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Abstract
In the present paper, using the equation transfarfractal space, we point out the zero-mass
renormalization group equations. Under limit cyadlegshe non-smooth initial value, we devote
to the analytical technique of the local fractiorfaburier series for treating zero-mass
renormalization group equations, and investigatalléractional Fourier series solutions.
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1. Introduction

To study the photon propagator, Gell-Mann and L@gduia method which was since become
known as the renormalization group approach [14l @@ renormalization group theory (RGT)
was invented by Stueckelberg and Petermann [2]. RBE was an elegant mathematical
expression. The Gell-Mann-Low equation was knowrthesp-function equation, or the RG
differential equation [4-5]. Wilson suggested RGEtatmine the renormalized coupling
constants of strong interactions, the zero-massliR&ential equation was given [3]

T (0,x) (1.1)

and the two coupled zero-mass RG differential eqoatwith time-independent forces arrived at
the expression[3]

dx
a by
g 1.2)
y

—_= X,

&~ (%)
where x and y are the momentum-dependent coupling constantsRGhdifferential
equations have been reviewed and discussed in[6-9].
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A limit cycle is an intriguing alternative to a & point, that is, suppose that there are at least
two renormalized coupling constants in strong extéons, there is an intriguing alternative to a
fixed point [10-13]. A limit cycle is a renormalizan trajectory which is a closed orbit and
functions x and y satisfies [3]

x(t+71)=x(t) (1.3)

and

y(t+7)=y(t) (1.4)
wherer is a constant giving the period of the limit cyaded wherex and y are continuous
functions.

However, the above results are under smooth initiles. As is well known, fractal curves are
everywhere continuous but nowhere differentiabled ave cannot employ the convenient
calculus to describe the motions in fractal timeegp[14-17]. Local fractional calculus, which
was revealed as one of useful tools to deal witeryavhere continuous but nowhere
differentiable functions in areas ranging from fantkntal science to engineering in fractal
space, was successfully applied in the local foaeti Laplace and Fourier problems [16-20],
local fractional Fourier series [16, 17, 21], lo&actional short time transform [16, 17], local
fractional wavelet transform [16, 17], fractal sijf20], fast Yang-Fourier transform [22].

In this paper our aim is to investigate the zerssn@normalization group differential equations
under limit cycles in non-smooth initial value ugithe local fractional Fourier series in fractal
space. This paper is organized as follows. In 8e@i we investigate the fundamentals of local
fractional calculus and local fractional Fourierigge. In Section 3, we present the equation
transforms in fractal space. In section 4, we sttiay expression solution with Mittag-Leffler
functions in fractal space. In section 5, we disctle fractal characteristics of limit cycles.
Finally, section 6 is conclusions.

2. Preliminaries
2.1 Local fractional continuity

Definition 1 If there exists [16, 17]

‘f (x)-f (xo)‘ <g” (2.1)
with|x—x,| < & fore,d > 0ande,d 00 , nowf (x)is called local fractional continuousxat x,,
denote  bylim f (x)=1f(x) . Thenf(x)is called local fractional continuous on the

interval(a,b), denoted by

f(x)OC, (ab), (2.2)
whereg is fractal dimension witb<a <1.
Definition 2 A function f (x) is called a non-differentiable function of expongnd<a <1,
which satisfies Holder function of exponent, then forx y[ X such that [16, 17,21-21]
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£ ()= (y)|=Clx=y" 2.3)
Definition 3 A function f (x) is called to be continuous of order, O<a<1, or
shortlya continuous, when we have that [16, 17, 21]
f ()= 1 (%) =o{(x-x)') o

Remark 1. Compared with (2.4), (2.1) is standard definitidhoezal fractional continuity. Here
(2.3) is unified local fractional continuity.

2.2 Local fractional calculus

Definition 4 Let f (x)OC, (a,b). Local fractional derivative off (x)of ordera atx=x, is
defined as [16-21]

A" ( (%)= f (%)) , (2.5)
e (xx)

%)) . For anyx(a,b), there exists
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denoted by
f(x)0D,“ (a,b).

Remark 2. The following rules are valid [16-17]:
(1) dox« _ 1+ka) )((k—l)g_
& ra+k-Ja)

d’E, (k¢) .
—a (Io(’)k is a constant.

(@)

Remark 3. If y(x) =(f ou)(x) whereu(x)=g(x), then we have [17]

where there aré!® (g (x)) andg® (x).
If y(x)=(fou)(x) whereu(x)=g(x), then

=19(g(x)) 9" (x) (2.7)
where there existf (g (x)) and g\ ().

Definition 5 Let f (x)OC,(ab). Local fractional integral of (x) of ordera in the
interval[a,b] is given [16-21, 32-36]
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@f ()= Lt [ a1 im'S . 2.8
A9 (x) F(1+a)ja f(t)(dt) r(lm)m ; f(t,)(at,) (2.8)
wherent, =t,,, -, ,At:max{Atl A, At, ,,,},and [t,t,.] 150, N=1, t,=a,t, =b, is a partition of

the interva[a, b] . For convenience, we assume that
1.9f(x)=0 if a=b and I”f(x)=-,117f(x) if a<b.

For anyxO(a,b), we get
AR (x),

denoted by
f ()01, (ab).
Remark 4. If f (x) 0D, (a,b),orl, (a,b), we have that
f(x)OC, (ab).

Remark 5. The following relations are valid [16-17]:

Fara B (o =5 () (), 29)
Y

2.3 Fractional-order complex mathematicsreviews

Definition 6 Fractional-order complex number is defined by [7§-1

1" =x"+i"y?, x,yO0,0<a <1, (2.11)
where its conjugate of complex num_ber shows that
17 =x"=i%y” (2.22)

and where the fractional modulus is derived as

INEINEETR NS (2.23)

Definition 7 Complex Mittag-Leffler function in fractal spacedsfined by[16-17]

o\ o an
E,(z )._;m, (2.24)

for zOC (complex number set) afik a < 1.

The following rules hold:

Ea(zi")Ea(zz"):Ea((zl+22)”); (2.25)
Ea(zl")Ea(—zz”)=Ea((zl—zz)”); (2.26)
e, (12, (i72¢) =, [i°(a +2¢)'). (2.27)

When z° =i“x?, the complex Mittag-Leffler function is computed b
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E, (i”x”):cosa xX* +i? sin, x* (2.28)

with N X  forxO0J and0 < a <1, we have
o5 X =2 ey 2 e =2 r[1+a 2k+1)]

that

E, (i°x7)E, (i7y") = E, (i (x+)°) (2.29)
and

E, (i7x°)E, (-i°y") = Ea(i”(x—y)”). (2.30)

2.4 Local fractional Fourier serieswith the Mittag-L effler function in fractal space

Definition 8 Suppose that (x)0C, (-e,) andf (x)be |-periodic. FokO[ , complex
generalized Mittag-Leffler form of local fractionBburier series of f (x) is defined [16-17]

(%)= kickEa(ia (271)° (TkXJaJ (2.31)

where the local fractional Fourier coefficients is

C _lia If(x) Ea(—i”(2n)”($}aj(dx)”with kOO . (2.32)

The above generalized forms of local fractionaleseare valid and are also derived from the
generalized Hilbert space [16-17].

The weights of the Mittag-Leffler functions are tign in the form [22]

e, (—i" (27)° (klxja](dx)”

C, = . (2.33)

Above is generalized to calculate local fractidralirier series.

3. Fractal complex transform

Recently, the fractional complex transform, whishihe technique for convert the fractional
derivatives into classical derivatives, derivedrir®dodified Riemann-Liouville Derivative [22-
24] was introduced in [25]. This method inspirestméntroduce the fractal complex transform
in fractal space.
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Proposition 1 Suppose that there is a relation

w = (P
r(1+a)
. (3.2)
()
r(1+a)
wheregand gare constants an@ < a <1, then there exists an equation transformation pair
adUl(X)+qa dUz(Y):O _ d"Ul(x)+d”U2(y):O (3.2)
dX dy dx“ dy“

where there exist the relations
du,(X) du,(X) dU,(x) d°U,(y)

dx ' dx 1 dx* dy
Proof. Take the basic properties of the local foaal derivative, we arrive at the following

(3.3)

relations
dU, _dy, d?X - du,
dx® dX dx* dX
and
d’U, _du,dv _ . du, (3.4)
dy’ dY dy” dy '
X dey
where = p“and =q”.
dx” P dx” a
Using the above relations, we come to the exprassio
L0dU, . dU,
—L1+q9"—==0. 3.5
ax day (3:5)
As a direct result, we have the result as follows:
Proposition 2 Let
w = ()
r(1+a) 3.6)
v = (@)
r(1+a)
then we have the following equation transformapair
dU,(X) dUa(Y) o dU(X) AU gy
dX dy dx“ dy“

where there exist the relations
du,(X) du,(X) dU,(x) dU,(y)

dx ' dx 1 dx* dy
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Remark 4. Using the above equations, we can convert cldssécavatives into the local
fractional derivatives each other.

4. The zero-mass renor malization group differential equationsand limit cycles
In non-smooth initial values

Here, we investigate the limit cycles in non-smaaitial values as follows:

[x(t) = x(t,)| < & (4.1)
and

[y(t)-y(t)[ <&, (4.2)
wherex(t)and y(t) are local fractional continuoustatt, .
The given limit cycles in non-smooth initial valusatisfy

x(t+7) =x(t) (4.3)

and

y(t+7)=y(t), (4.4)
wherer is a constant giving the period of the limit cyaded wherex and yare local
fractional continuous functions.

Take the relation

__ ¢
t= F(1+ a) : (4.5)
Substituting the relations
d’x _dx
F i (4.6)
and
ﬂ :ﬂ (47)
dé® dt
into
d
d—)t( =4, (xy)
g : (4.8)
Fi/ =4,(xy)
we arrive at the two coupled zero-mass RG diffeaketjuations in fractal space
dﬂ
e = (X)) =u(9) (4.9)
and
dﬂ
ae =0 (X(€).7(9) =4.(¢) (4.10)
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where the limit cycles in hon-smooth initial valusscome

and

where

Successively, we derived as

K(+r)=

y(f+r) =

:ZCME{

x(¢)
y(£).

Here, we give the local fractional Fourier seriésx({) which is written as

(k:‘)J

Hence, from (4.15) we arrive at the relation

21y (4] c..

r

SANAGL (—i"(Zﬂ)"[

r )aj(df)”

1

Z_a
and therefore

Cee

el

INAG) Ea[—

G (@ E{—i”(zﬂ)”

(] e (] ey

i (2n)" (Ej

r
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(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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So, we obtain that

r

x|ty (%) Jeer

(4.18)
_ 1 T i a g ! a
- (@ e () e
and
X&) w() iz
= (ani)a,m(o,r), 0Zz\o0. (4.19)
From (4.19), we give
2mki "
x(f)(Tj =y, (¢),é0(0,7),k0Z\0. (4.20)
In like manner, we come to the equality
y(f)(@j =y,(£),.¢0(0,7),kOZ\0. (4.21)

5. Fractal characteristics of limit cycles

Since the functionwl(f) is local fractional integral, we have a constdnt> 0 such that

en () =M. (5.1)

Hence we arrive at the relation

T a
x({)s(znkij M,,é0(0,r) kOZ\0 (5.2)
and therefore
T a
x(€)|< (ﬂ} M,,é0(0,r) kOZ\0 (5.3)

And further, we come to the equality
‘X(f)‘l] M, (5.3)

Hence, we obtain fractal dimension of the Iimitleyo<($) iIs @ when we take into account
the fractal dimension [27-31].

From (4-20) we directly deduce that

‘X(E)‘(@T =|y, (¢).€0(0,7) kOZ\0O (5.4)

and therefore
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T a
x(€) =\¢1(5)\(m] ,£0(0,r) ,k0z\0 (5.5)
where a is fractal dimension when consider the definitidrthe generalized fractal
dimension[31].

In like manner, we get fractal dimension of theitinycle x(f) isa .

6. Conclusions

In this paper, we discuss the zero-mass renornti@iizgroup differential equations and fractal
characteristics of limit cycles using mathematigadhnology of local fractional Fourier series,
which is derived from local fractional calculus. iFhocus is relationship between fractal
dimension and renormalization group. In additiorg @iscuss the limit cycles in non-smooth
initial value problems by using fractal dimensidweary, and directly obtain the realization of
renormalization group and fractal dimension.
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