this by direct substitution.

2.2.3. The geometric representation of the Schrodinger (no n-relativistic) equation
(Schroedinger, 1982, second part, p.14, etc).

“Let us consider the general problem of consereatiystems in classical mechanics. The Hamilton-
Jacobi equation runs

0S 0S
+T7 ,— +V :O' 3.2.16
ot (qk aqk] (Qk) ( )

where S isthe action function, i.g¢he time integral of the Lagrange functibn Valong a path of the
system as a function of the end points and the, tapis a representative position co-ordinates

the kinetic energy as function of tggand momenta, being a quadratic form of the latenyhich,

as prescribed, the partial derivativesSafith respect to thg's S—S are written.V is the potential
oD

energy....

Suppose that a functioB has been found. Then this function can be cleapyesented for every
definitet, if the family of surfacesS = const, be described i -space and to each member a value

of S be ascribed....
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Let the valueS, be given in Fig. 3 to an arbitrary surface.

Fig. 3

In order to find the surfaces, + dS,, take side of the given surface as the positive thestep

ds=— 9% (3.2.17)
Jﬂg—vj
The locus of the end points of the steps is thasas, +dS, . Similarly, the family of surfaces may
be constructed successively on both sides.

Now it is seen that our system of surfa8esconst, can be conceived as the system of wave
surfaces of a progressive but stationary wave matig-space.

The function of actionS plays the part of th@haseof our wave system. The Hamilton-Jacobi
equation is the expression of Huygens' principle.

We may sum up tha® denotes, apart from a universal constaht thle phase angle of the wave
function.

We have thus showrThe point of phase agreement for certain infinitedi manifolds of wave
systems, containingy parameters, moves according to the same laws asrthge point of the
mechanical systeém

2.2.4. The description of the electron motion by means the Hamilton-Jacobi
equations (Landau and Lifshitz, 1980, p.100)

“We consider the motion of a particle with massd aharge in the field produced by a second
chargee ; we assume that the mass of this second chagge large that it can be considered as
fixed. Then our problem becomes the study of théamamf a chargee in a centrally symmetric
electric field with potentialp = €/r . The total energy of the particle is equal to

£ =cy p°> +mc? +2 (3.2.18)
r

where a = ee' If we use polar coordinates in the plane of nmotdthe particle, then as we know
from mechanics,
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2

p* = |\r/|2 +p?, (3.2.19)

Where p, is the radial component of the momentum, &hdis the constant angular momentum of
the particle. Then

r

A complete determination of the motion of a charga Coulomb field starts most conveniently
from the Hamilton- Jacobi equation. We choose pmardinates, ¢ in the plane of the motion.

2
£= c\/ M2 + p? +m’c? +9 (3.2.20)
r

The Hamilton-Jacobi equation has the form

2 2 2
Js Js Js
A I i S R R R (3.2.21)
clat r ar r<{oe
We seek ar6 of the form
S=-a+Mg+f(r), (3.2.22)

wheree&, M are the constant energy and angular momentum afitiveng particle. The result is

2 2
S=-a+Mg+ j\/c—lz(g—%j —'\:l—z—mzcz Celr , (3.2.22)

The trajectory is determined by the equatiagll\qj—:const. Integration of (3.2.22) leads to the

trajectory. The integration constant is containedhie arbitrary choice of the reference line for
measurement of the angle’. (In detail see the book)

2.2.5. Waves and patrticles: dualism of description

We will write down some of the results of the Samnger research (including generalizations made
later.)

1. The connection between the path and the wa\agiegs is the connection between the movement
of the wave surface and the motion of a point digse along a certain line.

2. The motion of a particle as a wave, is descriipethe wave equation. The motion of a particle as
a massive body (ray or trajectory) is describedheyequation of motion of the point of the wave
front - HIE.

3. The main function of HJE is a functi®{x, y,z), called "action."
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4. FunctionS(x, y, zt) is instantaneously a function, which describesstiréace of the wave front,
or, equivalently, the surface of constant valuthefphase of the wave.

5. In terms of the vector field theory, the funntis(x, Y, z,t) can be regarded as a vector, the
direction of which at each point is determinedtiynormal to the surfac® = S(x, Y, Z t)ﬁ :

6. With a accuracy up to the Planck constant, theora S is the phase of the wave
i
(KT ~—(et=pr) -
D= @+ = ,i.e.S=n(wt-kF)=(et-pr).Inthe case of electro?g)—:zp.
0

)=inin 202

0

7. From this follows the transformatidﬁ(x Yy, Z,t , by which Schrédinger went

from HJE to the wave equation.

8. The trajectory (ray) of the point of the surfaﬁ(eg Y, z,t) can be considered as the radius vector
r = 91, wheres is the path traveled by the set paipnt

9. Denote the phase of the wave with letter thé‘ta:%(st - pr)= (a)t —EF). It is obvious that

S . . . ;
== Ing . Using the equation of energy conservatign-c? p?> = m°c”*, we can get the wave

front equation for a massive particle:

2 2.4
(lﬁj ~(grags)? ==

cat h?
For massless particles (EM waves), wimer= 0, this equation is:
2
(lﬁJ —(grads)? =o0.
c ot

Characteristically, the valuds@;Lf =¢ and hlgradd = —p constitute a 4-vector. This indicates

that the four-dimensional world of the theory datwity is a consequence of the wave origin of the
material particles.

10. From dimensional analysis follows that HIJE esalibed by integral physical values, and the
wave equation - by differential physical valuese&fically, the action has the dimension of angular
momentum = product of momentum on the path = prodithe energy on the time. According to
NTEP the square of the wave function is, in absolatms, the dimensions of density of energy-
momentum (energy / volume of space) = pressurensidn (force / area), and in relative terms, the
square of wave function is the probability dengtiymensionless).
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3.0. Wave and a particle in the gravitational theory (Fock, 1964).

3.1. The Law of Propagation of an Electromagnetic Wave Front

“The laws of propagation of light in empty space @inoroughly understood. They find their
expression in the well-known equations of Maxwell

However, we are not interested in the general chbght propagation, but only in the propagation
of a signal advancing with maximum speed, i.e pitopagation of a wave front. Ahead of the front
of the wave all components of the field vanish. iBéht some of them are different from zero.
Therefore, some of the field components must bmdiguous at the front.

On the other hand, given the field on some sunfaceing in space, the derivatives of the field on
the surface are, in general, determined by Maxsvadjuations.

Such a surface is called a characteristic surfacbriefly, a characteristic. Thus, discontinuitfs
the field can occur only on a characteristic, ntesthere must certainly be discontinuities aaev
front, such a front is clearly a characteristic.

Let us determine the equation of a characterigtithe system of Maxwell's equations.
Let the value of the field be given for those poiahd instants whose coordinates are related by the
eqguation

=% f(x, A z), (3.3.1)

In particular, if f = Othis amounts to stating initial conditions. Eqoat{3.3.1) may be looked upon
as the equation of a certain hypersurface in the-domensional space-time manifold. When
(gradf)2 >1 the same equation can be considered as the agwdtan ordinary surface moving
through space. Assume that on the hypersurfacd 3 values of a certain function u are given

u(x, y, z%j =u,(x, v, 2), (3.3.2)"

3.2. The photon trajectory (equations for rays)

“The equation describing the propagation of a wiema can be written in thienear form

JS 2sY (asY (as)
=c + + , (3.3.3)
Jt Jd X ay Jz

(for definiteness we have chosen the plus sigrrédifi@ square root).

In mechanicsS play the role of the action function and the danixes ﬁ:?- the momenta ,
r

P,, Py, P, . Corresponding to the Hamiltonian we have heeeebkpressionl—] = _?9_ts or
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. J(a SJZ (a SJZ [a SJZ
H=c + + , (3.3.4)
J X ay 0z

To the trajectories of mechanics there correspigid tays. The equations for them are analogous
to Hamilton's equations. They can be written

4 Jd X
dx_ H _ : : _, efc., (3.3.5)
dt (0’5} as\ (os) (o5
I X d x ay 0z
d(gsj oH
X) =% e, (3.3.6)
dt 1)

, S| (dS)([dS
Equation (3.3.6) shows that the quanti |e0§— vl 75 are constant along a ray, though
X y z

they can, of course, vary from one ray to anofhleerefore the rays will be straight

(d SJ
Jd X
X=X, =C (t—-t,), etc, (3.3.7)

(535

which, according to mechanical-optical analogyhésequation of motion of a point along the ray.

) S| (2dS)(dS) . o :
If the sign of S, and hence o , , , IS changed, the direction of the ray is
x| \dy) |0z

reversed ; the sign must be chosen according tgitka sense of direction of the ray”.

3.3. Connection of action with space-time interval (Fock, 1964)

“Any wave surface can be considered as formed wmit9onoving along the rays with the speed of
light according to (3.3.7).

We thus have the possibility of constructing a waudace at time when its form at timd is
known.

Let the equation of the wave surface at tijp@ave the form
S°(%: Y01 2) =0, (3.3.8)
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where x,, Y,, Z, are coordinates varying over this surface. Knowhregequation of the surface we

can calculate the quantities
JsY
J X
, etc,, (3.3.9)

2 2 2
s (as) (as)
+ +| ——
Jd X ay Jz
0

Here the sign of the right-hand sides is determimethe given direction of wave propagation. The
equation of the ray passing through the paxgt ¥,, z,) of the initial wave surface is

a(xo’yo’zo):

X—X, =calt—t,)
Y‘YO=C,3(t‘to), (0'2+,32+y2=1) , (3.3.10)
z-z, =cyft-t,)

The quantitiesx, y, z give the positions of the point to which the pdiry, y,, z,) moves at timd .

Allowing X,,Y,,Z, to take on all values which satisfy (3.3.8), weaob from (3.3.10) all points
which at timet lie on the wave surface.

If we solve (3.3.10) foi,, y,, z, and insert the functions

X, = % (X y,zt —t,), etc., (3.3.11)
into the wave surface equation (3.3.8), we getdfaion
S(x,y,zt-t,)=0, (3.3.12)

which is the explicit form of the equation of theawe surface at time. At t—t, obviously,
Xy =X Y, = ¥, Z, = z and equation (3.3.12) reduces to (3.3.8), wisdhé equation of the initially
given wave surface.

From the ray equation (3.3.7) there follows thatreh

c?(t-t,)" =[x =%, )’ +(y-vo) +(z-z)’| =0, (3.3.13)
which connects the coordinates of the initial ainalfpoints on each ray. It is the equation of a
sphere centred at the poiry, y,, 2, and of a radiuR = c(t —t,) that increases linearly with time.

Just as Hamilton-Jacobi equation, from which wetedia this equation expresses the fact that the
velocity of light propagation is constant.

For points infinitesimally separated relation (83.takes on the form
c?dt? - (dx® +dy? +dz?)=0, (3.3.13)

In this form the equation follows directly from Hdion's equation (3.3.5)".
A frame for which
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1 (a" SJZ (0" SJZ (a SJZ (a SJZ
2 - - - =0, (3.3.14)
c°|odt o X ay Jz

is valid may be called inertial in the electromagnsense”.

3.4. Features of the gravitational field

“The principle of the universal limiting velocityan be made mathematically precise as follows:
For any kind of wave advancing with limiting vetgcand capable of transmitting signals the
equation offront propagation is the same as theatgu for the front of a light wave

Thus the equation (3.3.14) acquires a general cieaydt is more general than Maxwell's equations
from which we derived it.

The presence of a gravitational field somewhatraltee appearance of the equation of the
characteristics from the form (3.3.14), but in tbése one and the same equation still governs the
propafgation of all kinds of wave fronts travellingth limiting velocity, including electromagnetic
and gravitational ones.

Let us considere the expressions

3 S a4S
Os)? = w = 2= 3.3.15
(0s) Zg . 0% (3.3.15)
ds’ = > g*’ox,0x, , (3.3.16)
uy=0

which were obtained from the usual expressionsetditiRity Theory by introducing variables, x,,

Xz andxg in place of the space and time coordinateg z, t We established the conditions subject to
which the variableg can characterize a sequence of events in tim¢handariables, X, X3 their
location in space.

By itself, the introduction of new variables carunally not influence the physical consequences of
the theory; it is merely a mathematical device.

We shall call equations generally covariant, ifytiaee valid for any arbitrary choice of independent
variables.

The most essential characteristic of the gravitatidield by which it differs from all other fields
known to physics reveals itself in the effect o field on the motion of a freely moving body or
mass point. In a gravitational field all otherwisee bodies move in the same manner, provided the
initial conditions of their motion, i.e. their imad positions and velocities, are the same.

According to Newton the gravitational field candbaracterized by the gravitational potentié, v,
2). The gravitational potential produced by an smlaspherically symmetric mass M at points
exterior to itself is
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P, = M, (3.3.17)

r
wherer is the distance from the centre of the mass. Tiaatdy y is the Newtonian constant of

gravitation—in c.g.s. units it has the value

1 cm’

~ 15000000 [ted

Thus ¢, has the dimensions of the square of a velocity. ndte immediately that in all cases

y (3.3.18)

encountered in Nature, even on the surface oftineo&of super-dense stars, the quangifyis very
small compared to the square of the speed of light

¢, <<c’, (3.3.19)

In the general case of an arbitrary mass distobutie Newtonian potenti&l it produces satisfies
Poisson's equation

A, =-4mp, (3.3.20)
where p,, is the mass density. The Newtonian potent@]l is fully determined by Poisson's

equation together with continuity and boundary ddms which are as follows : the functiagf,

and its first derivatives must be finite, singlexed and continuous throughout space and must tend
to zero at infinity.

As a result of the equality of inertial and gratitaal mass the equation of motion
w=gradg,, (3.3.21)

wherew is acceleration, has universal character”.

3.5. The space-time interval and the space-time metric

“The phenomenon of universal gravitation forcesausiden the framework of the theory of space
and time which was the subject of the Newton thebng necessity of this widening becomes clear
from the following considerations. It follows frotine equation of wave front propagation, which can
be stated in the form

1 [0” SJZ [0” s}z [a SJZ (a SJZ
2 - - - =0, (3.3.22)
c°| dt Jd X ay Jz

that light is propagated in straight lines. Buhtigpossesses energy and by the law of proportignali
of mass and energy all energy is indissolubly cotmtkewith mass. Therefore fight must possess
mass. On the other hand, by the law of universaligttion, any mass located in a gravitationatifiel
must experience the action of that field and ineganits motion will therefore not be rectilinear,
Hence it follows that in a gravitational field thev of wave front propagation must have a form
somewhat different from the one given above.
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But the equation of wave front propagation is adelaracteristic of the properties of space and
time. Hence it follows that the presence of theviggional field must affect the properties of spac
and time and their metric is then not a rigid oft@s is indeed the conclusion reached in the theory
of gravitation which we now begin to construct.

As was shown, the equation of wave front propagatso3.22) with some additional assumptions,
leads to the following expression for the squarihefinterval:

ds® = c?dt? - (dx® +dy? +dz?), (3.3.23)
The influence of the gravitational field on the pedies of space and time must have the
consequence that the coefficients in the equafievage front propagation and in the expression for
the square of the interval will differ from the cdant values appearing in (3.3.22) and (3.3.23).
We must now find an approximate form for the squaréhe interval in a gravitational field of
Newtonian potentiap, .

We shall thus now assume that space-time is im#ia Euclidean, or rather pseudo-Euclidean, and
that any deviation of space-time geometry from i#aain geometry is a result of the presence of a
gravitational field. Whereever there is no graisiaal field, geometry must be Euclidean. For an
insular distribution of masses the gravitationaldfimust tend to zero at infinity and therefore we
have to assume that at points far removed fromthsses the geometry of space-time becomes
Euclidean.

We shall now try to find a metric such that thesgiadions coincide approximately with the
Newtonian equations of motion for a free body igi@en gravitational field. If this attempt is
successful it will enable us to introduce the higpsts that in a space-time with given metric a free
body (mass point) moves along a geodesic ; inviaig the connection between the law of motion
and the metric will be established.

As we know, the equation of a geodesic may be elgfrom the variational principle
J[ds=0, (3.3.24)
If the squared interval is of the form (3.3.23) veere

ds=4/(c? - v? idt, (3.3.25)

or, for small velocities,
U2
ds= (c——]dt, (3.3.26)
2c

Inserting (3.3.25) or (3.3.26) into (3.3.24) giveguations that describe motion with constant
velocity, which indeed is free motion in the abseota gravitational field. We can now assume that
for small velocities and weak gravitational field$ << c*) the expression for the interval takes the
form

ds=,/lc? - 24, - v? dt, (3.3.27)
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or
ds= {c—l(luz " ¢gﬂdt, (3.3.28)
c\2

in place of (3.3.25) or (3.3.26). Since neitheadditive constant nor a constant multiplier ararof
importance in a Lagrangian the variational prireifd.3.24), withds taken from (3.3.28), gives the
same result as the variational principle

1
) I(EUZ + ¢gjdt =0, (3.3.29)
but this did indeed describe free motion of a biodg gravitational field. It is true that just besa
additive constants and multiplicative factors ihagrangian are immaterial equation (3.3.29) could

be obtained from (3.3.24) and (3.3.27) with anfigehtly large value of the constant

These arguments give us good reason to assumenithart the conditions

dx)*  (dy)* . (dz)’
¢g << CZ’ [_j +(_yj + [_j — U2 << CZ ' (3330)
dt dt dt
the square of the interval differs little from tloem
ds? = (c? - 2¢, Jt? - (b + dy? +dz?), (3.3.31)

The theory of gravitation gives the more exact esgion

ds* = (c? - 2, Jat® —(1+ %J(dxz +dy? +dz2), (3.3.31)

4.0. The description methods of motion of bodies in gravitational field
“We consider (Fock, 1964). a problem of an astnaigal type, relating to the motion of celestial
bodies in empty space.

Our problem is simplified in the first place by tfaet that the metric nowhere deviates greatly from
the Euclidean ; the table given below gives an afdew small the deviation is.

Sun Earth Moon
« .. .. .. 1-48 km 0-443 cm 0-0053 cm
L .. .. .. 696,000km 6,370 km 1,738 km
«:L .. .. .. 2x10-* 7 x 10710 3 x 10-11
where a :MZ is the gravitational radius of the masgs. For the Sun, and even more so for the
C

planets, the gravitational radiug is much smaller than the geometric radius which may be
defined as the radius of a sphere of volume equhkbt of the body.
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A further simplifying circumstance is that at ajrgficant distances from the bodies, the metrieslo
not depend on the detailed internal structure efidkter, but only on certain overall charactegssti
Such characteristics are the total mass of the, lizdyoments of inertia, the position and velooity

its mass centre and so on. The Newtonian poteiteabody depends on these same quantities.

To solve Einstein's equations we shall use a methagdproximation. It is based on an expansion of
all required functions in inverse powers of theespef light. An expansion that can formally be so
described will, in fact, be an expansion in powefscertain dimensionless quantities, such as

P, / c? andv?/c?, whereg, is the Newtonian potential and the square of some velocity, say the
velocity of one of the bodies...

If we solve wave equations by introducing correwidor retardation we imply that the dimensions
of the system are small compared to the waveleofgthe waves emitted, which in this case are
gravitational waves.”

Let us refer once again to the analysis of thecsira of GR, made by M.-A. Tonnela (Tonnelat,
1966):

"All the predictions of general relativity followdm the field equations and the laws of geodesic
motion:

1
R,uv _ERg,uv :XT;/V - gaﬁ' (341)

J[ds=0, (3.4.2)

The first allow us to defingy,,, and put this value in (3.4.2). All the present-gagdictions follow
from the below mentioned valugg,, :

2y M
o (LZTJCZO“Z ~ gy O (09" +sin’ 90p?), (343
1_
cr

From our analysis it follows that the equation 34s equivalent to HJE; HJE and the expression
for the interval ds are connected between them: according to Fockafseee) from HJE can be
obtained ds. But then we must conclude that HIJE in some siensguivalent to HEE (3.4.1). The
guestion arises, if both equivalences can taleepbnd if so, in what way?

HJE describes the motion of a body in an exteigkl.fln a Cartesian coordinate system, it has the
form (3.2.5)

1(as \ (os *(ss * (ds o,
2 o V€| T 37 Pyex | T __pyex | 52 7 Prex =m<c,
c°|odt o X ay Jz

where the external field is given by functions oery &£, and momentum p,, (note that,
generally, the equation (3.2.5) should be writtecavariant form). But the functios,, and p,,
must be pre-found from the equation of a field seuherefore, the equation of the field source in
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some sense must be equivalent to the HEE. But #nerdifferences here: the HEE gives the metric
tensor, while the quantities,, and p,, are not expressed directly through the metricaerigo

compare with the solutions of general relativity&iipn, it is necessary to show that this exprassio
is possible, though it, for the solution of HJEStlmay not be necessary.

4.2. Description of the gravitational field as a perturbation

Let us leave aside the question of the field soagretion to the next section, and try to findibut
there are in physics, methods of problem solvingickv would provide the necessary trajectory,
corresponding to (3.4.2) and (3.4.3).

For our search of solution of this problem, tHefeing assumption of M.-A. Tonnela is noteworthy
(Tonnela, 1966):

"We assume that the laws of motion can be derivat the geodesic law. The experiment would
allow then to recreate with a consistent approxonahe structuresR,, = 0in a vacuum)of non-

Euclidean space. But we can, on the contrary, stg¢jeat this geodesic law is invalid, or at leigst,
shown in a simple Euclidean space, which has phenolwogical properties, that is, some distortion,
or, if desired, a polarization of empty space byanseof gravitational field. Then the action of the
gravitational field on light will be the result special interaction, not the propagation of lighthe
empty space (but a curvilinear one) .

One might think that in this empty Euclidean spatteough polarized by matter - there is an "index
of emptiness," which justifies the expressions.{3.4nd (3.4.2), in case of change of the interval
ds=nds'".

In other words (see also (Kyriakos, 2012b)), we @amsider the gravitational field as a perturbation
of the empty (in the absence of fields) physicaluven, described by Euclidean geometry. In this
case, we can use perturbation theory to calculatenbtion of bodies in this field.

How does then the statement of the problem lo@®lik

Here we can use the method of Fock (see aboveghwisi based on an expansion of all required
functions in inverse powers of the speed of ligiit. expansion that can formally be so described

will, in fact, be an expansion in powers of certdimensionless quantities, such qﬁ;/c2 and
v?/c?, whereg, is the Newtonian potential and the square of some velocity, say the velocity of
one of the bodies”.

In the general formulation, this method can be rilestg as follows (Tonnela, 1966):
Assume that the field equations are unknown, fractsiral conditions are unknown that must be
prescribed by a non-Euclidean space. We could lsearthe reverse order the structure of space,
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based on experimental results. For this, it woeldiificient to use the power series expansion with

the parameterg, / c’ = 4 characterizing the influence of sources. We abtai

c’r
2 2
ds® :[1+—a12'vI + azl\/lz +...Jc2dt2 —[1+ blivl + bzi\/lz +...]dr2 -
cr ¢ c’r c'r (3.4.2)
) i , 4.
_[“ CliV' +%+...Jr2dz92 —[1+ dle + d24M2 +...jrzsin219d¢>2
c’r cr c’r ¢
S [ds=0, (3.4.5)

In this case the coefficients,a,,...;b,,b,,...;c;,C,,...;d,,d,,..., should be consistently determined
on the basis of perturbation theory: in first @xmation - the first coefficient, then the secoand
so on. In this case the test can serve the valoes (3.4.3) according to general relativity. In
particular:

1) Newton's law of gravity and gravitational shifictatea, (a,= - 2);
2) The bending of light rays in a gravitationaldi, dictated, = -a, (a,= 2, b, = 2).
3) the precession of the perihelion of Mercu@i‘sl;atesal(bl - a1)+ a,=0(a=2,b=2a,=0).

All other factors in these problems are equal to.z is clear that they are not necessarily etpal
zero for other tasks. For example, in the casbeoékperiments with the gyroscope, the combination
((2bl - ai) ) arises. Also the new coefficients arise, whiahiatroduced by the form , which does

not have spherical symmetry. Such is, for exampke,effect of the rotating central body, which
introduces the ternxdy - ydx), the influence of which can be foreseen by theoy measured with
experiment.

Our problem can be formulated as follows: how titdadJE, in such a form that on the basis of the
perturbation theory, it would be possible to abiaithe interval, the abovementioned terms, which
are other than the pseudo-Euclidian interval?

Since the time of Poincaré, the planetary motiothe solar system is considered on the basis of
perturbation theory. Recall also that on the bafsgerturbation theory many problems of quantum
field theory are solved . Is it possible to uge thethod in this case, selecting as the initatkesthe
one that is given by Newton's theory and adding bes which follow from the relativistic
corrections?

To the analysis of this pathway we will devote pasate study. In the next section we will consider
the question about the source equation of gramitatifield, which can replace HEE equation.
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5.0. The equation of gravity of Hilbert-Einstein as a generalization of
the wave equation

Thus, we have seen that the motion of bodies iradtgtional field is described by the Hamilton-
Jacobi equation if the source is calculated adegi the theory of Hilbert-Einstein

Now remember that according to optical-mechaninalagy it is assumed that the HJE associated
with wave equation.

On the other hand, in quantum theory the partideenvduality implies that the Hamilton-Jacobi
equation is associated with a wave of an elemempiamycle, and hence - with the wave equation of
particles.

At the same time, we noted (see (Kyriakos, 2012a)jhe theory of Maxwell-Lorentz that the
d'Alembert wave equation contains a source of lisxgtremagnetic field and allows to calculate the
electromagnetic field of this source. Similarlye tiravity equation of Hilbert-Einstein containsaas
source of the gravitational field, the general@matof mass in the form of the energy-momentum
tensor, which allows to calculate the correspondiayitational field.

The question arisess it possible to compare in the gravitational theory, the Hamilton-Jacobi
equation with a wave equation?

By analogy with the abovementioned facts we can assumethat the Hilbert-Einstein equationsis
a generalization of the tensor wave eguation in covariant record. In other words, we can
assume that the covariant HJE and the HEE are two sides of the optical-mechanical analogy
(or of dualism wave-particle) in Gravity.

Are there any results to prove this assumption? iideed, such results exist.

According to (Fock, 1964, p. 194) “the equation:
w0S 0S _q (3.5.1)
0x,, 0x,

for the propagation of a gravitational wave-framthe same as the corresponding equation for the
front of a light wave in empty space on which theole theory of space and time, starting from the
generally covariant form of Maxwell's equationsieBy one can say that gravitation is propagated
with the speed of light as EM waves”.

Thus (Fock, 1964)We see that Einstein's equations are of the tygheofvave equation, because
their main terms involve the d'Alembert operator

In many textbooks on the theory of gravity is shdtat the equation of the HEE in the Newtonian
approximation is the inhomogeneous wave equati@iAlEmbert:

10% 0’9, %4, 9, _
c® ot*> ox* oy* 97°

whereg, is connected withg,, by the relationship

Amp, (3.5.2)
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1M, 2 (35.3)

C,r C,

Joo =

This assumption does not also conflict the alteregravitation theory of A. Logunov, which gives
the same results as the Hilbert-Einstein theorgledd, the basic equation of this theory can be
represented in the form of a wave equation witbuace, like a wave equation of the EM field (see
(Logunov, 2002; Kyriakos, 2012a)).

Let us remember also that from the nonlinear thebslementary particles (NTEP) follows that the
sources of the EM field and the gravitational figdtectric charge or mass) arise in a nonlinearewav
equation of particles. This gives us a reasondk for the equation of gravity as a generalizabbn
the nonlinear wave equations of elementary pasticle

Further research on this issue, will be continueture articles.
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