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Abstract

M8−M4×CP2 duality represents an intriguing connection between number theory and TGD but
the mathematics involved is extremely abstract and difficult so that I can only represent conjectures.
In the following the basic duality is used to formulate a general conjecture for the construction of
preferred extremals by iterative procedure. What is remarkable and extremely surprising is that
the iteration gives rise to the analogs of Mandelbrot fractals and space-time surfaces can be seen as
fractals defined as fixed sets of iteration. The analogy with Mandelbrot set can be also seen as a
geometric correlate for quantum criticality.

1 M 8 −H duality briefly

M8−M4×CP2 duality [5, 4] states that certain 4-surfaces of M8 regarded as a sub-space of complexified
octonions can be mapped in a natural manner to 4-surfaces in M4×CP2: this would mean that M4×CP2

and therefore also the symmetries of standard model would have purely number theoretical meaning.
Consider a distribution of two planes M2(x) integrating to a 2-surface M̃2 with the property that a

fixed 1-plane M1 defining time axis globally is contained in each M2(x) and therefore in M̃2. M1 defines
real axis of octonionic plane M8 and M2(x) a local hyper-complex plane. Quaternionic subspaces with
this property can be parameterized by points of CP2: this leads to M8 −H duality as can be shown by
a simple argument.

1. Hyper-octonionic subspace of complexified octonions is obtained by multiplying octonionic imagi-
nary units by commuting imaginary unit. This does not bring anything new as far as automorphisms
are considered so that it is enough to consider octonions (so that M2 is replaced with C). Octonionic
frame consists of orthogonal octonionic units. The space of octonionic frames containing sub-frame
spanning fixed C is parameterized by SU(3). The reason is that complexified octonionic units can
be decomposed to the representations of SU(3) ⊂ G2 as 1 + 1 + 3 + 3 and the sub-frame 1+1 spans
the preferred C.

2. The quaternionic planes H are represented by frames defined by four unit octonions spanning a
quaternionic plane. Fixing C ⊂ H means fixing the 1+1 part in the above decomposition. The
sub-group of SU(3) leaving the plane H invariant can perform only a rotation in the plane defined
by two quaternionic units in 3. This sub-group is U(2) so that the space of quaternionic planes
H ⊃ C is parameterized by SU(3)/U(2) = CP2.

3. Therefore quaternionic tangent plane H ⊃ C can be mapped to a point of CP2. In particular,
any quaternionic surface in E8, whose tangent plane at each point is quaternionic and contains C,
can be mapped to E4 × CP2 by mapping the point (e1, e2) ∈ E4 × E4 to (e1, s) ∈ e4 × CP2. The
generalization from E8 to M8 is trivial. This is essentially what M8 −H duality says.
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This can be made more explicit. Define quaternionic surfaces in M8 as 4-surfaces, whose tangent
plane is quaternionic at each point x and contains the local hyper-complex plane M2(x) and is therefore
labelled by a point s(x) ∈ CP2. One can write these surfaces as union over 2-D surfaces associated with
points of M̃2:

X4 = ∪x∈M̃2X
2(x) ⊂ E6 .

These surfaces can be mapped to surfaces of M4 × CP2 via the correspondence (m(x), e(x)) →
(m, s(T (X4(x)). Also the image surface contains at given point x the preferred plane M2(x) ⊃ M1.
One can also write these surfaces as union over 2-D surfaces associated with points of M̃2:

X4 = ∪x∈M̃2X
2(x) ⊂ E2 × CP2 .

One can also ask what are the conditions under which one can map surfaces X4 = ∪x∈M̃2X2 ⊂ E2×CP2

to 4-surfaces in M8. The map would be given by (m, s)→ (m,T 4(s) and the surface would be of the form
as already described. The surface X4 must be such that the distribution of 4-D tangent planes defined in
M8 is integrable and this gives complicated integrability conditions. One might hope that the conditions
might hold true for preferred extremals satisfying some additional conditions.

One must make clear that the conditions discussed above do not allow most general possible surface.

1. The point is that for preferred extremals with Euclidian signature of metric the M4 projection is
3-dimensional and involves light like projection. Here the fact that light-like line L ⊂M2 spans M2

in the sense that the complement of its orthogonal complement in M8 is M2. Therefore one could
consider also more general solution ansatz for which one has

X4 = ∪x∈L(x)⊂M̃2X
3(x) ⊂ E2 × CP2 .

2. One can also consider co-quaternionic surfaces as surfaces for which tangent space is in the dual of a
quaternionic subspace. This says that the normal bundle rather than tangent bundle is quaternionic.
The space-time regions with Euclidian signature of induced metric correspond naturally to co-
quaternionic surfaces. Quaternionic surfaces are maximal associative sub-manifolds of octonionic
space and one of the key ideas of the number theoretic vision about TGD is that associativity
(co-associativity) defines the dynamics iof space-time surfaces. That this dynamics gives preferred
extremals of Kähler action remains to be proven.

2 The integrability conditions

The integrability conditions are associated with the expression of tangent vectors of T (X4) as a linear
combination of coordinate gradients ∇mk, where mk denote the coordinates of M8. Consider the 4
tangent vectors ei) for the quaternionic tangent plane (containing M2(x)) regarded as vectors of M8. ei)
have components eki), i = 1, .., 4, k = 1, ..., 8. One must be able to express ei) as linear combinations of

coordinate gradients ∇mk:

eki) = eαi)∂αm
k .

Here xα and ek denote coordinates for X4 and M8. By forming inner products of of ei) one finds that

matrix eαi) represents the components of vierbein at X4. One can invert this matrix to get e
i)
α satisfying

e
i)
αe

β
i) = δβα and e

i)
αeαj) = δij . One can solve the coordinate gradients ∇mk from above equation to get

∂αm
k = ei)αe

k
i) ≡ E

k
α .
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The integrability conditions follow from the gradient property and state

DαE
k
β = DβE

k
α .

One obtains 8× 6 = 48 conditions in the general case. The slicing to a union of two-surfaces labeled by
M2(x) reduces the number of conditions since the number of coordinates mk reduces from 8 to 6 and one
has 36 integrability conditions but still them is much larger than the number of free variables- essentially
the six transversal coordinates mk.

For co-quaternionic surfaces one can formulate integrability conditions now as conditions for the
existence of integrable distribution of orthogonal complements for tangent planes and it seems that the
conditions are formally similar.

3 How to solve the integrability conditions and field equations
for preferred extremals?

The basic idea has been that the integrability condition characterize preferred extremals so that they can
be said to be quaternionic in a well-defined sense. Could one imagine solving the integrability conditions by
some simple ansatz utilizing the core idea of M8−H duality? What comes in mind is that M8 represents
tangent space of M4 × CP2 so that one can assign to any point (m, s) of 4-surface X4 ⊂ M4 × CP2 a
tangent plane T 4(x) in its tangent space M8 identifiable as subspace of complexified octonions in the
proposed manner. Assume that s ∈ CP2 corresponds to a fixed tangent plane containing M2(x), and
that all planes M2(x) are mapped to the same standard fixed hyper-octonionic plane M2 ⊂ M8, which
does not depend on x. This guarantees that s corresponds to a unique quaternionic tangent plane for
given M2(x).

Consider the map T ◦s. The map takes the tangent plane T 4 at point (m, e) ∈M4×E4 and maps it to
(m, s1 = s(T 4)) ∈ M4 × CP2. The obvious identification of quaternionic tangent plane at (m, s1) would
be as T 4. One would have T ◦ s = Id. One could do this for all points of the quaternion surface X4 ⊂ E4

and hope of getting smooth 4-surface X4 ⊂ H as a result. This is the case if the integrability conditions
at various points (m, s(T 4)(x)) ∈ H are satisfied. One could equally well start from a quaternionic surface
of H and end up with integrability conditions in M8 discussed above. The geometric meaning would be
that the quaternionic surface in H is image of quaternionic surface in M8 under this map.

Could one somehow generalize this construction so that one could iterate the map T ◦s to get T ◦s = Id
at the limit? If so, quaternionic space-time surfaces would be obtained as limits of iteration for rather
arbitrary space-time surface in either M8 or H. One can also consider limit cycles, even limiting manifolds
with finite-dimension which would give quaternionic surfaces. This would give a connection with chaos
theory.

1. One could try to proceed by discretizing the situation in M8 and H. One does not fix quaternionic
surface at either side but just considers for a fixed m2 ∈ M2(x) a discrete collection X {(T 4

i } ⊃
M2(x) of quaternionic planes in M8. The points e2,i ⊂ E2 ⊂ M2 × E2 = M4 are not fixed. One
can also assume that the points si = s(T 4

i ) of CP2 defined by the collection of planes form in a good
approximation a cubic lattice in CP2 but this is not absolutely essential. Complex Eguchi-Hanson
coordinates ξi are natural choice for the coordinates of CP2. Assume also that the distances between
the nearest CP2 points are below some upper limit.

2. Consider now the iteration. One can map the collection X to H by mapping it to the set s(X)
of pairs ((m2, si). Next one must select some candidates for the points e2,i ∈ E2 ⊂ M4 somehow.
One can define a piece-wise linear surface in M4×CP2 consisting of 4-planes defined by the nearest
neighbors of given point (m2, e2,i, si). The coordinates e2,i for E2 ⊂M4 can be chosen rather freely.
The collection (e2,i,i ) defines a piece-wise linear surface in H consisting of four-cubes in the simplest
case. One can hope that for certain choices of e2,i the four-cubes are quaternionic and that there
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is some further criterion allowing to choose the points e2,i uniquely. The tangent planes contain by
construction M2(x) so that the product of remaining two spanning tangent space vectors (e3, e4)
must give an element of M2 in order to achieve quaternionicity. Another natural condition would
be that the resulting tangent planes are not only quaternionic but also as near as possible to the
planes T 4

i . These conditions allow to find e2,i giving rise to geometrically determined quaternionic
tangent planes as near as possible to those determined by si.

3. What to do next? Should one replace the quaternionic planes T 4
i with geometrically determined

quaternionic planes as near as possible to them and map them to points si slightly different from
the original one and repeat the procedure? This would not add new points to the approximation,
and this is an unsatisfactory feature.

4. Second possibility is based on the addition of the quaternionic tangent planes obtained in this man-
ner to the original collection of quaternionic planes. Therefore the number of points in discretization
increases and the added points of CP2 are as near as possible to existing ones. One can again de-
termine the points e2,i in such a manner that the resulting geometrically determined quaternionic
tangent planes are as near as possible to the original ones. This guarantees that the algorithm
converges.

5. The iteration can be stopped when desired accuracy is achieved: in other words the geometrically
determined quaternionic tangent planes are near enough to those determined by the points si.
Also limit cycles are possible and would be assignable to the transversal coordinates e2i varying
periodically during iteration. One can quite well allow this kind of cycles, and they would mean that
e2 coordinate as a function of CP2 coordinates characterizing the tangent plane is many-valued.
This is certainly very probable for solutions representable locally as graphs M4 → CP2. In this case
the tangent planes associated with distant points in E2 would be strongly correlated which must
have non-trivial physical implications. The iteration makes sense also p-adically and it might be
that in some cases only p-adic iteration converges for some value of p.

It is not obvious whether the proposed procedure gives rise to a smooth or even continuous 4-surface.
The conditions for this are geometric analogs of the above described algebraic integrability conditions for
the map assigning to the surface in M4 ×CP2 a surface in M8. Therefore M8 −H duality could express
the integrability conditions and preferred extremals would be 4-surfaces having counterparts also in the
tangent space M8 of H.

One might hope that the self-referentiality condition s ◦ T = Id for the CP2 projection of (m, s) or
its fractal generalization could solve the complicated integrability conditions for the map T . The image
of the space-time surface in tangent space M8 in turn could be interpreted as a description of space-time
surface using coordinates defined by the local tangent space M8. Also the analogy for the duality between
position and momentum suggests itself.

Is there any hope that this kind of construction could make sense? Or could one demonstrate that
it fails? If s would fix completely the tangent plane it would be probably easy to kill the conjecture
but this is not the case. Same s corresponds for different planes M2(x) to different point tangent plane.
Presumably they are related by a localG2 or SO(7) rotation. Note that the construction can be formulated
without any reference to the representation of the imbedding space gamma matrices in terms of octonions.
Complexified octonions are enough in the tangent space of M8.

4 Connection with Mandelbrot fractal and fractals as fixed sets
for iteration

The occurrence of iteration in the construction of preferred extremals suggests a deep connection with the
standard construction of 2-D fractals by iteration - about which Mandelbrot fractal [2, 3] is the canonical
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example. X2(x) (or X3(x) in the case of light-like L(x) ⊂ M2(x)) could be identified as a union of
orbits for the iteration of s ◦ T . The appearance of the iteration map in the construction of solutions
of field equation would answer positively to a long standing question whether the extremely beautiful
mathematics of 2-D fractals could have some application at the level of fundamental physics according to
TGD.

X2 (or X3) would be completely analogous to Mandelbrot set in the sense that it would be boundary
separating points in two different basis of attraction. In the case of Mandelbrot set iteration would take
points at the other side of boundary to origin on the other side and to infinity. The points of Mandelbrot
set are permuted by the iteration. In the recent case s ◦ T maps X2 (or X3) to itself. This map need not
be diffeomorphism or even continuous map. The criticality of X2 (or X3) could be seen as a geometric
correlate for quantum criticality.

In fact, iteration plays a very general role in the construction of fractals. Very general fractals can
be defined as fixed sets of iteration and simple rules for iteration produce impressive representations for
fractals appearing in Nature. The book of Michael Barnsley [1] gives fascinating pictures about fractals
appearing in Nature using this method. Therefore it would be highly satisfactory if space-time surfaces
would be in a well-defined sense fixed sets of iteration. This would be also numerically beautiful aspect
since fixed sets of iteration can be obtained as infinite limit of iteration for almost arbitrary initial set.
This construction recipe would also give a concrete content for the notion measurement resolution at the
level of construction of preferred extremals.

What is intriguing is that there are several very attractive approaches to the construction of preferred
extremals [4]. The challenge of unifying them still remains to be met.
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