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Quantum Adeles and Quantum Hilbert Spaces
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Abstract

Quantum arithmetics provides a possible resolution of a long-lasting challenge of finding a math-
ematical justification for the canonical identification mapping p-adics to reals playing a key role in
TGD - in particular in p-adic mass calculations. p-Adic numbers have p-adic pinary expansions
> anp™ satisfying an, < p. of powers p" to be products of primes p1 < p satisfying a, < p for
ordinary p-adic numbers. One could map this expansion to its quantum counterpart by replacing a,,
with their counterpart and by canonical identification map p — 1/p the expansion to real number.
This definition might be criticized as being essentially equivalent with ordinary p-adic numbers since
one can argue that the map of coefficients a,, to their quantum counterparts takes place only in the
canonical identification map to reals.

One could however modify this recipe. Represent integer n as a product of primes [ and allow
for [ all expansions for which the coefficients a,, consist of primes p; < p but give up the condition
an < p. This would give 1-to-many correspondence between ordinary p-adic numbers and their
quantum counterparts.

It took time to realize that | < p condition might be necessary in which case the quantization in
this sense - if present at all - could be associated with the canonical identification map to reals. It
would correspond only to the process taking into account finite measurement resolution rather than
replacement of p-adic number field with something new, hopefully a field. At this step one might
perhaps allow [ > p so that one would obtain several real images under canonical identification.

One can however imagine a third generalization of number concept. One can replace integer n
with n-dimensional Hilbert space and sum + and product x with direct sum @ and tensor product
® and introduce their co-operations, the definition of which is highly non-trivial. This procedure
yields also Hilbert space variants of rationals, algebraic numbers, p-adic number fields, and even
complex, quaternionic and octonionic algebraics. Also adeles can be replaced with their Hilbert space
counterparts. Even more, one can replace the points of Hilbert spaces with Hilbert spaces and repeat
this process, which is very similar to the construction of infinite primes having interpretation in
terms of repeated second quantization. This process could be the counterpart for construction of nt"
order logics and one might speak of Hilbert or quantum mathematics. The construction would also
generalize the notion of algebraic holography and provide self-referential cognitive representation of
mathematics.

This vision emerged from the connections with generalized Feynman diagrams, braids, and with
the hierarchy of Planck constants realized in terms of coverings of the imbedding space. Hilbert
space generalization of number concept seems to be extremely well suited for the purposes of TGD.
For instance, generalized Feynman diagrams could be identifiable as arithmetic Feynman diagrams
describing sequences of arithmetic operations and their co-operations. One could interpret x, and
+4 and their co-algebra operations as 3-vertices for number theoretical Feynman diagrams describing
algebraic identities X = Y having natural interpretation in zero energy ontology. The two vertices
have direct counterparts as two kinds of basic topological vertices in quantum TGD (stringy vertices
and vertices of Feynman diagrams). The definition of co-operations would characterize quantum
dynamics. Physical states would correspond to the Hilbert space states assignable to numbers. One
prediction is that all loops can be eliminated from generalized Feynman diagrams and diagrams are
in projective sense invariant under permutations of incoming (outgoing legs).
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1 Introduction

Quantum arithmetics [I§] is a notion which emerged as a possible resolution of long-lasting challenge of
finding mathematical justification for the canonical identification mapping p-adics to reals.

1.1 What quantum p-adics could be?

The basic idea is that p-adic numbers could have quantum counterparts. This idea has developed through
several twists and turns and involved moments of almost despair.

1.1.1 The first attempts

The first attempts where based on the replacement of p-adic numbers with quantum p-adics in the hope
that the arithmetics could be lifted to quantum level.

1. The earlier work with quantum arithmetics [I8] suggests a modification of p-adic numbers by re-
placing the coefficients a,, p-adic pinary expansions with their quantum counterparts (a, ), allowing
the coefficients a,, of prime powers to be integers not divisible by p and involving only primes [ < p
in the prime decomposition (for I > p the quantum counterpart can be negative). a,, > p is allowed
for the ”interesting but risky” and a,, < p is required for ”less-interesting but safe” option.

2. For the ”interesting” option the assignment of quantum integer to a given p-adic integer is not
unique. A natural looking but not absolutely necessary constraint is that the assignment respects
the decomposition of the p-adic integer to powers of prime. With this assumption the construction
of quantum integers would reduce to that for primes [. The quantum counterpart of [ > p is not
unique if the coefficients of powers of p can be larger than p. There exists preferred quantum
counterpart obtained by assuming that a, < p. Restricting the consideration to these quantum
integers gives just p-adic integers if one regards quantum map n — n, and canonical identification
as unrelated notions.

3. Quantum p-adic integers for the ”interesting option” could be in some sense to p-adic integers
what the integers in the extension of number field are for the number field and attempts to identify
quantum Galois group for given prime were made. The attempt to define basic arithmetic operations
for quantum p-adics led however to difficulties and motivated to assign to the conjecture quantum
Galois group wave functions so that the quantum sum and product would be defined for the wave
functions assigned for the quantum p-adic integers. This option looked also too complex to be
fundamental. Also the question whether this option gives rise to a generalization of number field,
remained open, and no natural identification of quantum Galois group was found.

Eventually I was forced to ask whether it would be wiser to be conservative and concentrate on the
”less-interesting” option and try to make it more interesting. Could the emergence 1-to-many corre-
spondence between ordinary and quantum p-adics be something totally unrelated to the construction of
quantum p-adics? Could it emerge in the quantum map n — n, taking into account the effects of finite
measurement resolution and meaning symmetry breaking: the different p-adic expansions of n allowing
the coefficient a,, of p™ to be integers divisible only by primes [ < p but having also values a,, > p would
be mapped to different quantum p-adic numbers. If this were the case, quantum p-adics must mean
something else than was thought first.

1.1.2 The replacement of numbers with sequences of arithmetic operations and integers
with Hilbert spaces

The first attempt to solve the problems related to the definition of +, and x, was inspired by zero energy
ontology and led to a replacement of numbers with sequences of arithmetic operations describable by
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analogs of Feyman diagrams. The comparison with generalized Feynman diagrams allowed to realize how
”less-interesting” option could become ”interesting”: numbers could be replaced with Hilbert spaces and
all the conditions would be trivially satisfied!

1. The notion of generalized Feynman diagram suggests that of arithmetic Feynman diagram describing
a sequence of arithmetic operations performed for a set of incoming integers and producing a set
of outgoing integers. The basic 3-vertices of the arithmetic Feynman diagram would be x, and 4+,
and their co-operations. The moves of Feynman diagrams leaving the amplitude invariant would
code for associativity and distributivity. All loops could be eliminated by these moves and diagram
transformed to a canonical tree diagram in which incoming resp. outgoing lines could be permuted.
This kind of reduction to tree diagrams is an old proposal that I gave up as too ”romantic” [3] but
which re-emerged from zero energy ontology where the assumption that also internal lines (wormhole
throats) are massless and on shell although the sign of energy can be negative, poses extremely
powerful kinematical constraints reducing the number of Feynman diagrams. Incoming lines would
correspond to integers decomposing into products of primes and an attractive interpretation is that
these primes correspond to braid strands.

2. The basic vertices in quantum TGD correspond to the stringy 3-vertex and 3-vertex for Feynman
graphs. They correspond at Hilbert space level naturally to tensor product and direct sum. Could
X4 and +, correspond to ® and @ obeying also associativity and distributivity and could quantum
arithmetics for Hilbert spaces apply to quantum TGD? If so, the integers characterizing the lines
of arithmetic Feynman diagrams would correspond to Hilbert space dimensions - or rather, Hilbert
spaces and quantum states - and in the vertices the incoming states fuse to a direct sum & or tensor
product ®!

3. One could assign to integer n a multiple covering defined by the state basis of n-dimensional Hilbert
space. This is just what one wants! The quantum Galois group would be subgroup of the permuta-
tion group permuting the elements of this basis. The analogy with covering spaces suggests cyclic
group Z,. The non-trivial quantum Galois group would thus emerge also for the ”less-interesting”
but non-risky option so that the conservative approach might work after all!

4. The Hilbert spaces in question could represent physical states - in p-adic context one could speak
about cognitive representations. It also turns out possible to relate these Hilbert spaces directly to
the singular coverings of imbedding space associated with the hierarchy of Planck constants assigned
with dark matter in TGD Universe. This gives a concrete content for the quantum Galois group
as cyclic permutations of the sheets of the covering of the imbedding space. Hilbert spaces can
be identified as function spaces associated with the discrete point sets of the covering projected
to the same point. Also a beautiful connection with infinite primes defining algebraic extensions
of rationals emerges and infinite primes would characterize physical states by characterizing their
dimensions of Hilbert spaces assignable to the incoming and outgoing lines.

5. Quantum arithmetics would be arithmetics of Hilbert spaces and of states assigned to them. This
arithmetics allows also extension to rationals and algebraic numbers, and even the Hilbert space
variants of algebraic complex numbers, quaternions and octonions can be considered. Also quantum
adeles can be defined in terms of Hilbert spaces. These generalization are expected to be crucial for
the understanding of generalized Feynman diagrams.

1.2 Quantum TGD and Hilbert adeles

Irrespective of whether the isomorphism holds true quantum adeles - if they exist - could provide a very
powerful tool also for the formulation of quantum TGD and realize the old intuition that AGG is a
symmetry group of quantum TGD [9] .
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1. The innocent TGD inspired question posed already earlier is whether the fusion of real and various
p-adic physics together could be realized in terms of adeles providing - if not anything else - an
ingenious book keeping device allowing to do real physics and all p-adic physics simultaneously by
replacing the whole stuff by single letter A! Now however replaced with A,.

2. The function spaces associated with quantum adeles decompose to tensor products of function spaces
associated with the completions of rationals and one can speak about rational entanglement between
different number fields. Rational entanglement can be generalized to algebraic entanglement when
one replaces rationals with their algebraic extension and primes with corresponding primes. Could
it be that this rational/algebraic entanglement is the rational/algebraic suggested to characterize
living matter and to which one can assign negative entanglement entropy having interpretation as
a measure for genuine information?

3. The basic vision of TGD inspired quantum bio-physics is that life resides in the intersection of
real and p-adic worlds in which rational/algebraic entanglement is natural. One can argue that
rational and algebraic entanglement are unstable and that it cannot be realized in any system -
living or not. The objection is that Negentropy Maximization Principle (NMP [I1]) favors the
generation of negentropic entanglement and once formed between two material systems described
by real numbers is stable. Could it be that the mechanism producing this kind of entanglement
is the necessary rational/algebraic entanglement between different number fields - between matter
and mind one might say - and that quantum jumps transforming p-adic space-time sheets to real
ones generates rational/algebraic entanglement between systems consisting of matter. Intention
transforming to action would be the interpretation for this process.

4. The construction of generalized Feynman diagrams leads to a picture in which propagator lines give
rise to expressions in various p-adic number fields and vertices naturally to multi-p-adic expressions
involving p-adic primes of incoming lines. This picture has also natural generalization to quantum
variants of p-adic numbers and the expressions are eventually mapped to real numbers by canonical
identification induced by p — 1/p for quantum rationals appearing in various lines and in vertices
of the generalized Feynman diagram. This construct would naturally to a tensor product of state
spaces assignable to different p-adic primes and also reals so that M-matrix elements would be
naturally in this tensor product. Note that the function space associated with (quantum) adeles is
naturally tensor product of functions spaces associated with Cartesian factors of the adele ring with
rationals defining the entanglement coefficients. All this of course generalizes by replacing rationals
by their algebraic extensions.

2 Earlier attempts to construct quantum arithmetics

Quantum arithmetics [I8] provides a possible resolution of a long-lasting challenge of finding a mathe-
matical justification for the canonical identification mapping p-adics to reals playing a key role in TGD
- in particular in p-adic mass calculations [13].

In [I8] several options for quantum arithmetics were discussed. Common feature of all options is
that products of integers are mapped to products of quantum integers achieved by mapping primes [ to
quantum primes I, = (¢! — ¢~ ") /(¢ — ¢ 1), ¢ = exp(in/p).

In the case of sum one could pose the condition that quantum sums are images of ordinary sums: in
this case (option I) one obtains something reducing to ordinary p-adic numbers and ! — [, accompanies
canonical identification p — 1/p mapping p-adic rationals to reals.

Option II gives up the condition that quantum sum is induced by p-adic sum and assumes that [,
generate act as generators of Kac-Moody type algebra defined by powers p™ such that sum is sum is
completely analogous to that for Kac-Moody algebra: a +b= 3" anp" + > byp™ =, (an + bn)p™.

In this chapter a third and much more general option is discussed. In order to give the needed context,
the options discussed in [I8] are however briefly discussed first.
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2.1 Quantum arithmetics

The starting point idea was that quantum arithmetics maps products of integers to products of quantum
integers. It has turned out that this need not be the case for the sum and even in the case of product one
can ask whether the assumption is necessary. For Option I sum and product are respected but this option
is more or less equivalent with p-adic numbers. For Option II the images of primes generate Kac-Moody
type algebra and sums are not mapped to sums and the number of elements of quantum algebra is larger
than that of p-adic number field. Also in this case one can consider option giving up the condition that
products are mapped to products.

2.1.1 Are products mapped to products?

The first question is whether products are mapped to products.

1. The multiplicative structure of ordinary integers is respected in the map taking ordinary integers
to quantum integers:

n = kil = ng=kyl, . (2.1)

This is guaranteed if the map is induced by the map of ordinary primes to quantum primes. This
means that one decomposes n to a product of primes ! and maps [ — [;. For primes [ < p the
map reads as | — I, = (¢! =g ')/(q —q), ¢ = exp(in/p) and gives positive number. For [ > p this
need not be the case and for primes | > p one expands [ as | = > [,,p", I, < p, and expresses [,
as product of primes [ < p mapped to [, each to obtain [,,,; > 0. Non-negativity is important in
the modelling of Shnoll effect by a deformation of probability distribution P(n) by replacing the
argument n by quantum integers and the parameters of the distribution by quantum rationals [I].

2. One could of course consider giving up the condition that products are mapped to products. In this
case one would simply expess n asn = Y ngp* and map ny to ng by using its prime decompositions.
Therefore product would be mapped to product only for integers n < p with product smaller than

p.

2.1.2 Are sums mapped to sums?

Second question is about whether quantum map commutes with sum. There are two options.

1. For Option I also the sum of quantum integers is well-defined and induces sum of the quantum
rationals. Therefore the sum +, for quantum integers would reflect the summation of ordinary
integers:

n = k+l—=ng=Fki+41; . (2.2)

Option I can be interpreted in terms of ordinary p-adic integers and therefore it will not be discussed
in the following.

2. For option II one gives up the condition for the sum. This means that p-adic numbers are replaced
with a ring of quantum p-adics generated by the the images {, of primes [ < m, where m defines the
quantum phase. In other words, one forms all possible products and sums of the these generators
and also their negatives. The sum is defined as the complete analog of sum for Kac-Moody algebras:
a+b=> aym™+> bym™ = > (a, + b,)m™ and obviously differs from m-adic sum. The general
element of algebra is x = Y x,m™, where one has
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Ty = N({nz})Hw? s T =Dig, Pi<m , g=exp(in/m) .
{ni} @

Here N({n;}) is integer. m = p gives what might be called quantum p-adic numbers. Note that
also zeroth order term giving rise to integers as constant term of polynomials is also present. The
map would produc integers from zeroth order terms so that skeptic could see the construction too
complex.

One has what could be regarded as analog of polynomial algebra with coefficients of polynomials
given by integers. Note that the coefficients can be also negative since quantum map combined with
canonical identification maps -1 to -1: canonical identification mapping —1 to (p —1)4(1+p+p?...)
would give only non-negative real numbers. If one wants that also the images under canonical
identification form a field (so that —z for given x belongs to the system) one must assume that —1
is mapped to —1. Also the condition that one obtains classical groups requires this. One can form
also rationals of this algebra as ratios of this kind of polynomials and a subset of them projects
naturally to p-adic rationals.

3. One can project quantum integers for Option II to p-adic numbers by mapping the the products of
powers of generators l;, [ < m to products of ordinary p-adic primes [ < m in the sums defining the
coefficients in the expansion in powers of m to ordinary p-adic integers. This projection defines a
structure analogous to a covering space for p-adic numbers. The covering contains infinite number
of elements since also the negatives of generators are allowed in the construction. The covering by
elements with positive coefficients of m™ is finite.

4. Quantum p-adics form a ring but do they form a field? This seems to be the case since quantum
p-adics are very much analogous to a function field for which the argument of function is defined by
integer characterizing the powers of p in quantum pinary expansion. One would have the analogy
of function field in the set of integers. This means that one can indeed speak of quantum rationals
M /N which can be mapped to reals by I(M/N) =I(M)/I(N).

2.1.3 About the choice of the quantum parameter q

Some comments about the quantum parameter ¢ are in order.

1. The basic formula for quantum integers in the case of quantum groups is

qn _ qn
g - (2.3)

Here ¢ is any complex number. The generalization respective the notion of primeness is obtained
by mapping only the primes p to their quantum counterparts and defining quantum integers as
products of the quantum primes involved in their prime factorization.

qP_qP
q9—q

ng = Hpgp for n:Hp"f’ . (2.4)
P P

Pqg =
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2. In the general case quantum phase is complex number with magnitude different from unity:

q = exp(n)exp(in/m) . (2.5)

The quantum map is 1-1 for a non-vanishing value of 1 and the limit m — oo gives ordinary
integers. It seems that one must include the factor making the modulus of ¢ different from unity
if one wants 1-1 correspondence between ordinary and quantum integers guaranteing a unique
definition of quantum sum. In the p-adic context with m = p the number exp(n) exists as an
ordinary p-adic number only for 7 = np. One can of course introduce a finite-dimensional extension
of p-adic numbers generated by e!/%.

3. The root of unity must correspond to an element of algebraic extension of p-adic numbers. Here
Fermat’s theorem a?~! mod p = 1 poses constraints since p — 1:th root of unity exists as ordinary
p-adic number. Hence m = p — 1:th root of unity is excluded. Also the modulus of ¢ must exist
either as a p-adic number or a number in the extension of p-adic numbers.

4. If g reduces to quantum phase, the n = 0,1, -1 are fixed points of n — n, for ordinary integers
so that one could say that all these numbers are common tointegers and quantum integers for all
values of ¢ = exp(im/m). For p-adic integers —1 = (p — 1)(1+ p+ p?+ .. is problematic. Should one
use direct formula mapping it to —1 or should one map the expansion to (p —1),(1+p+p* +....)?
This option looks more plausible.

(a) For the first option the images under canonical can have both signs and can form a field. For
the latter option would obtain only non-negative quantum p-adics for ordinary p-adic numbers.
They do not form a field. For algebraic extensions of p-adics by roots of unity one can obtain
more general complex numbers as quantum images. For the latter option also the quantum
p-adic numbers projecting to a given prime [ regarded as p-adic integer form a finite set and
correspond to all expansions | = > 1,p* where I}, is product of powers of primes p; < p but
one can have also [ > p.

(b) Quantum integers containing only the O(p°) term in the binary expansion for a sub-ring.
Corresponding quantum rationals could form a field defining a kind of covering for finite field
G(p,1).

(c¢) The image I(m/n) of the pinary expansion of p-adic rational is different from I(m)/I(n). The
formula m/n — I(m)/I(n) is the correct manner to define canonical identification map. In
this case the real counterparts of p-adic quantum integers do not form the analog of function
fields since the numbers in question are always non-negative.

5. For p-adic rationals the quantum map reads as m/n — mg/ny by definition. But what about p-adic
transcendentals such as eP? There is no manner to decompose these numbers to finite primes and it
seems that the only reasonable map is via the mapping of the coefficients z,, in x = > x,,p™ to their
quantum adic counterparts. It seems that one must expand all quantum transcendentals having
as a signature non-periodic pinary expansion to quantum p-adics to achieve uniqueness. Second
possibility is to restrict the consideration to rational p-adics. If one gives up the condition that
products are mapped to products, one can map n = ngp® to n, = Y. ngp®. Only the products of
p-adic integers n < p smaller than p would be mapped to products.

6. The index characterizing Jones inclusion [24] [6] is given by [M : N] = 4cos?(27/n) and corresponds
to quantum dimension of 2, x 2, quantum matrices. TGD suggest that a series of more general
quantum matrix dimensions identifiable as indices of inclusions and given by [M : N| = 13, l<p
prime and ¢ = exp(im/n), corresponding to prime Hilbert spaces and ¢ = n-adicity. I, < [ is in
accordance with the idea about finite measurement resolution and for large values of p one would
have I, ~ .
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To sum up, one can imagine several options and it is not clear which option is the correct one.
Certainly Option I for which the quantum map is only part of canonical identification is the simpler
one but for this option canonical identification respects discrete symmetries only approximately. The
model for Shnoll effect requires only Option I. The notion of quantum integer as defined for Opion II
imbeds p-adic numbers to a much larger structure and therefore much more general than that proposed
in the model of Shnoll effect [I] but gives identical predictions when the parameters characterizing the
probability distribution f(n) correspond contain only single term in the p-adic power expansion. The
mysterious dependence of nuclear decay rates on physics of solar system in the time scale of years reduces
to similar dependence for the parameters characterizing f(n). Could this dependence relate directly to the
fact that canonical identification maps long length scale physics to short length scales physics. Could even
microscopic systems such as atomic nuclei give rise to what might be called ”cognitive representations”
about the physics in astrophysical length scales?

2.2 Summary: the three options for quantum p-adics

I have proposed two alternative definitions for quantum integers.

1. Option I is that quantum integers are in 1-1 correspondence with ordinary p-adic integers and the
correspondence is obtained by the replacement of the coefficients of the pinary expansion with their
quantum counterparts. In this case quantum p-adic integers would inherit the sum and product
of ordinary p-adic integers. This is the conservative option and certainly works but is equivalent
with the replacement of canonical identification with a map replacing coefficients of powers of p
with their quantum counterparts. This option has a m-adic generalization corresponding to the
expansion of m-adic numbers in powers of integer m with coefficients a,, < m. As a special case
one has m = p~. The quantum map would contain the interesting physics.

2. Option II based on the identification of quantum p-adics as an analog of Kac-Moody algebra with
powers p™ in the same role as the powers z" for Kac-Moody algebra. The two algebras have identical
rules for sum and multiplication, and one does not require the arithmetics to be induced from the
p-adic arithmetics (as assumed originally) since this would lead to a loss of associativity in the case
of sum. Therefore the quantum counterparts of primes [ # p generate the algebra. One can also
make the limitation [ < p™ to the generators. The quantum counterparts of p-adic integers are
identified as products of quantum counterparts for the primes dividing them. The counterparts of
in the map of integers to quantum integers are 0,1, —1 are ,0,1, —1 as is easy to see. The number of
quantum integers projecting to same p-adic integer is infinite. For p = 2 quantum integers reduce
to Zs since primes are mapped to 1 under quantum map. For p = 3 one obtains powers of 2,. As
p increase the structure gets richer. One can define rationals in this algebra as pairs of quantum
integers not divisible with each other. At the limit when the quantum phase approaches to unit,
quantum integers approach to ordinary ones and ordinary arithmetics results.

3. One can consider also quantum m-adic option with expansion [ = Y [;m* in powers of integer m
with coefficients decomposable to products of primes [ < m. This option is consistent with p-adic
topology for primes p divisible by m and is suggested by the inclusion of hyper-finite factors [6]
characterized by quantum phases ¢ = exp(im/m). Giving up the assumption that coefficients are
smaller than m gives what could be called quantum covering of m-adic numbers. For this option
all quantum primes [, are non-vanishing. Phases ¢ = exp(iw/m) characterize Jones inclusions of
hyper-finite factors of type II; assumed to characterize finite measurement resolution.

The definition of quantum p-adics discussed in this chapter replaces integers with Hilbert spaces of
same dimension and + and x with direct sum @ and tensor product ®. Also co-product and co-sum must
be introduced and assign to the arithmetics quantum dynamics, which leads to proposal that sequences of
arithmetic operations can be interpreted arithmetic Feynman diagrams having direct TGD counterparts.
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This procedure leads to what might be called quantum mathematics or Hilbert mathematics since the
replacement can be made for any structure such as rationals, algebraic numbers, reals, p-adic numbers,
even quaternions and octonions. Even set theory has this kind of generalization. The replacement can
be made also repeatedly so that one obtains a hierarchy of structures very similar to that obtained in the
construction of infinite primes by a procedure analogous to repeated second quantization. One possible
interpretation is in terms of a hierarchy of logics of various orders. Needless to say this definition is the
really deep one and actually inspired by quantum TGD itself. In this picture the quantum p-adics as
they are defined here would relate to the canonical identification map to reals and this map would apply
also to Hilbert p-adics.

3 Hilbert p-adics, Hilbert adeles, and TGD

One can imagine also a third generalization of the number concept. One can replace integer n with n-
dimensional Hilbert space and sum and product with direct sum and tensor product and introduced their
co-operations, the definition of which is non-trivial. This procedure yields also Hilbert space variants
of rationals, algebraic numbers, p-adic number fields, and even complex, quaternionic and octonionic
algebraics. Also adeles can be replaced with their Hilbert space counterparts. Even more, one can
replace the points of Hilbert spaces with Hilbert spaces and repeat this process, which is very similar to
the construction of infinite primes having interpretation in terms of repeated second quantization. This
process could be the counterpart for construction of n'” order logics and one might speak of Hilbert or
quantum mathematics. It would also generalize the notion of algebraic holography.

This vision emerged from the connections with generalized Feynman diagrams, braids, and with
the hierarchy of Planck constants realized in terms of coverings of the imbedding space. Hilbert space
generalization of number concept seems to be extremely well suited for the purposes of TGD. For instance,
generalized Feynman diagrams could be identifiable as arithmetic Feynman diagrams describing sequences
of arithmetic operations and their co-operations. The definition of co-operations would define quantum
dynamics. Physical states would correspond to the Hilbert space states assignable to numbers.

3.1 Could the notion of Hilbert mathematics make sense?

After having worked one month with the iea I found myself in a garden of branching paths and realized
that something must be wrong. Is the idea about quantum p-adics a disgusting fix idee or is it something
deeper?

The successful manner to make progress in this this kind of situation has been the combination of
existing firmly established ideas with the newcomer. Could the attempt to relate quantum p-adics to
generalized Feynman graphs, infinite primes, and hierarchy of Planck constants help?

Second good strategy is maximal simplification. In the recent case this encourages sticking to the
most conservative option for which quantum p-adics are obtained from ordinary p-adics by mapping
the coefficients of powers of p to quantum integers. This option has also a variant for which one has
expansion in powers of p” defining pinary cutoff. At the level of p-adic numbers different values of N
make no difference but at the level of finite measurement resolution situation is different. Also quantum
m-~adicity would have natural interpretation in terms of measurement resolution rather than fundamental
algebra.

3.1.1 Replacing integers with Hilbert spaces

Consider now the argument leading to the interpretation of p-adic integers as Hilbert space dimensions
and the formulation of quantum p-adics as p-adic Hilbert spaces whose state basis defines a multiple
covering of integer defining the dimension of the Hilbert space.
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1. The notion of generalized Feynman diagram and zero energy ontology suggest suggests that of
arithmetic Feynman diagram describing a sequence of arithmetic operations performed for a set
of incoming integers and producing a set of outgoing integers. This approach indeed led to the
discovery that integers could be replaced by Hilbert spaces.

2. The basic 3-vertices of the arithmetic Feynman diagram would be x, and +, and their co-operations.
The moves of Feynman diagrams leaving the amplitude invariant would code for associativity and
distributivity. All loops could be eliminated by these moves and diagram transformed to a canonical
tree diagram in which incoming resp. outgoing lines could be permuted.

3. Incoming lines would correspond to integers decomposing into products of primes and an attractive
interpretation is that these primes correspond to braid strands for generalized Feynman diagrams.

4. The basic vertices in quantum TGD correspond to the stringy 3-vertex and 3-vertex for Feynman
graphs. They correspond at Hilbert space level naturally to tensor product and direct sum. Could
X4 and 4+, correspond to tensor product and direct sum obeying also associativity and distributiv-
ity?! If so, the integers characterizing the lines of arithmetic Feynman diagrams would correspond
to Hilbert space dimensions - or rather, Hilbert spaces - and in vertices the incoming states fuse to
direct sum of tensor product!

5. What this would mean is that one could assign to each p-adic integer a multiple covering defined
by the state basis of the corresponding Hilbert space. This is just what one wants! The quantum
Galois group would be subgroup of the permutation group permuting the elements of this basis.
The analogy with covering spaces suggests just cyclic group. The non-trivial quantum Galois group
would emerge also for the ”less-interesting” but non-risky option so that the conservative approach
might work!

6. The Hilbert spaces in question could represent physical states - maybe cognitively in the p-adic
context. It also turns out possible to relate these Hilbert spaces directly to the singular coverings
of imbedding space associated with the hierarchy of Planck constants assigned with dark matter in
TGD Universe. This gives a concrete content for the quantum Galois group as cyclic permutations
of the sheets of the covering of the imbedding space and Hilbert spaces can be identified as function
spaces associated with the discrete point sets of covering projected to the same point. Also a
beautiful connection with infinite primes defining algebraic extensions of rationals emerges and
infinite primes would characterize physical states by characterizing their dimensions of Hilbert
spaces assignable to the incoming and outgoing lines.

This approach works for the ordinary p-adic integers. There is no need to allow coefficients a,, > p
("interesting” option) in the expansion Y a,p™ of p-adic numbers but still consisting of primes | < p.
?Interesting” option would emerge as one takes finite measurement resolution into account by mapping
the Hilbert spaces defining coefficients of Hilbert space pinary expansion with their quantum counterparts.
More precisely.

1. At Hilbert space level pinary expansion of p-adic Hilbert space becomes direct sum &,a, ® p™.
an = ®;p;, Pi < p, denotes tensor product of prime Hilbert spaces for which I use the same label as
for p-adic numbers. p™ denotes Hilbert space with dimension p™. In real context it is very natural
to decompose real Hilbert spaces to tensor products of prime Hilbert spaces.

2. Quantum p-adic numbers would be obtained by mapping the Hilbert space valued coefficients a,, of
the to their quantum counterparts (a,)q, which are conjectured to allow precise definition in terms
of inclusions of hyper-finite factors with Jones inclusions associated with the quantum counterpart of
2-D Hilbert space. The quantum map would reduce to the mapping of the tensor factors p; of a,, to
(p1)q- Same would apply to quantum states. The map would be defined as Ga,, @p" — B(a, ), @p",
(an)g = ®p, (p1)q. The map p1 — (p1), would take into account finite measurement resolution.
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3.

”Interesting” option would be obtained as follows. It is possible to express given p-adic number in
many manners if one only requires that the coefficients a,, in the direct sum are tensor products of
prime Hilbert spaces with dimension p; < p but does not assume a,, < p. For instance, for p = 3
and n = 8 one has 8 = 2® 2® or 8 = 2 ® 2 ® 2. These representations are p-adically equivalent.
Quantum map however spoils this equivalence. 202®3 — 2,02,®3 and 8 = 2022 — 2,82,82,
are not same quantum Hilbert spaces. The ”interesting” option would thus emerge as one takes
into account the finite measurement resolution.

One could say that the quantum Hilbert spaces associated with a given p-adic Hilbert space form
a covering space like structure. Quantum Galois group identified as a subgroup of permutations of
these quantum Hilbert spaces need not make sense however.

After this lengthy motivating introduction I want to describe some details of the arithmetics of p-adic
Hilbert spaces. This arithmetics is formally identical with the ordinary integer arithmetics. What is
however interesting is that one can generalize it so that one obtains something that one could call Hilbert
spaces of dimension which is negative, rational, algebraic, or even complex, and even quaternionic or
octonionic. It might be necessary to have these generalizations if one wants full generality.

1.

ISSN:

Consider first what might be called p-adic Hilbert spaces. For brevity I will denote Hilbert spaces
in the same manner as p-adic numbers: reader can replace "n” with ”H,” if this looks more
appropriate. p-Adic Hilbert spaces have direct sum expansions of form

n:@kak®pk .

All integers appearing in the formula can be also interpreted as Hilbert space dimensions. In the
real context it is very natural to decompose real Hilbert spaces to tensor products of prime Hilbert
spaces.

. How to define Hilbert spaces with negative dimension? In p-Adic context this is not a problem.

Hilbert space with dimension —1 is given by Hilbert spaces with dimension (p — 1)/(1 — p) =
(p—1)(1+p+p?+...) converging p-adically and given by

—1:69k(p—1)®pk )

In real context one must consider pairs of Hilbert spaces (m,n) and define equivalence (m,n) =
(m+k,n+ k). In canonical representation Hilbert space with positive dimension m corresponds to
(m,0) and Hilbert spaces with negative dimension —m to (0,m). This procedure is familiar from
the theory of vector bundles where one subtracts vector bundles and defines their negatives.

. In p-adic context one can also define p-adic Hilbert spaces with rational dimension if the p-adic

norm of the rational (m/n) is smaller than 1. This is achieved simply by the expansion

m k
— = Drar Qp" .
n

In real context tone can define Hilbert spaces with rational valued dimension just as one defines
rational numbers - that is as pairs of Hilbert spaces (m,n) with equivalence (m,n) = (km, kn).

. One can even define Hilbert spaces with dimensions in algebraic extensions of rationals.

(a) Consider first the real case and the extension defined by Gaussian integers for which integers
are of form m + in = (m,n). What is needed is just the product rule: (m,n) ® (r,s) =
(m@r—o(—n®s),m®s®r®n). This expression is completely well-defined in the p-adic
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context and also in real context if one accepts the proposed defined of integer Hilbert spaces
as pairs of ordinary Hilbert spaces. For Q(v/5) one would have (m,n) x (r,s) = (m®@r®5®
n®s,mes®dr®n). In n-dimensional case one just replaces Hilbert spaces with n-multiple
of ordinary Hilbert spaces and uses the multiplication rules.

(b) In p-adic context similar approach works when the algebraic extension requires also extension
of p-adic numbers. In p-adic context however many algebraic numbers can exist as ordinary
p-adic numbers. For instance, for p mod 4 = 1 /—1 exists as well as its Hilbert space
counterpart. For quadratic extensions of p > 2-adic numbers the 4-D extension involving the
addition of two square roots all square roots except that of p exist -adically.

3.1.2 Quantum Hilbert spaces and generalization to extensions of rationals

The map of p-adic integers to their quantum counterparts generalizes so that it applies to Hilbert spaces.
This means that prime Hilbert spaces are mapped to the quantum counterparts. What this means is
not quite obvious. Quantum groups appearing in the context of Jones inclusions lead to the emergence
of quantum spinors that is quantum counterparts of 2-D Hilbert spaces. This suggest that more general
inclusions lead to prime-dimensional quantum Hilbert spaces. The idea is simple: quantum matrix algebra
M/N with quantum dimension (2,)? is defined as a coset space of hyper-finite factor M and included
factor N C M. This quantum matrix algebra acts in quantum spinor space of dimension 2,. The
generalization would introduce p,-dimensional quantum Hilbert spaces.
A good test for the proposal is whether it generalizes naturally to algebraic extensions of rationals.

1. For algebraic extensions some ordinary primes split into products of primes associated with the
extension. The problem is that for these algebraic primes the factors exp(im/P) fail to be algebraic
numbers and finite roots of unity and its is not at all clear whether the naive generalization of the
notion of quantum p-adic makes sense. This suggests that only the ordinary primes which do not
split into products of primes of extension remain and one can define quantum p-adics only for these
whereas the other primes correspond to ordinary algebraic extension of p-adic numbers. This would
make algebraic extension of rationals the coefficient group of adele consisting of p-adic numbes fields
associated with non-split primes only. Note that rationals or their extension would naturally appear
as tensor factor of adeles meaning that their action can be thought to affect any of the factors of
the adele.

2. For split primes the p-adic Hilbert spaces must be defined for their algebraic prime factors. The pro-
posed procedure of defining Hilbert space counterparts for algebraic extensions of rationals provides
a recipe for how to achieve this. These Hilbert spaces the quantum map would be trivial.

3. Hilbert space counterpart for the albebraic extension of rationals and of p-adics makes also sense.
The Hilbert space assigned with integer which splits into primes of extension splits also to a tensor
product of prime Hilbert spaces assignable with the extension. The splitting of integers and primes
is highly analogous to the decomposition of hadron to quarks and gluons. This decomposition is
not seen at the level of rationals reprsenting observed.

3.1.3 What about Hilbert spaces with real number valued dimension?

What Hilbert space variant of a real number could mean? What Hilbert space with dimension equal to
arbitrary real number could mean? One can imagine two approaches.

1. The first approach is based on the map of Hilbert p-adics to real p-adics by a map used to map
p-adic numbers to reals. The formula would be &,a, @ p™ = B(an)g @p~". (an)g = @lg!, were [,
is quantum Hilbert space of prime dimension. Also the Hilbert space p~"™ would be well-defined as
a Hilbert rational defined as a pair of Hilbert spaces.
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For hyper-finite factors of type II; Hilbert spaces with continuous dimension emerge naturally. The
reason is that the dimension of the Hilbert space is defined as quantum trace of identity operator
characterized by quantum phase this dimension is finite and continuous. This allows a spectrum of
sub-Hilbert spaces with continuously varying real dimension. The appearance of quantum Hilbert
spaces in the canonical identification map conforms with this and even for dimension 0 < n < p gives
rise to quantum Hilbert space with algebraic quantum dimension given as n = []| lgl for n =T, 1.

2. Second approach relies on the mimicry of the completion of ordinary rationals to real numbers.
One can define Hilbert space analogs of rationals and algebraics by defining positive and negative
rationals as pairs of Hilbert spaces with equivalence relation (m,n) = (m @ r,n @ r). Taking pairs
of these pairs with equivalence relation (M, N) = (K ® M, K ® N) one obtains Hilbert spaces
corresponding to rational numbers. Algebraic extensions are obtained similarly. By taking limits
just in the same manner as for real numbers one would obtain Hilbert reals with transcendental
dimensions. For instance, e could be defined as the limit of tensor power (1 ® 1/n)", n — co.

Again one must remember that the co-vertices define the hard part of the problem and their definition
means postulate of quantum dynamics. This would be the genuinely new element and transform math-
ematics to quantum physics. Every sequences of algebraic operations having a realization as Feynman
diagram involving arithmetic operations as positive energy part of Feynman diagrams and co-operations
as the negative energy part of diagram connected by single line.

It should not go un-noticed that the direct sum and tensor product decompositions of possibly infinite-
dimensional Hilbert spaces are very essential for the interpretation. For infinite-dimensional Hilbert
spaces these decompositions would be regarded as equivalent for an abstract definition of Hilbert space.
In physical applications tensor product and direct sum representations have also very concrete physical
content.

3.1.4 Hilbert calculus?

What this approach suggests is a generalization of calculus in both real and and p-adic context. The
first thing to do is to define Hilbert functions as Hilbert space valued functions as  — f(x). This could
be done formally by assigning to Hilbert space associated with point x Hilbert space associated with the
point f(z) for all values of z. Function could have representation as Taylor series or Laurent series with
sum replaced with direct sum and products with tensor products. The correspondence x — f(x) would
have as a counterpart the analog of Feynman diagram describing the Taylor series with final line defining
the value f(z). Also derivatives and integrals would be at least formally defined. This would requite
separate diagram for every point . One can consider also the possibility of more abstract definition of
f(z). For instance the set of coefficients { f,,} in the Taylor series of f would defined a collection of Hilbert
spaces.

One should be able to define also co-functions in terms of co-vertices. The value of co-function at
point y would give all the values of x for which one has f(z) = y. Co-function would correspond to a
quantum superposition of values of inverse function and to time reversed zero energy states. The breaking
of time reversal would be inherent in the very definition of function as an arrow from one Hilbert set to
another Hilbert set and typically the functions involved would be many-valued form beginning. Perhaps it
would be better to speak from the beginning about relations between two sets rather than functions. The
physical realization of Hilbert calculus would be obtained by assigning to incoming arguments represented
as Hilbert space quantum states.

3.1.5 Quantum mathematics?

Could one transform entire mathematics to quantum mathematics - or would it be better to say Hilbert
mathematics? Reader can decide. Consider first Hilbert set theory. The idea wold be to replace numbers
with Hilbert spaces. This would give Hilbert structure. By replacing Hilbert spaces with their quantum
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counterparts characterized by quantum dimensions n, one would obtain which might be called quantum
Hilbert structure.

1. At the level of set theory this would mean replacement of sets with Hilbert sets. A set with n elements
would correspond intuitively to n-dimensional Hilbert space. Therefore tHilbert sets would provide
much more specific realization of set theory than abstract set theory in which the elements of set can
be anything. For n-dimensional Hilbert space however the ordering of the elements of basis induces
automatically the ordering of the elements of the set. Does the process of counting the elements
of set corresponds to this ordering. Direct sum would be the counterpart of set theoretic union.
One could construct natural numbers inductively as direct sums (n + 1) = n @ 1. To be subset
would correspond to sub-Hilbert space property. Intersection of two Hilbert sets would correspond
to the direct sum of common direct summands. Also set difference and symmetric difference could
be defined.

2. The set theoretic realization of Boolean logic would have Hilbert variant. This would mean that
logical statements could be formulated using Hilbert variants of basic logical functions.

3. Cartesian product of sets would correspond to a tensor product of Hilbert spaces. This would
bring in the notion of prime since Hilbert integers would have decomposition into tensor products
of Hilbert primes. Note that here one can consider the symmetrization of tensor product modulo
phase factor and this could give rise to bosonic and fermionic statistics and perhaps also to anyonic
statistics when the situation is 2-dimensional as it indeed is for partonic 2-surfaces.

4. What about sets of sets?

(a) The elements of n-dimensional Hilbert space consist of numbers in some number field. By
replacing these numbers with corresponding Hilbert spaces one would obtain Hilbert space of
Hilbert spaces as a counterpart for sets of sets. One would have Hilbert space whose points
are Hilbert spaces: Hilbert-Hilbert space!. This process could be continued indefinitely and
would give rise to a hierarchy formed by Hilbert™-spaces. This would be obviously something
new and mean self-referential property. For Hilbert™-spaces one would the points at n:th level
of hierarchy with points of the number field involved and obtain a concrete realization. The
construction of infinite primes involves formations of sets of rationals and sets of these sets,
etc.... and would have also interpretation as formation of a hierarchy of Hilbert sets of sets

(b) Power set as set of subsets of set would be obtained from direct sum of Hilbert spaces, by
replacing the points of each Hilbert space with corresponding Hilbert spaces.

(c) One could define the analog of set theoretic intersection also for tensor products as the set of
common prime Hilbert factors for two Hilbert sets. For ordinary integers defined as sets the
intersection in this sense would correspond to the common prime factors. In Cartesian product
the intersection would correspond to common Cartesian factors.

5. The completely new and non-trivial element bringing in the quantum dynamics is brought in by co-
operations for union and intersection. The solution to the equation f(x) = y could be represented as
anumber theoretic Feynman diagram in zero energy ontology. Positive energy part would correspond
to y and diagram beginning from y would represent co-function of f(x) identifiable as its inverse.
Negative energy state would represent a quantum superposition of the values of = representing the
solutions.

6. One can ask whether a Feynman diagrammatic representation for the statements like 3x € A such
that f(z) = g(z) and Vo € Af(x) = g(x) exists. One should be able to construct quantum state
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which is superposition of solutions to the condition f(z) = g(x). If this state is non-vanishing the
solution exists.

This kind of statements are statements of first order logic involving existential quantifiers whereas
the statements of predicate logic would correspond simply to a calculation of a value of function at
given point. The hierarchy of Hilbert™ spaces brings in mind strongly the hierarchy of infinite primes
assigned already earlier to a hierarchy of logics. Could the statements of n:th order logic require
the use of Hilbert”- spaces. The replacement of numbers with Hilbert spaces could correspond to
formation of statements of first order logic. The individual quantum states satisfying the statement
would represent the statements of predicate logic.

The construction of infinite primes can be regarded as repeated second quantization in which the
many particle states of the previous level become single particle states of the new level. Maybe also
the hierarchy of Hilbert™-spaces could be seen in terms of a hierarchy of second quantizations.

Infinite primes lead to the notion of algebraic holography meaning that real point has infinitely
rich number theoretical anatomy due to the existence of real units expressible as ratios of infinite
integers reducing to real unit in real topology. The possibility to replace the points of space-time
with Hilbert spaces and to continue this process indefinitely would realize the same idea.

3.1.6 Number theoretic Feynman diagrams

Could one imagine a number theoretical quantum dynamics in which integers are replaced with sequences
of arithmetic operations? If numbers are replaced with Hilbert spaces and if one can assigns to each
number a state of the Hilbert space accompanying it, this seems to be possible.

1. All algebraic functions would be replaced with their algebraic expressions, which would be inter-
preted as analogs of zero energy states in which incoming arguments would represent positive energy
part and the result of operation outgoing state. This would also unify algebra and co-algebra think-
ing and the information about the values of the arguments of the function would not be forgotten
in the operations.

2. The natural constraints on the dynamics would be trivial. In 4, vertex a direct sum of incoming
states and in X, gives rise to tensor product. This also at the level of Hilbert spaces involved.
The associativity and commutativity of direct sum and tensor product guarantee automatically the
these properties for the vertices. The associativity and commutativity conditions are analogous to
associativity conditions for 3-point functions of conformal field theories. Distributivity condition
is something new. Co-product and co-sum obey completely analogous constraints as product and
sum.

3. For product the total numbers of prime factors is conserved for each prime appearing in the product
meaning that the total momenta n;log(p;) are conserved separately for each prime in the process
involving only products. This kind of conservation law is natural also for infinite primes and one can
indeed map the simplest infinite primes at the lowest level analogous to free Fock states of bosons
and fermions to ordinary rationals so that the addition of Galois degrees of freedom tentatively
identified as cyclic permutations of the state basis for Hilbert space associated with given prime
would give for a particle labelled by prime p additional internal degrees of freedom. In fact, one can
illustrate infinite prime as in terms of two braids corresponding to the numerator and denominator
of corresponding rational and the primes appearing in rationals take the role of braid strands. For
X 4 the conservation of quantum numbers would correspond to conservation of representations. This
guarantees commutativity and associativity of product. One can also allow co-product and co-sum
and they obey completely analogous constraints as product and sum and they have counterparts at
the level of Hilbert spaces two studied in the theory of quantum groups.
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One can represent algebraic operations using the analogs of Feynman diagrams and there is an intrigu-
ing analogy with generalized Feynman diagrams which forces to ask whether the generalized Feynman
diagrams of quantum TGD could be interpreted in terms of quantum counterparts algebraic equations
transformed if one extends the number field to quaternions and their possibly existing p-adic counterparts.

1. Multiplicative and additive inverses - in the case that they exist - can be seen as kind of conjugation
operations analogous to C and P which commute with each other. Their product n — —1/n could
be seen as the analog of T if CPT = 1 is taken as identity. Co-product and co-sum would would
be obtained from product and sum by CP or T.

2. One can represent the integer X = X ({ns}) resulting from a sequence of algebraic operations +
and x, performed for integers n;, appearing as inputs of a Feynman diagram having the value of
X as outgoing line. n. j represent incoming external lines and intermediate products of algebraic
operations appear as internal ”off-mass-shell” lines. 4+, and X, represent the basic vertices. This
gives only tree diagrams with single outgoing line representing the (quantum value) of X.

Associativity and commutativity for +, resp. X, would mean that the lines of diagram with 3
incoming particles and two vertices can be modified by permuting the incoming lines in all possible
manners. Distributivity a X (b+4¢) = a x4b+4a x4 ¢ does not correspond anything familiar from
conformal field theories since the line representing a appears twice on the right hand side of the
identity and there are 3 vertices whereas left hand side involves 2 vertices. In TGD framework the
interpretation of the analogs of stringy decay vertices in terms of propagation along two different
paths allows however to interpret these vertices as counterparts of 4+, whereas the TGD counterparts
of vertices of Feynman diagrams would correspond to X,. ;g would correspond at state space level
to direct sum and X, to tensor product.

3. The lines of Feynman diagrams are naturally replaced with braids - just as in quantum TGD. The
decomposition of the incoming quantum rational ¢ = m/n to primes defines a braid with two colors
of braid strands corresponding to the primes appearing in m and n so that a close connection with
braid diagrams emerges. This of course raises the question whether one could allow non-trivial
braiding operation for two braid strands represented by primes. Non-triviality would mean that
p1p2 = p2p1 would not hold true only in projective sense so that the exchange would induce a phase
factor. This would suggest that the commutativity of the basic operations - or at least multiplication
- might hold true only apart from quantum phase factor. This would not be too surprising since
quantum phases are the essence of what it is to be quantum integer.

4. The diagrammatical counterparts of co-operations are obtained by time reversal transforming incom-
ing to outgoing lines and vice versa. If one adds co-products and sums to the algebraic operations
producing X one obtains diagrams with loops. If ordinary algebraic rules generalizes the diagrams
with loops must be transformable to diagrams without them by algebraic ”"moves”. The simplifica-
tion of arithmetic formulas that we learn in elementary school would correspond to a sequence of
"moves” leading to a tree diagram with single internal line at the middle and representing X =Y.
One can form also diagrams of form X =Y = Z = ... just as in zero energy ontology.

5. In zero energy ontology a convenient manner to represent a identity X =Y - call it a "quantum
correlate for mathematical thought” - involving only sums and products and therefore no loops is
as a tree diagram involving only two kinds of 3-vertices, namely +, and X, and their co-algebra
vertices representing time reversed processes. In zero energy ontology this kind of representation
would correspond to either the condition X/Y = 1 or as X —Y = 0. In both cases one can say
that the total quantum numbers would be conserved - that is net quantum numbers assignable to
prime factors of X vanish for zero energy state. The diagram involves always single integral line
representing the identical values of X and Y. Line representing X would be preceded by a tree
diagram involving only product and sum vertices and Y would involve only co-product and co-sum.
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For ordinary arithmetics every algebraic operation is representable in this kind of diagram, which
suggests that infinite number of different diagrams involving loops are equivalent to this diagram
with single internal line.

6. The resulting braid Feynman diagrammatics would obey extremely powerful rules due to the pos-
sibility of the "moves”. All possible independent equations X = Y would define the basis of zero
energy states. In quantum TGD the breaking of time reversal invariance is unavoidable and means
that only the positive or negative energy parts of the diagram can have well defined quantum
numbers. The direct translation would be that the zero energy states correspond to sums over all
diagrams for which either positive/negative energy part corresponds to given rationals and the neg-
ative/positive energy part of the state is superposition of states consisting of rationals. This would
mean non-trivial U-matrix dictated by the coefficients of the superpositions and genuine arithmetic
quantum dynamics.

3.2 Hilbert p-adics, hierarchy of Planck constants, and finite measurement
resolution

The hierarchy of Planck constants assigns to the N-fold coverings of the imbedding space points N-
dimensional Hilbert spaces. The natural identification of these Hilbert spaces would be as Hilbert spaces
assignable to space-time points or with points of partonic 2-surfaces. There is however an objection
against this identification.

1. The dimension of the local covering of imbedding space for the hierarchy of Planck constants is
constant for a given region of the space-time surface. The dimensions of the Hilbert space assignable
to the coordinate values of a given point of the imbedding space are defined by the points themselves.
The values of the 8 coordinates define the algebraic Hilbert space dimensions for the factors of an
8-fold Cartesian product, which can be integer, rational, algebraic numbers or even transcendentals
and therefore they vary as one moves along space-time surface.

2. This dimension can correspond to the locally constant dimension for the hierarchy of Planck con-
stants only if one brings in finite measurement resolution as a pinary cutoff to the pinary expansion
of the coordinate so that one obtains ordinary integer-dimensional Hilbert space. Space-time surface
decomposes into regions for which the points have same pinary digits up to p~ in the p-adic case
and down to p~® in the real context. The points for which the cutoff is equal to the point itself
would naturally define the ends of braid strands at partonic 2-surfaces at the boundaries of C'D:s.

3. At the level of quantum states pinary cutoff means that quantum states have vanishing projections
to the direct summands of the Hilbert spaces assigned with pinary digits p™, n > N. For this
interpretation the hierarchy of Planck constants would realize physically pinary digit representations
for number with pinary cutoff and would relate to the physics of cognition.

One of the basic challenges of quantum TGD is to find an elegant realization for the notion of finite
measurement resolution. The notion of resolution involves observer in an essential manner and this
suggests that cognition is involved. If p-adic physics is indeed physics of cognition, the natural guess is
that p-adic physics should provide the primary realization of this notion.

The simplest realization of finite measurement resolution would be just what one would expect it to
be except that this realization is most natural in the p-adic context. One can however define this notion
also in real context by using canonical identification to map p-adic geometric objets to real ones.

3.2.1 Does discretization define an analog of homology theory?

Discretization in dimension D in terms of pinary cutoff means division of the manifold to cube-like objects.
What suggests itself is homology theory defined by the measurement resolution and by the fluxes assigned
to the induced Kahler form.
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1. One can introduce the decomposition of n-D sub-manifold of the imbedding space to n-cubes by
n — 1-planes for which one of the coordinates equals to its pinary cutoff. The construction works in
both real and p-adic context. The hyperplanes in turn can be decomposed to n — 1-cubes by n — 2-
planes assuming that an additional coordinate equals to its pinary cutoff. One can continue this
decomposition until one obtains only points as those points for which all coordinates are their own
pinary cutoffs. In the case of partonic 2-surfaces these points define in a natural manner the ends of
braid strands. Braid strands themselves could correspond to the curves for which two coordinates
of a light-like 3-surface are their own pinary cutoffs.

2. The analogy of homology theory defined by the decomposition of the space-time surface to cells of
various dimensions is suggestive. In the p-adic context the identification of the boundaries of the
regions corresponding to given pinary digits is not possible in purely topological sense since p-adic
numbers do not allow well-ordering. One could however identify the boundaries sub-manifolds for
which some number of coordinates are equal to their pinary cutoffs or as inverse images of real
boundaries. This might allow to formulate homology theory to the p-adic context.

3. The construction is especially interesting for the partonic 2-surfaces. There is hierarchy in the sense
that a square like region with given first values of pinary digits decompose to p square like regions
labelled by the value 0,...,p — 1 of the next pinary digit. The lines defining the boundaries of the
2-D square like regions with fixed pinary digits in a given resolution correspond to the situation in
which either coordinate equals to its pinary cutoff. These lines define naturally edges of a graph
having as its nodes the points for which pinary cutoff for both coordinates equals to the actual
point.

4. T have proposed earlier [4] what I have called symplectic QFT involving a triangulation of the
partonic 2-surface. The fluxes of the induced Kéahler form over the triangles of the triangulation
and the areas of these triangles define symplectic invariants, which are zero modes in the sense
that they do not contribute to the line element of WCW although the WCW metric depends on
these zero modes as parameters. The physical interpretation is as non-quantum fluctuating classical
variables. The triangulation generalizes in an obvious manner to quadrangulation defined by the
pinary digits. This quadrangulation is fixed once internal coordinates and measurement accuracy
are fixed. If one can identify physically preferred coordinates - say by requiring that coordinates
transform in simple manner under isometries - the quadrangulation is highly unique.

5. For 3-surfaces one obtains a decomposition to cube like regions bounded by regions consisting of
square like regions and Kéahler magnetic fluxes over the squares define symplectic invariants. Also
Kahler Chern-Simons invariant for the 3-cube defines an interesting almost symplectic invariant.
4-surface decomposes in a similar manner to 4-cube like regions and now instanton density for the
4-cube reducing to Chern-Simons term at the boundaries of the 4-cube defines symplectic invariant.
For 4-surfaces symplectic invariants reduce to Chern-Simons terms over 3-cubes so that in this sense
one would have holography. The resulting structure brings in mind lattice gauge theory and effective
2-dimensionality suggests that partonic 2-surfaces are enough.

The simplest realization of this homology theory in p-adic context could be induced by canonical
identification from real homology. The homology of p-adic object would the homology of its canonical
image.

1. Ordering of the points is essential in homology theory. In p-adic context canonical identification
=Y x,p" = > x,p~ " map to reals induces this ordering and also boundary operation for p-adic
homology can be induced. The points of p-adic space would be represented by n-tuples of sequences
of pinary digits for n coordinates. p-Adic numbers decompose to disconnected sets characterized
by the norm p~" of points in given set. Canonical identification allows to glue these sets together
by inducing real topology. The points p™ and (p — 1)(1 +p+p* +...)p" ™! having p-adic norms p="
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and p~"~! are mapped to the same real point p~™ under canonical identification and therefore the

points p™ and (p—1)(1+p+p?+...)p" ! can be said to define the endpoints of a continuous interval
in the induced topology although they have different p-adic norms. Canonical identification induces
real homology to the p-adic realm. This suggests that one should include canonical identification
to the boundary operation so that boundary operation would be map from p-adicity to reality.

2. Interior points of p-adic simplices would be p-adic points not equal to their pinary cutoffs defined by
the dropping of the pinary digits corresponding p™, n > N. At the boundaries of simplices at least
one coordinate would have vanishing pinary digits for p™, n > N. The analogs of n — 1 simplices
would be the p-adic points sets for which one of the coordinates would have vanishing pinary digits
for p™, n > N. n — k-simplices would correspond to points sets for which k coordinates satisfy this
condition. The formal sums and differences of these sets are assumed to make sense and there is
natural grading.

3. Could one identify the end points of braid strands in some natural manner in this cohomology?
Points with n < N pinary digits are closed elements of the cohomology and homologically equivalent
with each other if the canonical image of the p-adic geometric object is connected so that there is
no manner to identify the ends of braid strands as some special points unless the zeroth homology is
non-trivial. In [I9] it was proposed that strand ends correspond to singular points for a covering of
sphere or more general Riemann surface. At the singular point the branches of the covering would
co-incide.

The obvious guess is that the singular points are associated with the covering characterized by
the value of Planck constant. As a matter fact, the original assumption was that all points of the
partonic 2-surface are singular in this sense. It would be however enough to make this assumption
for the ends of braid strands only. The orbits of braid strands and string world sheet having braid
strands as its boundaries would be the singular loci of the covering.

3.2.2 Does the notion of manifold in finite measurement resolution make sense?

A modification of the notion of manifold taking into account finite measurement resolution might be
useful for the purposes of TGD.

1. The chart pages of the manifold would be characterized by a finite measurement resolution and
effectively reduce to discrete point sets. Discretization using a finite pinary cutoff would be the
basic notion. Notions like topology, differential structure, complex structure, and metric should be
defined only modulo finite measurement resolution. The precise realization of this notion is not
quite obvious.

2. Should one assume metric and introduce geodesic coordinates as preferred local coordinates in order
to achieve general coordinate invariance? Pinary cutoff would be posed for the geodesic coordinates.
Or could one use a subset of geodesic coordinates for 6C D x C P, as preferred coordinates for partonic
2-surfaces? Should one require that isometries leave distances invariant only in the resolution used?

3. A rather natural approach to the notion of manifold is suggested by the p-adic variants of symplectic
spaces based on the discretization of angle variables by phases in an algebraic extension of p-adic
numbers containing n*” root of unity and its powers. One can also assign p-adic continuum to each
root of unity [7]. This approach is natural for compact symmetric Kihler manifolds such as $? and
CP,. For instance, C P, allows a coordinatization in terms of two pairs (P¥, Q) of Darboux coor-
dinates or using two pairs (gk,Ek% k = 1,2, of complex coordinates. The magnitudes of complex

coordinates would be treated in the manner already described and their phases would be described
as roots of unity. In the natural quadrangulation defined by the pinary cutoff for [¢¥| and by roots
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of unity assigned with their phases, Kéhler fluxes would be well-defined within measurement resolu-
tion. For light-cone boundary metrically equivalent with S? similar coordinatization using complex
coordinates (z,%) is possible. Light-like radial coordinate r would appear only as a parameter in
the induced metric and pinary cutoff would apply to it.

3.2.3 Hierachy of finite measurement resolutions and hierarchy of p-adic normal Lie groups

The formulation of quantum TGD is almost completely in terms of various symmetry group and it would
be highly desirable to formulate the notion of finite measurement resolution in terms of symmetries.

1. In p-adic context any Lie-algebra gG with p-adic integers as coefficients has a natural grading based
on the p-adic norm of the coefficient just like p-adic numbers have grading in terms of their norm.
The sub-algebra gy with the norm of coefficients not larger than p~® is an ideal of the algebra
since one has [gar, gn] C gar4n: this has of course direct counterpart at the level of p-adic integers.
gn is a normal sub-algebra in the sense that one has [g,gn] C gn. The standard expansion of the
adjoint action ggyg~! in terms of exponentials and commutators gives that the p-adic Lie group
Gy = exp(tpgn), where t is p-adic integer, is a normal subgroup of G = exp(tpg). If indeed so
then also G/Gy is group, and could perhaps be interpreted as a Lie group of symmetries in finite
measurement resolution. Gy in turn would represent the degrees of freedom not visible in the
measurement resolution used and would have the role of a gauge group.

2. The notion of finite measurement resolution would have rather elegant and universal representation
in terms of various symmetries such as isometries of imbedding space, Kac-Moody symmetries
assignable to light-like wormhole throats, symplectic symmetries of CD x CP,, the non-local
Yangian symmetry, and also general coordinate transformations. This representation would have
a counterpart in real context via canonical identification I in the sense that A — B for p-adic
geometric objects would correspond to I(A) — I(B) for their images under canonical identification.
It is rather remarkable that in purely real context this kind of hierarchy of symmetries modulo
finite measurement resolution does not exist. The interpretation would be that finite measurement
resolution relates to cognition and therefore to p-adic physics.

3. Matrix group G contains only elements of form g = 14+O(p™), m > 1 and does not therefore involve
matrices with elements expressible in terms roots of unity. These can be included by writing the
elements of the p-adic Lie-group as products of elements of above mentioned G with the elements
of a discrete group for which the elements are expressible in terms of roots of unity in an algebraic
extension of p-adic numbers. For p-adic prime p p:th roots of unity are natural and suggested
strongly by quantum arithmetics [I8§].

3.3 Quantum adeles

Before saying anything about Hilbert space adeles it is better to consider ordinary adeles.

1. Fusing reals and quantum p-adic integers for various values of prime p to Cartesian product Az =
R x (Hp Zp) gives the ring of integer adeles. The tensor product @ ®z Az gives rise to rational
adeles. z means the equivalence (ng,a) = (¢,na). This definition generalization to any number field
including algebraic extensions of rationals. It is not quite clear to me how essential the presence of
R as Cartesian factor is. One can define ideles as invertible adeles by inverting individual p-adic
numbers and real number in the product. If the component in the Cartesian product vanishes, the
component of inverse also vanishes.

2. The definition of a norm of adele is not quite straightforward.
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(a) The norm of quantum adeles defined as product of real and p-adic norms is motivated by the
formula for the norm of rational numbers as the product of its p-adic norms. This definition
of norm however looks non-physical and non-mathematical. For instance, it requires that all
p-adic components of quantum adele are non-vanishing and most of them have norm equal to
one and are therefore p-adic integers of norm one. This condition would also break general
coordinate invariance at the level of quantum adelic imbedding space very strongly. Also for
adelic spinors and adelic Hilbert space this condition is definitely non-sensical.

(b) The physically acceptable norm for adeles should reflect the basic properties of p-adic norm for
a given p-adic field in the product but should also have the characteristic property of Hilbert
space norm that the norm squared is sum of the norms squared for the factors of the adele.
The solution to these demands seems to be simple: map the p-adic number to its quantum
counterpart in each factor and map this number to real number by canonical identification.
After this form the real Hilbert space norm of the resulting element of infinite-dimensional real
Hilbert space. This norm generalizes in a natural manner to linear spaces possessing adeles as
components. Most importantly, for this norm the elements of adele having finite number of
components have a non-vanishing norm and field property is possible.

Consider now what happens when one replaces p-adic integers with p-adic Hilbert spaces and p-adic
numbers as components of the vectors of the Hilbert space.

1. As far as arithmetics is considered, the definition of Hilbert space adeles for p-adic number fields
is formally the same as that of ordinary adeles. It of course takes time to get accustomed to think
that rationals correspond to a pair of Hilbert spaces and their product is formulated for this pair.

2. p-Adic Hilbert spaces would be linear spaces with p-adic coefficients that is vectors with p-adic
valued components. Inner product and norm would be defined by mapping the components of
vectors to real/complex numbers by mapping them first to quantum p-adics and them to reals by
canonical identification. Note that the attempts to define p-adic Hilbert spaces using p-adic norm
or formal p-adic valued norm mapped to real number by canonical identification lead to difficulties
since already in 2-D case the equation 22 + y? = 0 has solution y = /—1x for p mod 4 = 1 since
in this case v/—1 exists p-adically.

3. A possible problem relates to the fact that all p-adic numbers are mapped to non-negative real
numbers under canonical identification if the coefficients a,, in the expansion ), a,p™ consists of
primes [ < p for which quantum counterpart is non-negative. For ordinary p-adic numbers orthog-
onal vectors in a given basis would be simply vectors with no common non-vanishing components.
Does this mean the existence of a preferred basis with elements (0,..,0,1,0...) so that any other
unitarily related basis would be impossible. Or should one introduce cyclic algebraic extension of
p-adic numbers with n-elements exp(i27k/n) for which one obtains linear superposition and can
form new unitarily related basis taking into account the restrictions posed by p-adicity. This option
is suggested also by the identification of the Hilbert space as wave functions in the local singular
covering of imbedding space. The phases form also in a natural manner cyclic group Z,, identifiable
as quantum Galois group assignable to integer n and decomposing to a product of cyclic groups
Zp, s pi'”'

Also real numbers form a Cartesian factor of adeles. The question what Hilbert spaces with dimension
equal to arbitrary real number could mean has been already discussed and there are two approaches to
the problem: one based on canonical identification and quantum counterparts of p-adic numbers and one
to a completion of Hilbert rationals.
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4 Generalized Feynman diagrams as quantum arithmetic Feyn-
man diagrams?

The idea that the generalized Feynman diagrams of TGD could have interpretation in terms of arithmetic
QFT is not new but the quantum arithmetic Feynman diagrams give much more precise content to this
idea.

1. The possibility to eliminate all loops is by "moves” is an old idea (briefly discussed in [3]), which
I introduced as a generalization of the old fashioned s-t duality of string models. One motivation
was of course the resulting cancellation of diverges. I however gave up this idea as too romantic [3].
The properties of the counterparts of twistor diagrams in zero energy ontology re-inspires this idea.

2. The basic question concerns the possible physical interpretation of the two kinds of 3-vertices and
their co-vertices, which are also included and mean decomposition of incoming particle characterized
by integer m to quantum superposition of two particle states characterized by integers n, p satisfying
m = n + p for the co-sum and m = n X p for co-product. The amplitudes of different state pairs
n,p in fact determine the quantum dynamics and typically the irreversible dynamics leading from
state with well-defined quantum number characterized by integers would be due to the presence of
co-vertices meaning delocalization.

3. If quantum p-adic integers correspond to Hilbert spaces then the identifications +, = @ and x; = ®
become possible. The challenge is to fix uniquely their co-vertices and this procedure fixes completely
number theoretic Feynman amplitudes. Quantum dynamics would reduce to co-arithmetics. Or
should one say that mathematics could reduce to quantum dynamics?

4. x4 and +, alone look very quantal and the generalization of string model duality means that besides
cyclic permutations arbitrary permutations of incoming resp. outgoing lines act as symmetries. The
natural question is whether this symmetry generalizes to permutations of all lines. This of course if
commutativity in strict sense holds true also for quantum arithmetics: it could be that it holds true
only in projective sense. Distributivity has however no obvious interpretation in terms of standard
quantum field theory. The arithmetics for integers would naturally reflect the arithmetics of Hilbert
spaces dimensions induced by direct sum and tensor product

4.1 Quantum TGD predicts counterparts for x, and +, vertices

Also quantum TGD allows two kinds of vertices identifiable in terms of the arithmetic vertices and this
gives strong physical constraints on +, vertices.

1. First kind of vertices are the direct topological analogs of vertices of ordinary Feynman diagrams
and there are good arguments suggesting that only 3-vertices are possible and would mean joining
of 3 light-like 3-surfaces representing lines of generalized Feyman diagram along their 2-dimensional
ends. At the these vertices space-time fails to be a manifold but 3-surface and partonic 2-surface
are manifolds. These vertices correspond naturally to x, or equivalently .

2. The vertices of second kind correspond to the stringy vertices, in particular the analog of stringy
trouser vertices. The TGD based interpretation - different from stringy interpretation- is that no
decay takes place for a particle: rather the same particles travels along different routes. These
vertices correspond to four-surfaces, which are manifolds but 3-surfaces and partonic 2-surface fail
to be manifolds at the vertex. There is a strong temptation to interpret +, - or equivalently @
- as the counterpart of stringy vertices so that the two lines entering to +, would represent same
incoming particle and should have in some sense same quantum numbers in the situation when the
particle is an eigenstate of the quantum numbers in question? This would allow to understand the
strange looking quantum distributivity and also to deduce what can happen in 4, vertex.
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3. What does the conservation of quantum numbers mean for quantum Galois quantum numbers
identified in the proposed manner as quantum number associated with the cyclic groups assignable
to the integers appearing in the vertex? For x, vertex the answer is simple since tensor product is
formed. This means that the number theoretic momentum is conserved. For direct sum one obtains
direct sum of the incoming states and one cannot speak about conservation of quantum numbers
since the final state does not possess well-defined quantum numbers.

4.2 How could quantum numbers of physical states relate to the number
theoretic quantum numbers?

Quite generally, the above proposal would allow to represent all n-plets of rationals as zero energy states
with either positive or negative arrow of time and one could assign to these states M-matrices as entan-
glement coefficients and define quantum jump as a sequence of two state function reductions occurring
to states with opposite arrow of time. This kind of strong structural similarities with quantum TGD are
hardly not a accident when one takes into account the connection with infinite primes and one could hope
that zero energy states and generalized Feynman graphs could represent the arithmetics of Hilbert adeles
with very dramatic consequences due to the arithmetic moves allowing to eliminate loops and permuted
incoming lines without affecting the diagram except by a phase factor. The hierarchy of infinite primes
suggests strongly the generalization of this picture since the resulting states would correspond only to
the infinite integers at the lowest level of the hierarchy and identifiable in terms of free Fock states of
super-symmetric arithmetic QFT.

The possible reduction of generalized Feynman diagrams to Hilbert adelic arithmetics raises several
questions and one can try to proceed by requiring consistency with the earlier speculations.

1. How the quantum numbers like momentum, spin and various internal quantum numbers relate to the
number theoretic quantum numbers k = n2m/p defined only modulo p? The natural idea is that they
find a representation in the number theoretical anatomy of the state so that these quantum numbers
corresponds to waves with these momenta at the orbits of quantum Galois group. Momentum UV
cutoff would have interpretation in terms of finite measurement resolution completely analogous
to that encountered in condensed matter physics for lattice like systems. This would realize self-
reference in the sense that cognitive part of the quantum state would represent quantum numbers
characterizing the real part of the quantum state.

2. What about the quantum p-adics themselves characterizing incoming and out-going states in number
theoretic vertices? There would be a conservation of number theoretical "momentum” characterized
by logarithm of a rational in X, vertex. Does this momentum have any concrete physical counter-
part? Perhaps not since it would be associated with quantum p-adic degrees of freedom serving as
correlates for cognition. In fact, the following argument suggest interpretation in terms of a finite
dimension (finite by finite measurement resolution) of a Hilbert space associated with the orbit of
a partonic 2-surface.

(a) The prime factors of integer characterizing the orbit of a partonic 2-surface correspond naturally
to braid strands for generalized Feynman diagrams. This suggests that the primes in question
can be assigned with braid strands and would be indeed something new. The product of the
primes associated with the particles entering x, vertex would be same as the product of primes
leaving this vertex. In the case of +, vertex the integer associated with each line would be
same. One cannot identify these primes as p-adic primes since entire orbit of partonic 2-surface
and therefore all braid strands are characterized by single common p-adic prime p.

(b) Hilbert spaces with prime dimension are in a well-defined sense primes for tensor product, and
any finite-dimensional Hilbert space decomposes into a product of prime Hilbert spaces. Hence
the integer n associated with the line of a generalized Feynman diagram could characterize the
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dimension of the finite-dimensional Hilbert space (by finite measurement resolution) associated
with it. The decomposition of n to prime factors would correspond to a decomposition of this
Hilbert space to a tensor product of prime factors assignable to braid strands. This would
define a direct Hilbert space counterpart for the decomposition of braid into braid strands
and would be very natural physically and actually define the notion of elementarity. The
basic selection rule for x, vertex would be that the prime factors of incoming Hilbert spaces
recombining to form Hilbert spaces of outgoing particles. For the 4, incoming Hilbert spaces
of dimensions ny and n;, would fuse to n; +ny dimensional direct sum. a(b+c) = ab+ ac would
state that the tensor product with direct sum is sum of tensor products with direct summands.
Therefore the two kind of vertices as well as corresponding vertices of quantum TGD would
correspond to basic algebraic operations for finite-dimensional Hilbert spaces very natural for
finite measurement resolution.

Could the different quantum versions of p-adic prime [ > p correspond to different direct sum
decompositions of a Hilbert space with prime dimension to Hilbert spaces with prime dimen-
sions appearing in the quantum pinary expansion in powers of p? The coefficients of powers
of p defined as products of quantum primes [ < p would be quantum dimensions and reflect
effects caused by finite measurement resolution whereas the powers of p would correspond to
ordinary dimensions. This decomposition would correspond to a natural decomposition to a
direct sum by some natural criterion related to finite measurement resolution. For instance,
power p” could correspond to n-ary p-adic length scale. The decomposition would take place
for every strand of braid.

The objection is that for algebraic extensions of rationals the primes of the extension can
be algebraic number so that the corresponding Hilbert space dimension would be complex
algebraic number. It seems that only the primes [ > p which do not split for the algebraic
extension used (and thus label quantum p-adic number fields in the adele) can be considered
as prime dimensions for the Hilbert spaces associated with braid strands. The latter option
is more natural and would mean that the number theoretic evolution generating increasingly
higher-dimensional algebraic extensions implies selection of both preferred p-adic primes and
preferred prime dimensions for state spaces. One implication would be that the quantum
Galois group assignable to given p-adic integer would in general be smaller for an algebraic
extension of rationals than for rationals since only the non-splittable primes in its factorization
would contribute to the quantum Galois group.

As already discussed, the most plausible interpretation is that the pair of co-prime integers
defining the quantum rational defines a pair of Hilbert space dimensions possibly assignable
to fermions and bosons respectively. Interestingly, for the simplest infinite primes representing
Fock states and mappable to rationals m/n the integers m and n could be formally associated
with many-boson and many-fermion states.

Because of multiplicative conservation law in x, vertex quantum p-adic numbers does not
have a natural interpretation as ordinary quantum numbers - say momentum components.
The problem is that the momentum defined as logarithm of multiplicatively conserved number
theoretic momentum would not be p-adic number without the introduction of an infinite-
dimensional transcendental extension to guarantee the existence of logarithms of primes.

If this vision is correct, the representation of ordinary quantum numbers as quantum Galois
quantum numbers would be a representation in a state space formed by (quantum) state spaces
of various quantum dimensions and thus rather abstract but quite possible in TGD framework.
This is of course a huge generalization from the simple wave mechanical picture based on single
Hilbert space but in spirit with abstract category-theoretical thinking about what integers are
category-theoretically. The integers appearing as integers in the Cartesian factors of adeles
would represent Hilbert space dimensions in the case of generalized Feynman diagrams. The
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arithmetic Feynman rules would be only a part of story: as such very abstract but made
concrete by braid representation.

3. Note that the interpretation of + and x vertices in terms of Hilbert space dimensions makes sense
also in the real context whereas the further decomposition into direct sum in powers of p™ does not
make sense anymore.

4.3 Number theoretical quantum numbers and hierarchy of Planck constants

What could be the TGD inspired physical interpretation of these mysterious looking Hilbert spaces
possessing prime dimensions and having no obvious identification in standard physics context?

4.3.1 How the Hilbert space dimension relates to the value of Planck constant?

The first question is how the Hilbert space dimension assigned to a given line of a generalized Feynman
diagram relates to the the value of Planck constant.

1. As already noticed, the decomposition of integer to primes would naturally correspond to its decom-
position to braid strands to which one can assign Hilbert spaces of prime-valued dimension D =
appearing as factors of integer n. This suggests a Hilbert space is defined by wave functions in a set
B,, with n points,. This Hilbert space naturally decomposes into a tensor product of Hilbert spaces
with Hilbert spaces associated with point sets B; containing ! of points with {|n.

2. The only space of this kind that comes in mind relates to the proposed hierarchy of (effective)
Planck constants coming as integer multiples of ordinary Planck constant. For the simplest option
Planck constant f,, = nhy would correspond to a local (singular) covering of the imbedding space
due to the n-valuedness of the time derivatives of the imbedding space coordinates as function of
canonical momentum densities which is due to the huge vacuum degeneracy of Kéahler action.

3. The discrete group Z, would act as a natural symmetry of the covering and would decomposes
az, = Hlln Z;" and the orbits of Z; in the covering would define naturally the sets B;. Given
prime [ in the decomposition would correspond to an I-fold covering of a braid strand and to a wave
function in this space.

4. The proposal for the hierarchy of Planck constants assumes that different sheets of this singular
covering degenerate to single sheet at partonic 2-surfaces at the ends of C'D. Furthermore, the
integers n would decompose to to products n = nins corresponding to directions of time-like braids
along wormhole throat and along the space-like 3-surface at the end of C'D defining by effective
2-dimensionality (strong form of holography) two space-time coordinates playing the role of time
coordinate in the field equations for preferred extremals. Note that the information about the
presence of covering would be carried at partonic 2-surfaces by the tangent space data characterized
by the n;-valued normal derivatives.

5. The simplest option is that Hilbert space dimension corresponds to Planck constant for a given
line of generalized Feynman diagram. This would predict that in the multiplicative vertex also the
values of Planck constants characterizing the numbers of sheets for many-sheeted coverings would
satisfy the condition ng = nino. The assumption that the multiplicative vertex corresponds to the
gluing of incoming lines of generalized Feynman diagram together along their ends seems however to
require ny; = ny = n3. Furthermore, the identification of Hilbert space dimension as Planck constant
is also inconsistent with the vision about book like structure of the imbedding space explaining the
darkness as relative darkness due to the fact that only particles with the same value of Planck
constant can appear in the same vertex [6].
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The way out of the difficulty is to assume that the value of Planck constant & = nhgy corresponds to
n = ng = ning or has ng as a factor. For n = n3 the states with Hilbert space dimensions n; and
ng are invariant under cyclic groups Z,, and Z,, respectively. For n containing ns as a genuine
divisor analogous conditions would hold true.

6. p-Adic prime p would make itself manifest in the further decomposition of the [-dimensional Hilbert
spaces to a direct sum of sub-Hilbert spaces with dimensions given by the terms [, ,p™ in the
expression of | as quantum integer. The fact that the only prime ideal for p-adic integers is p@,
should relate to this. It is quite possible that this decomposition occurs only for the p-adic sectors
of the Hilbert adelic imbedding space.

What suggests itself is symmetry breaking implying the decomposition of the covering A,, of braid
strand to subsets A, ,, with numbers of elements given by #,, ., = {,,p™ with [, divisible only by
primes p; < p. Wave functions would be localized to the sets A,, ,,, and inside A, ,, one would
have tensor product of wave functions localized into the sets A; with | < p and I|l,.

Hilbert space dimensions would be now quantum dimensions associated with the quantum phase
exp(im/l): this should be due to the finite measurement resolution and relate to the fact that one
has divided away the hyper-finite factor N from the factor M O N.

The index characterizing Jones inclusion [24] [6] is given by [M : N| = 4cos?(27/n) and corresponds
to quantum dimension of 2, X 2, quantum matrices. TGD suggest that a series of more general
quantum matrix dimensions identifiable as indices of inclusions and given by [M : N| = 13, l<p
prime and ¢ = exp(im/n), corresponding to prime Hilbert spaces and ¢ = n-adicity. Note that [, < {
is in accordance with the idea about finite measurement resolution and for large values of p one
would have I, ~ [.

If the above identification is correct, the conservation laws in x, and 4+, vertices would give rather
precise information about what can happen for the values of Planck constants in thes vertices. In X,
co-vertices Hilbert space-timensions would combine multiplicatively to give the common value of Planck
constant and in @, co-vertices additively. The phase transitions changing Planck constant, for instance
for photons, are central for quantum TGD and the selection rules would not allow them only if they
correspond to a formation of a Bose-Einstein condensate like state or its decay by X,- or +4-vertex.

4.3.2 Could one identify the Hilbert space dimension as value of Planck constant?

It has been already seen that the identification of Hilbert space dimension with Planci constant it is not
consistent with the idea that product vertex means that the lines of generalized Feynman graph are glued
along their 2-D ends together. I did not however realize this when I wrote the first version of this section
and I decided to keep the earlier discussion about the option for which Planck constants correspond to
Hilbert space dimensions so that ng = nijns holds true for Planck constants. The question was whether it
could be consistent with the idea of dark matter as matter with non-standard value of Planck constant.
By replacing ”Planck constant” with ”Hilbert space dimension” below one obtains a discussion giving
information about the selection rules for Hilbert space dimensions.

1. In xg4-vertex the Planck constants for the outgoing particles would be smaller and factors of incoming
Planck constant. In X, co-vertex Planck constant would increase. I have considered analogous
selection rules already earlier. x, vertex does not allow the fusion of photons with the ordinary
value of Planck constant to fuse to photons with larger value of Planck constant.

By conservation of energy the frequency of a photon like state resulting in the fusion is given by
[ =1k fr/Nout [ [ n& for by, = nyho, where Nj,, and Ny, are the numbers of quanta in the initial
and final state. For a common incoming frequency fi, = fo this gives f/fo = >, ni/(Nout [ 1 7k)-
If one assumes that spin unit for photon increases to [[, nrho and spins are parallel one obtains
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from angular momentum conservation Nyt [[, e = Nin Y ng giving Nowe = [, nuNin/ > 1 =
n™Vin /Ny, which in turn gives f/fo = 1/N;,. This looks rather natural.

In the presence of a feed of r = fi/fig; 1 particles x, vertex could lead to a phase transition generating
particles with large values of Planck constant. Large values of Planck constant are in a key role in
TGD based model of living matter since Compton lengths and other quantum scales are proportional
to h so that large values of i make possible macroscopic quantum phases. The phase transition
leading to living matter could be this kind of phase transition in presence of feed of r > 1 particles.

2. For +, co-vertex r = h/hy could be additive and for incoming photons with same frequency and
Planck constants f, the outgoing state with Planck constant ), Ay energy conservation is guaran-
teed if the frequency stays same. This vertex would allow the transformation of ordinary photons
to photons with large Planck constant, and one could say that effectively the photons fuse to form
single photon. This is consistent with the quantization of spin since the unit of spin increases. For
this option the presence of particles with ordinary value of Planck constant would be enough to
generate particles with r > 1 and this in turn could lead to a the phase transition generation living
matter.

3. One can of course ask whether it should be r—1 = i/fig+ 1, which corresponds to the integer n. For
this option the third particle of 4, vertex with two incoming particles with ordinary Planck constant
would have ordinary Planck constant. For x, vertex containing two incoming particles with r = n,
n =1 (n = 2), also the third particle would have n = 1 (n = 2). x, and +, vertices could not
generate n > 1 particles from particles with ordinary Planck constant. The phase transition leading
from inanimate to living matter would require n > 1 states as a seed (one has 2+ 2 — 3 for ;¢
vertex). A quantum jump generating a C'D containing this kind of particles could lead to this kind
of situation.

4. These selection rules would mean a deviation of the earlier proposal that only particles with same
values of Planck constant can appear in a given vertex [6]. This assumption explains nicely why
dark matter identified as phases with non-standard value of Planck constant decouples from ordinary
matter at vertices. Now this explanation would be modidifed. If x, vertex contains two particles
with » = n+ 1 for r = n option (r = 1 or 2 for r = n + 1 option), also the third particle has
ordinary value of Planck constant so that ordinary matter effectively decouples from dark matter.
For +, vertex the decoupling of the ordinary from dark matter occurs for r = n 4+ 1 option but
not for r = n option. Hence r = n + 1 could explain the virtual decoupling of dark and ordinary
matter from each other. The assumption that Planck constant is same for all incoming lines and
corresponds to ng = niny defines however much more plausible option.

4.3.3 What happens in phase transitions changing the value of Planck constant?

The phase transitions changing the value of Planck constant are in a central role in TGD inspired quantum
biology. The typical phase transition of this kind would change the Planck constant of photon. This phase
transition would formally correspond to a 2-vertex changing the value of Planck constant. Can one pose
selection rules to the change of Planck constant? By the above assumptions both the incoming and
outgoing line correspond to Hilbert space dimension which is a factor of the integer defining Planck
constant. If the value of the Hilbert space dimension is not changed in the process, theincoming and
outgoing Planck constants must have this dimension as a common factor.

4.4 Generalized Feynman diagrams and adeles

The notion of Hilbert adeles seems to fit nicely with the recent view about generalized Feynman dia-
grams. The basic heuristic idea is the idea about fusion of physics in various number fields. p-Adic mass
calculations lead to the conclusion that elementary particles are characterize by p-adic primes and inside
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hadron quarks obeying different effective or real p-adic topologies are present. One can speak about real
and p-adic space-time sheets and real and p-adic spinors and also WCW has real and p-adic sectors.
There is a hierarchy of algebraic extensions of rationals and presumably of also p-adic numbers. Even
more general finite-dimensional extensions containing for instance Neper number e and its roots are also
possible and involve extensions of p-adic numbers.

At the level of Feynman graphs this means that different lines correspond to different p-adic topologies
and I have already proposed how this could give rise p-adic length scale hypothesis when the Feynman
amplitudes in the tensor product of quantum variants p-adic number fields are mapped to reals by
canonical identification [8]. Rational or even more general entanglement between different number fields
would be essential.

The vertices of generalized Feynman diagrams for different incoming p-adic number fields could be
multi-p p-adic objects in quantum sense involving powers expansions in powers of integer n decomposed
to product of powers of quantum primes associated with its factors with coefficients not divisible by
the factors. An alternative option is that vertices are rational numbers common to all number fields
serving as entanglement coefficients. A third option is that they are real numbers in corresponding tensor
factor. One should also formulate symmetries in p-adic sectors and the simplest option is that symmetries
represented as affine transformations simply reduce to products of the symmetries in various p-adic sectors
of the imbedding space.

The challenge is to formulate all this in a concise and elegant manner. It seems that adeles generalized
to Hilbert adeles might indeed provide this formulation. The naive basic recipe would be extremely
simple: whenever you have a real number, replace it with Hilbert adele. You can even replace the points
of Hilbert spaces involved with corresponding Hilbert spaces! One could replace imbedding space, space-
time surfaces, and WCW as well as imbedding space spinors and spinor fields and WCW spinors and
spinor fields with the hierarchy of their Hilbert adelic counterparts obtaining in this manner what might
be interpreted as cognitive representations.

5 Quantum Mathematics and Quantum Mechanics

Quantum Mathematics (QM) suggests that the basic structures of Quantum Mechanics (QM) might
reduce to fundamental mathematical and metamathematical structures, and that one even consider the
possibility that Quantum Mechanics reduces to Quantum Mathematics with mathematician included or
expressing it in a concice manner: QM=QM!

The notes below were stimulated by an observation raising a question about a possible connection be-
tween multiverse interpretation of quantum mechanics and quantum mathematics. The heuristic idea of
multiverse interpretation is that quantum state repeatedly branches to quantum states which in turn
branch again. The possible outcomes of the state function reduction would correspond to different
branches of the multiverse so that one could save keep quantum mechanics deterministic if one can
give a well-defined mathematical meaning to the branching. Could quantum mathematics allow to some-
how realize the idea about repeated branching of the quantum universe? Or at least to identify some
analog for it? The second question concerns the identification of the preferred state basis in which the
branching occurs.

Quantum Mathematics replaces numbers with Hilbert spaces and arithmetic operations + and x with
direct sum @ and tensor product ®.

1. The original motivation comes from quantum TGD where direct sum and tensor product are nat-
urally assigned with the two basic vertices analogous to stringy 3-vertex and 3-vertex of Feynman
graph. This suggests that generalized Feynman graphs could be analogous to sequences of arithmetic
operations allowing also co-operations of & and ®.

2. One can assign to natural numbers, integers, rationals, algebraic numbers, transcendentals and
their p-adic counterparts for various prime p Hilbert spaces with formal dimension given by the
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number in question. Typically the dimension of these Hilbert spaces in the ordinary sense is infinite.
Von Neuman algebras known as hyper-finite factors of type Il; assume as a convention that the
dimension of basic Hilbert space is one although it is infinite in the standard sense of the word.
Therefore this Hilbert space has sub-spaces with dimension which can be any number in the unit
interval. Now however also negative and even complex, quaternionic and octonionic values of Hilbert
space dimension become possible.

3. The decomposition to a direct sum matters unlike for abstract Hilbert space as it does also in the
case of physical systems where the decomposition to a direct sum of representations of symmetries
is standard procedure with deep physical significance. Therefore abstract Hilbert space is replaced
with a more structured objects. For instance, the expansion ) x,p" of a p-adic number in powers of
p defines decomposition of infinite-dimensional Hilbert space to a direct sum &,,z,, ®p™ of the tensor
products z,, ® p". It seems that one must modify the notion of General Coordinate Invariance since
number theoretic anatomy distinguishes between the representations of space-time point in various
coordinates. The interpretation would be in terms of cognition. For instance, the representation of
Neper number requires infinite number of pinary digits whereas finite integer requires onlya finite
number of them so that at the level of cognitive representations general coordinate invariance is
broken.

Note that the number of elements of the state basis in p™ factor is p™ and m € {0,...,p — 1} in
the factor x,,. Therefore the Hilbert space with dimension p™ > x, is analogous to the Hilbert
space of a large effectively classical system entangled with the microscopic system characterized by
. p-Adicity of this Hilbert space in this example is for the purpose of simplicity but raises the
question whether the state function reduction is directly related to cognition.

4. On can generalize the concept of real numbers, the notions of manifold, matrix group, etc... by
replacing points with Hilbert spaces. For instance, the point (x1,..,x,) of E™ is replaced with
Cartesian product of corresponding Hilbert spaces. What is of utmost importance for the idea about
possible connection with the multiverse idea is that also this process can be also repeated indefinitely.
This process is analogous to a repeated second quantization since intuitively the replacement means
replacing Hilbert space with Hilbert space of wave functions in Hilbert space. The finite dimension
and its continuity as function of space-time point must mean that there are strong constraints on
these wave functions. What does this decomposition to a direct sum mean at the level of states?
Does one have super-selection rules stating that quantum inteference is possible only inside the
direct summands?

5. Could one find a number theoretical counterpart for state function reduction and preparation and
unitary time evolution? Could zero energy ontology have a formulation at the level of the number
theory as earlier experience with infinite primes suggest? The proposal was that zero energy states
correspond to ratios of infinite integers which as real numbers reduce to real unit. Could zero energy
states correspond to states in the tensor product of Hilbert spaces for which formal dimensions are
inverses of each other so that the total space has dimension 17

5.1 Unitary process and state function reduction in ZEO

The minimal view| about unitary process and state function reduction is provided by ZEO [2].

1. Zero energy states correspond to a superposition of pairs of positive and negative energy states.
The M-matrix defining the entanglement coefficients is product of Hermitian square root of density
matrix and unitary S-matrix, and various M-matrices are orthogonal and form rows of a unitary
U-matrix. Quantum theory is square root of thermodynamics. This is true even at single particle
level. The square root of the density matrix could be also interpreted in terms of finite measurement
resolution.
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2. It is natural to assume that zero energy states have well-defined single particle quantum numbers
at the either end of C'D as in particle physics experiment. This means that state preparation has
taken place and the prepared end represents the initial state of a physical event. Since either end of
CD can be in question, both arrows of geometric time identifiable as the Minkowski time defined
by the tips of C'D are possible.

3. The simplest identification of the U-matrix is as the unitary U-matrix relating to each other the
state basis for which M-matrices correspond to prepared states at two opposite ends of C'D. Let
us assume that the preparation has taken place at the ”lower” end, the initial state. State function
reduction for the final state means that one measures the single particle observables for the "upper”
end of C'D. This necessarily induces the loss of this property at the ”lower” end. Next preparation
in turn induces localization in the ”lower” end. One has a kind of time flip-flop and the breaking
of time reversal invariance would be absolutely essential for the non-triviality of the process.

The basic idea of Quantum Mathematics is that M-matrix is characterized by Feynman diagrams
representing sequences of arithmetic operations and their co-arithmetic counterparts. The latter ones
give rise to a superposition of pairs of direct summands (factors of tensor product) giving rise to same
direct sum (tensor product). This vision would reduce quantum physics to generalized number theory.
Universe would be calculating and the consciousness of the mathematician would be in the quantum
jumps performing the state function reductions to which preparations reduce.

Note that direct sum, tensor product, and the counterpart of second quantization for Hilbert spaces
in the proposed sense would be quantum mathematics counterpart for set theoretic operations, Cartesian
product and formation of the power set in set theory.

5.2 ZEOQO, state function reduction, unitary process, and quantum mathemat-
ics

State function reduction acts in a tensor product of Hilbert spaces. In the p-adic context to be discussed
n the following x,, ® p™ is the natural candidate for this tensor product. One can assign a density matrix
to a given entangled state of this system and calculate the Shannon entropy. One can also assign to it
a number theoretical entropy if entanglement coefficients are rationals or even algebraic numbers, and
this entropy can be negative. One can apply Negentropy Maximization Principle to identify the preferred
states basis as eigenstates of the density matrix. For negentropic entanglement the quantum jump does
not destroy the entanglement.

Could the state function reduction take place separately for each subspace z,, ® p™ in the direct sum
Pnxy, ® p" so that one would have quantum parallel state function reductions? This is an old proposal
motivated by the many-sheeted space-time. The direct summands in this case would correspond to the
contributions to the states localizable at various space-time sheets assigned to different powers of p defing
a scale hierarhcy. The powers p™ would be associated with zero modes by the previous argument so
that the assumption about independent reduction would reflect the super-selection rule for zero modes.
Also different values of p-adic prime are present and tensor product between them is possible if the
entanglement coefficients are rationals or even algebraics. In the formulation using adeles the needed
generalization could be formulated in a straightforward manner.

How can one select the entangled states in the summands z,, ® p"? Is there some unique choice? How
do unitary process and state function reduction relate to this choice? Could the dynamics of Quantum
Mathematics be a structural analog for a sequence of state function reductions taking place at the opposite
ends of C'D with unitary matrix U relating the state basis for which single particle states have well defined
quantum numbers either at the upper or lower end of C D? Could the unitary process and state function
reduction be identified solely from the requirement that zero energy states correspond to tensor products
Hilbert spaces, which correspond to inverses of each other as numbers? Could the extension of arithmetics
to include co-arithmetics make the dynamics in question unique?
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5.3 What multiverse branching could mean?

Could QM allow to identify a mathematical counterpart for the branching of quantum states to quantum
states corresponding to preferred basis? Could one can imagine that a superposition of states >_ ¢, ¥,, in a
direct summand x,, ® p™ is replaced by a state for which ¥,, belong to different direct summands and that
branching to non-intefering sub-universes is induced by the proposed super-selection rule or perhaps even
induces state function reduction? These two options seem to be equivalent experimentally. Could this
decoherence process perhaps correspond to the replacement of the original Hilbert space characterized by
number x with a new Hilbert space corresponding to number y inducing the splitting of x,, ® p"? Could
the interpretation of finite integers z,, and p™ as p-adic numbers p; # p induce the decoherence?

This kind of situation is encountered also in symmetry breaking. The irreducible representation of a
symmetry group reduces to a direct sum of representations of a sub-group and one has in practice super-
selection rule: one does not talk about superpositions of photon and Z°. In quantum measurement the
classical external fields indeed induce symmetry breaking by giving different energies for the components
of the state. In the case of the factor x, ® p™ the entanglement coefficients define the density matrix
characterizing the preferred state basis. It would seem that the process of branching decomposes this
state space to a direct sum 1-D state spaces associated with the eigenstates of the density matrix. In
symmetry breaking superposition principle holds true and instead of quantum superposition for different
orientations of "Higgs field” or magnetic field a localization selecting single orientation of the ”Higgs
field” takes place. Could state function reduction be analogous process? Could non-quantum fluctuating
zero modes of WCW metric apper as analogs of ”Higgs fields”. In this picture quantum superposition of
states with different values of zero modes would not be possible, and state function reduction might take
place only for entanglement between zero modes and non-zero modes.

5.4 The replacement of a point of Hilbert space with Hilbert space as a
second quantization

The fractal character of the Quantum Mathematics is what makes it a good candidate for understanding
the self-referentiality of consciousness. The replacement of the Hilbert space with the direct sum of Hilbert
spaces defined by its points would be the basic step and could be repeated endlessly corresponding to a
hierarchy of statements about statements or hierarchy of n** order logics. The construction of infinite
primes leads to a similar structure.

What about the step leading to a deeper level in hierarchy and involving the replacement of each point
of Hilbert space with Hilbert space characterizing it number theoretically? What could it correspond at
the level of states?

1. Suppose that state function reduction selects one point for each Hilbert space x,, ® p™. The key step
is to replace this direct sum of points of these Hilbert spaces with direct sum of Hilbert spaces defined
by the points of these Hilbert spaces. After this one would select point from this very big Hilbert
space. Could this point be in some sense the image of the Hilbert space state at previous level?
Should one imbed Hilbert space x,, ® p™ isometrically to the Hilbert space defined by the preferred
state z,, ® p” so that one would have a realization of holography: part would represent the whole at
the new level. It seems that there is a canonical manner to achieve this. The interpretation as the
analog of second quantization suggest the identification of the imbedding map as the identification
of the many particle states of previous level as single particle states of the new level.

2. Could topological condensation be the counterpart of this process in many-sheeted space-time of
TGD? The states of previous level would be assigned to the space-time sheets topologically con-
densed to a larger space-time sheet representing the new level and the many-particle states of
previous level would be the elementary particles of the new level.

3. If this vision is correct, second quantization performed by theoreticians would not be a mere theo-
retical operation but a fundamental physical process necessary for cognition! The above proposed
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unitary imbedding would imbed the states of the previous level as single particle states to the
new level. It would seem that the process of second quantization, which is indeed very much like
self-reference, is completely independent from state function reduction and unitary process. This
picture would conform with the fact that in TGD Universe the theory about the Universe is the
Universe and mathematician is in the quantum jumps between different solutions of this theory.

Returning to the motivating question: it seems that the endless branching of the states in multiverse
interpretation cannot correspond to a repeated second quantization but could have interpretation as a
decoherence identifiable as delocalization in zero modes. If state function is allowed, it corresponds to a
localization in zero modes analogous to Higgs mechanism. The Quantum Mathematics realization for a
repeated second quantization would represent a genuinely new kind of process which does not reduce to
anything already known.

6 Speculations related to Hilbert adelization

This section contains further speculations related to realization of number theoretical universality in
terms of Hilbert adeles and to the notion of number theoretic emergence. One can construct infinite
hierarchy of Hilbert adeles by replacing the points of Hilbert spaces with Hilbert spaces repeatedly: this
generalizes the repeated second quantization used to construct infinite primes and realizes also algebraic
holography since the points of space have infinitely complex structure. There are strong restrictions on
the values of coordinates of Hilbert space for the p-adic sectors of the adele and the number of state
basis satisfying orthonormality conditions is very restricted: a good guess is that unitary transformations
reduce to a permutation group and that its cyclic subgroup defines quantum Galois group. Also the
Hilbert counterpart of real factor of adeles is present and in this case there are no such restrictions.

A logical use of terms is achieved if one refers by term ”quantum Hilbert adele” to the adele obtained
by replacing the Hilbert space coefficients a,, < p of pinary expansions with their quantum Hilbert spaces.
On the other hand the hierarchy of Hilbert adeles is very qunalta since it is analogous to a hierarchy of
second quantizations so that Hilbert adeles could be also called quantum adeles. Reader can decide.

6.1 Hilbert adelization as a manner to realize number theoretical universality

Hilbert adelization is highly suggestive realization of the number theoretical universality. The very con-
struction of adeles and their Hilbert counterparts is consistent with the idea that rational numbers are
common to all completions of rationals. This suggests a generalization of the formalism of physics allow-
ing to realize number theoretical universality in terms of adeles and their Hilbert counterparts. What
this would mean the replacement of real numbers everywhere by adeles containing real numbers as one
Cartesian factor. Field equations make sense for the adeles separately in each Cartesian factor.

If one can define differential calculus for the Hilbert reals and p-adics as seems to be the case, this
abstraction might make sense. There seems to be no obvious objection for field property and the entire
hierarchy of n-Hilbert spaces could be seen as a cognitive self-referential representation of the mathe-
matical structure allowing perhap also physical realization if the structure is consistent with the general
axioms.

Field equations would thus make sense also for an infinite hierarchy formed by Hilbert™ adeles. The
fascinating conjecture is that quantum physics reduces to quantum mathematics and one might hope that
TGD provides a realization for this physics because of its very strong ties with number theory.

6.1.1 Hilbert adelication at imbedding space level

The Hilbert adelization at the level of imbedding space makes senses if adelization works so that one can
consider only adelization.
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1. Could imbedding space coordinates regarded as adeles? In the p-adic sectors general coordinate
invariance would require some preferred coordinate choices maybe unique enough by symmetry
considerations. One can also consider a spontaneous breaking of GCI by cognitive representations.
Adelization would code field equations in various p-adic number fields to single field equation for
adeles and would not bring anything new.

2. What could field equations mean for Hilbert adeles? One could imagine that ordinary field equations
as local algebraic statements are expressed separately at each point of space-time surface giving
infinite number of equations of form F*(z) = 0, where k labels imbeding space coordinates. Moving
to the first level of hierarchy would mean that one replaces the points of Hilbert spaces involved with
Hilbert spaces. The connection with the first order logic would suggest that the points of the Hilbert
spaces representing points of imbedding space and space-time - in general infinite-dimensional for
real and p-adic numbers - represent points of imbedding space and of space-time. This second
quantization would transform infinite number of statements of predicate logic to a statement of first
order logic.

This certainly sounds hopelessly abstract and no-one would seriously consider solving field equations
in this manner. But maybe mathematical thinking relying on quantum physics could indeed do it
like this? At the next level of hierarchy one might dream of combining field equations for entire
families of solutions of field equations to single equation and so on. Maybe these families could
correspond to supports of WCW spinor fields in WCW. At the next level statements would be
about families of WCW spinors fields and so on - ad infinitum. In fact, WCW spinors can be
seen as quantum superpositions of logical statements in fermionic Fock space and WCW spinor
fields would assign to WCW a direct sum of this kind of statements, one to each point of WCW.
This sounds infinitely infinite but one must remember that the sub-WCW consisting of surfaces
expressible in terms of rational functions is discrete.

3. The conjecture that field equations reduce to octonion real-analyticity requires that octonions and
quaternions make sense also p-adically. The problem is that the p-adic variants of octonions and
quaternions do not form a field: the reason is that even the equation 2% 4+ %2 = 0 can have solutions
in p-adic number fields so that the inverses of quaternions and octonions, and even p-adic complex
numbers need not make sense. The p-adic counterparts of quaternions and octonions however exist
as a ring so that one could speak about polynomials and Taylor series whereas the definition of
rationals and therefore rational functions would involve problems. Octonion real-analyticity and
quaternion real-analyticity and therefore also space-time surfaces defined by polynomials or even
by infinite Taylor series could make sense also for the p-adic variants of octonions and quaternions.

Could imbedding space spinors be regarded as adelic and even Hilbert adelic spinors? Again the
problems reduce to the adelic level.

1. Adelization could be perhaps seen as a convenient book keeping device allowing to encapsulate the
infinite number of physics in various quantum p-adic number fields to single physics. Hilbert adelic
structures could however provide much deeper realization of physics as generalized number theory.
One can indeed ask whether the action of the p-adic quantum counterparts of various symmetries
could representable in the quantum quantum Galois groups for Hilbert adeles: these groups might
reduce to cyclic groups and might relate to cyclic coverings of imbedding space at the level of
physics.

The minimal interpretation would be as a cognitive representation of quantum numbers of physical
states at the first "material” level of hierarchy using the number theoretic Hilbert space anatomy
of the point to achieve the representation. The representative capacity would be infinite for tran-
scendental numbers with infinite number of pinary digits and finite for rational numbers. For real
unit if would be miminal and zero could not represent anything. Quantum entanglement would be
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possible for tensor product coefficients and quantum superposition would be possible due to direct
sum of pinary digits.

2. Imbedding space spinor fields could be regarded as Cartesian products (direct sums) of spinor fields
in real and various p-adic imbedding spaces having values in the same number field. Also the
induced metric and spinor connection would correspond to Cartesian product rather than tensor
product. The isometries of the imbedding space would have matrix representation in terms of adeles
on the adelic omponents of spinors and imbedding space coordinates.

6.1.2 Hilbert adelication at the level of WCW

What about quantum TGD at the level of WCW? Could Hilbert adelication apply also at this level?
Could one use the same general recipes to adelize? The step from adele to the hierarchy of Hilbert adeles
does not seem to be a conceptual problem and the basic problem is to understand what adele means.

1. Could WCW described in terms of generalized number theory? Could adelic WCW be defined as
the Cartesian product of real WCW and p-adic WCWs? The observations about dessins d’enfant
[21] [19] suggest that the description of WCW could be reduced to the description in terms of
orbits of algebraic 2-surfaces identified as partonic 2-surfaces at the boundaries of C'Ds (also the
4-D tangent space data at them codes for physics).

2. For a Cartesian product of finite-dimensional spaces spinors are formed as tensor products associated
with with the Cartesian factors. Adelic WCW is Cartesian sum of real and p-adic variants. Could
Hilbert adelic WCW spinors be identified as a tensor product of WCW spinors defined in the Hilbert
adelic variant of WCW. This would conform with the physical vision that real and p-adic physics
(matter and cognition) correspond to tensor factors of a larger state space. Furthermore, spinos
generalizes scalar functions and the function space for adele valued functions with adelic argument
forms in a natural manner tensor product of function spaces for various completions of reals. Note
that one can speak about rational quantum entanglement since rational numbers are common to
all the Cartesian factors.

3. Could also the moduli space of conformal equivalence classes of partonic 2-surfaces be regarded as
adele in the sense that Teichmueller parameters from adele. This requires that the Teichmueller
space of conformal equivalence classes of Riemann surfaces corresponds to the p-adic version of real
Teichmueller space: this has been actually assumed in p-adic mass calculations [5l [10].

One could start from the observation that algebraic Riemann surfaces are dense in the space of all
Riemann surfaces. This means that the algebraic variant of Teichmueller space is able to characterize
the conformal equivalence classes. What happens when one adds the Riemann surfaces for which the
coefficients of the Belyi function and rational functions defining are allowed to be in real or p-adic
completion of rationals. A natural guess is that completion of the algebraic variant of Teichmueller
space results in this manner. If this is argument makes sense then adelic moduli space makes sense
too.

There are however technical delicacies involved. Teichmueller parameters are defined as values of
1-forms for the homology generators of Riemann surface. What does one mean with the values of
these forms when one has a surface containing only algebraic points and ordinary integral is not
well-defined? Also in the p-adic context the definition of the integral is problematic and I have
devoted a lot of time and energy to this problem (see for instance [I7]). Could the holomorphy of
these forms help to define them in terms of residue calculus? This option looks the most plausible
one.

What about the partial well-ordering of p-adic numbers induced by the map n — n, combined
with canonical identification: could this allow an elegant notion of integration by using the partial
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well-ordering. Note that one cannot say which of the numbers 1 and —(p—1) > n = 1°°p™ is bigger
in this ordering, and this induces similar problem for all p-adic integers which have finite number
of pinary digits.

6.1.3 Problems to solutions and new questions

Usually one becomes fully conscious of a problem only after one has found the solution of the problem.
The vision about Hilbert adeles - as a matter fact, already adeles- solves several nasty nuisances of this
kind and I have worked hardly to prevent these problems from running off under the rug.

1. What one means with integer -1 is not a problem for p-adic mathematics. It becomes a problem for
physical interpretation when one must relate real and p-adic physics to each other since canonical
identification maps p-adic numbers to non-negative reals. This leads to problems with Hilbert space
inner product but algebraic extensions of p-adic numbers by roots of unity allow to define p-adic
Hilbert spaces but it seems that the allowed state basis are very restricted since the number of unitary
isometries of Hilbert space is restricted dramatically by number theoretical existence requirement.
The optimistic interpretation would that full quantum superposition is highly restricted in cognitive
sectors by the condition of number theoretic existence.

2. What one means with complex p-adics is second problem. y/—1 exists p-adically for p mod 4 =1
so that one cannot introduce it via algebraic extension of p-adics in this case. This is a problem of
p-adic quantum mechanics. Allowance of only p-adic primes p which do not split for the extension
containing imaginary unit seems to be a general solution of the problem.

3. p-Adic counterparts of quaternions, and octonions do not exist for the simple reason that the p-adic
norm can be vanishing even for p-adic complex number for p-adic fields allowing v/—1. This problem
can be circumvented by giving up the requirement that one has number field.

4. The norm for adeles exist as a product of real and norm and p-adic norms but is not physical.
Also the assignment of Hilbert space structure to adeles is problematic. Canonical identification
combined with n — n, allows the mapping p-adic components of adele to real numbers and this
allows to define natural inner product and norm analogous to Hilbert space norm for adeles and
their Hilbert counterparts.

5. p-Adic numbers are not well ordered. This implies that difficulties with the definition of integral
since definite integral relies heavily on well-orderness of reals. Canonical identification suggests that
quantum p-adics are well ordered: a < b holds true if it holds true for the images under canonical
identification. This gives hopes about defining also definite integral. For integrable functions the
natural definition of quantum p-adic valued integral would be by using substitution for integral
function. One - and rather ugly - option is to define the integral as ordinary real integral for the
canonical image of the quantum p-adic valued function. This because this image is not expected to
be smooth in real sense even if p-adic function is smooth.

6. p-Adic integration is plagued also by the problem that already for rational integrals one obtains
numbers like log(n) and 7 and is forced to introduce infinite-dimensional extension of p-adic num-
bers. For log(n) one could restrict the consideration to p-adic primes p satisfying n mod p =1
but this looks like a trick. Could this difficulty be circumvented somehow for p-adic numbers? The
only possibility that one can imagine would be canonical identification map combined with n — n,
and the interpretation of integral as a real number.

This could provide also the trick to interpret the integrals involving powers of 7 possible emerging
from Feynman diagrams in sensible manner. All integrals can be reduced with the use of Laurent
series to integrals of powers of x so that integral calculus would exist in analytic sense for analytic
functions of quantum p-adic numbers.
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7. What does one mean with the p-adic counterpart of C'P, or more generally, with the p-adic coun-
terpart of any non-linear manifold? What does one mean with the complex structure of p-adic
CP; for p mod 4 = 17 Should one restrict the consideration to p mod 4 = 37 What does one
mean with groups and coset spaces? One can inceed have a satisfactory looking definition based
on algebraic extensions and effective discretization by introducing roots of unity replacing complex
phases as continuous variables [I7].

One could consider two options.

(a) Could the p-adic counterpart of real M* x CP, be M8? The objection is that algebraic groups
are however fundamental for mathematics and typically non-linear manifolds. Therefore there
are excellent motivations for their (Hilbert) adelic existence. Projective spaces are in turn
central in algebraic geometry and in this spirit one might hope that C' P, could have non-
trivial p-adic counterpart defined as quantum p-adic projective space.

(b) Another option accepts that adeles contain only those p-adic number fields as Cartesian factors
for which the prime does not split. This excludes automatically p mod 4 = 1if v/—1 is present
from the beginning in the algebraic extension of rationals defining the adeles. What happens
if one does not assume this. Does C'P, degenerate to real projective spae RP,?7 What happens
to M* if regarded as a Cartesian product of hyper-complex numbers and complex numbers.
Does it reduce to M?2. Could the not completely well understood role of M? in quantum TGD
relate to this kind of reduction?

The new view raises also questions challenging previous basic assumptions.

1. Could adeles and their octonionic counterpart allow to understand the origin of commutative com-
plexification for quaternions and octonions in number theoretic vision about TGD? How could the
commutative imaginary unit emerge number theoretically?

2. One must also reconsider M8 — M* x C'P, duality. For instance, could M?8 be the natural choice in
p-adic sectors and M* x C'P» in the real sector?

3. The preferred extremals of Kéhler action are conjectured to be quaternionic in some sense. There
are two proposals for what this means. Could it be that the sense in which the space-time surfaces
are quaternionic depends on whether the surface is real or quantum p-adic?

4. The idea that rationals are in the intersection of reals and p-adics is central in the applications
of TGD. How does this vision change? For p = 2 quantum rationals in the sense that pinary
coefficients are quantum integer, are ordinary rational numbers. For p > 2 the pinary coeflicients
are in general mapped to algebric numbers involving /,;, 0 < I < p. The common points with reals
would in general algebraic numbers.

6.1.4 Do basic notions require updating in the Hilbert adelic context?

In the adelic context one must take a fresh look to what one means with phrases like ”imbedding space”
and ”space-time surfaces”. The phrase "space-time surface as a preferred extremal of Kéhler action”
might be quite too strong a statement in adelic context and could actually make sense only in the real
sector of the quantum adelic imbedding space. Also the phrase ”p-adic variant of M* x C'P,” might
involve un-necessarily strong implicit assumptions since for p-adic integers one has automatically the
counterparts of compactness even for M?®. The proposed identification of the quantum p-adic numbers as
Hilbert p-adic quantum numbers reduces the question to whether p-adic counterparts of various structures
exist or are needed as such.
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1. We "know” that the real imbedding space must be M* x C'P,. What about p-adic counterpart of
the imbedding space? Is it really possible to have a p-adic counterpart of C P, or could non-linearity
destroy this kind of hopes? Are there any strong reasons for having the counterpart of M* x CP,
in p-adic sectors? Could one have M* x CP, only in real sector and M? in p-adic sectors. Complex
structure of C'P, requires p mod 4 = 3. This is not a problem if one assumes that adeles contain
only the p-adic primes which do not split in the extension of rationals containing imaginary unit.
Definition as coset space C'P, = SU(3)/U(2) is one possible manner to proceed and seems to work
also.

One can also wonder whether octonion real-analyticity really makes sense for M* x C'P, and its
p-adic variants. The fact that real analyticity makes sense for S2? suggests that it does. In any
case, octonion real-analyticity would make life very easy for p-adic sectors if regarded as octonionic
counterpart of M® rather than M* x CPs.

2. If the p-adic factors are identified as linear spaces with M® regarded as sub-space of the ring
of complexified p-adic octonions, octonion real-analyticity for polynomial functions with rational
coefficients could replace field equations in the ring formed by Z,. Note however that octonion
real-analyticity requires the Wick rotation mapping to ordinary octonions, the identification of the
4-surface from the vanishing of the imaginary part of the octonion real-analytic function, and map
back to Minkowski space by Wick rotation. This is well-defined procedure used routinely in quantum
field theories but could be criticized as mathematically somewhat questionable. One could consider
also the definition of Minkowski space inner product as real part of ziz9 for quaternions and use
similar formula for octonions. This would give Minkowski norm squared for z; = z5.

Linear space would also allow to realize the idea that partonic 2-surfaces are in some sense trivial in
most sectors reducing to points represented most naturally by the tips of causal diamonds (C Ds).
For p-adic sectors C'P, would be replaced with £4 and for most factors Mg the partonic 2-surfaces
would reduce to the point s = 0 of E* representing the origin of coordinates in which E* rotations
act linearly.

3. The conjecture is that preferred extremals correspond to loci for the zeros of the imaginary or real
part of octonion real-analytic function. Is this identification really necessary? Could it be that
in the real sector the extremals correspond to quaternionic 4-surfaces in the sense that they have
quaternionic tangent spaces? And could the identification as loci for the zeros of the imaginary or
real part of oction real-analytic function be the sensible option in the p-adic sectors of the adelic
imbedding space: in particular if these sectors correspond to octonionic M®. If this were the case,
M?® — M* x C'P, duality would have a meaning differing from the original one and would relate the
real sector of adelic imbedding space to its p-adic sectors in manner analogous to the expression of
real rational as a Cartesian product of powers of p-adic primes in various sectors of adele.

My cautious conclusion is that the earlier vision is correct: M* x C'P, makes sense in all sectors.

6.2 Could number theoretic emergence make sense?

The observations made in this and previous sections encourage to ask whether some kind of number
theoretic emergence could make sense. One would end up step by step from rationals to octonions by
performing algebraic extensions and completions. At some step also the attribute ”Hilbert” would lead
to a further abstraction and relate closely to the evolution of cognition. This would mean something like
follows.

Rationals — algebraic extensions — algebraic numbers — completions of rationals to reals and p-adics
— completions of algebraic 2-surfaces to real and p-adic ones in algebraic extensions reals and classical
number fields— hierarchy of Hilbert variants of these structures as their cognitive reprsentations.
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The Maximal Abelian Galois group (MAGG) for rationals is isomorphic to the multiplicative group
of ideles and involves reals and various p-adic number fields. How could one interpret the Hilbert variant
of this structure. Could some kind of physical and cognitive evolution lead from rationals to octonions
and eventually to Universe according to TGD? Could it be that the gradual emergence of algebraic
numbers and AGG (Absolute Galois Group defined as Galois group of algebraic numbers as extension of
rationals) brings in various completions of rationals and further extensions to quaternions and octonions
and symmetry groups like SU(2) acting as automorphisms of quaternions as extension of reals and SU(3) C
Go where (GG acts as Galois for the extension of octonions as extension of reals?

6.2.1 Objections against emergence

The best manner to develop a new idea is by inventing objections against it. This applies also to the
notion of algebraic emergence. The objections actually allow to see the basic conjectures about preferred
extremals of K&hler action in new light.

1. Algebraic numbers emerge via extensions of rationals and complex numbers via completion of al-
gebraic numbers. But can higher dimensions really emerge? This is possible but only when they
correspond to those of classical number fields: reals, quaternions, and octonions. This is enough in
TGD framework. Adelization could lead to the emergence of real space-time and its p-adic variants.
Completion of solutions of algebraic equations to p-adic and real number fields is natural. Also the
extensions of reals and complex numbers to quaternions and octonions are natural and could be
seen as emergence.

2. All algebraic Riemann surfaces are compact but the reverse of this does not hold true. Partonic
2-surfaces are fundamental in TGD framework. Once the induced metric of the compact partonic
2-surface is known, one can regard it as a Riemann surface. Only if it is algebraic surface, the action
of Galois group on it is well-defined as an action on the algebraic coefficients appearing in rational
functions defining the surface. This is consistent with the basic vision about life as something in
the intersection of real and p-adic worlds and therefore having as correlates algebraic partonic 2-
surfaces. The non-algebraic partonic 2-surfaces are naturally present and if they emerge they must
do so via completion to reals occurring also at adelic level.

All partonic 2-surfaces allow a representation as projective varieties in C'P3 which forces again the
question about possible connection with twistors.

Representation as algebraic projective varieties in say C' P3 does not imply this kind of representation
in 6CD x CP,. This kind of representation can make sense for 3-surfaces consisting of light like
geodesics emanating from the tip of the C'D. If one wants to obtain 2-surfaces one must restrict
light-like radial coordinate r to be a real function of complex variables so that the 2-surface cannot
be algebraic surface defined as a null locus of holomorphic functions unless r is taken to be a
constant equal to algebraic number. Note that the light rays of 3-D light-cone are parametrized
by S2, which corresponds to CP, C CP;. This kind of partonic 2-surfaces might correspond to
maxima for Kéhler function.

3. Could one do without the non-algebraic partonic 2-surfaces? This is not the case if one believes
on the notion of number theoretic entanglement entropy which can be negative for rational or
even algebraic entanglement and presumably also for its quantum variant. Non-algebraic partonic
2-surfaces would naturally correspond to reals as a Cartesian factor of adeles. All partonic 2-
surfaces which do not allow a representation as algebraic surfaces would belong to this factor of
adelic imbedding space. The ordinary real number based physics would prevail in this sector and
entanglement in this sector would be in generic case real so that ordinary definition of entropy
would work. In quantum p-adic sectors entanglement probabilities would be quantum rational (in
the sense of n — n,) and the generalization of number theoretic entanglement entropy should make
sense. Completion must be taken as would be part of the emergence.
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Could imbedding space spinors really emerge? The dimension of the space of imbedding space spinors
is dictated by the dimension of the imbedding space. Therefore it is difficult to image how 8+8-complex-
dimensional spinors could emerge from spinors in the set of algebraic numbers since these spinors are
naturally 2-dimensional for algebraic numbers which are geometrically 2-dimensional. Does this mean
that one must introduce algebraic octonions and their complexifications from the very beginning? Not
necessarily.

1. The idea that also the imbedding space spinors emerge algebraically suggests that imbedding space
spinors in p-adic sectors are octonionic (p-adic octonions form a ring but this might be enough).
In real sector both interpretations might make sense and have been considered [16]. For octonionic
spinors ordinary gamma matrices are replaced with the analogs of gamma matrices obtained as
tensor products of sigma matrices having quaternionic interpretation and of octonionic units. For
these gamma matrices SO(1,7) as vielbein group is replaced with G5. Physically this corresponds
to the presence of a preferred time direction defined by the line connecting the tips of CD. It
would seem that SO(1,7) must be assigned with the ordinary imbedding space spinors assignable
to the reals as a factor of quantum adeles. The relationship between the ordinary and octonionic
imbedding space spinors is unclear. One can however ask whether the p-adic spinors in various
factors of adelic spinors could correspond to the octonionic modification of gamma matrices so that
these spinors would be 1-D spinors algebraically extended to octonionic spinors.

2. Also quaternionic spinors make sense and could emerge in a well-defined sense. The basic conjecture
is that the preferred extremals of Kdhler action are quaternionic surfaces in some sense. This could
mean that the octonionic tangent space reduces to quaternionic one at each point of the space-time
surface. This condition involves partial derivatives and these make sense for p-adic number fields .
The "real” gamma matrices would be ordinary gamma matrices. In p-adic sectors at least octonion
real-analyticity would be the natural condition allowing to identify quaternionic 4-surfaces [I5] if
one allows only Taylor series expansions.

6.2.2 Emergence of reals and p-adics via quantum adeles?

MAGG (Maximal Abelian Galois Group) brings in reals and various p-adic number fields although one
starts from algebraic numbers as maximal abelian extension of rationals. Does this mean emergence?

1. Could one formulate the theory by starting from algebraic numbers? The proposal that octonion
real-analytic functions can be used to define what quaternionicity looks sensible for quantum p-adic
space-time surfaces. For real space-time surfaces octonion real-analyticity might be an unrealistic
condition and quaternionicity as the condition that octonionic gamma matrices generate quater-
nionic algebra in the tangent space looks more plausible alternative. Quantum p-adic space-time
surfaces would be naturally algebraic but in real context also non-algebraic space-time surfaces and
partonic 2-surfaces are possibe. In real sector partial differential equations would prevail and in
quantum p-adic sectors algebraic equations would dictate the dynamics.

2. The p-adic variants of quaternions and octonions do not exist as fields. The vanishing of the sum
of Euclidian norm for quaternions and octonions for p-adic octonions and quaternions makes it
impossible to define p-adic quaternion and octonionic fields. There are also problems due to the
fact that v/—1 exists as p-adic number for p mod 4 = 1.

3. The notion of quaternionic space-time surface requires complexified octonions with additional imag-
inary unit ¢ commuting with octonionic imaginary units Ix. Space-time surfaces are identified as
surfaces in the sub-space of complexified octonions of form oy + i o, I*. Could i relate to the
algebraic extensions of rationals and could complexified quantum p-adic imbedding spaces have
complex coordinates x + iy?
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4. Polynomial equations with real algebraic coefficients make sense even if adeles where not a field

and one can assign to the roots of polynomials with quaternionic and octonionic argument Galois
group if one restricts to solution which reduce to complex solutions in some complex plane defined
by preferred imaginary unit. For quaternions Galois group consist of rotations in SO(3) acting via
adjoint action combined with AAG. For octonions Galois group consists of G elements combined
with AAG. SU(3) leaves the preferred imaginary unit invariant and U(2) the choice of quaternionic
plane. Are there any other solutions of polynomial equations than those reducing to complex plane?

6.2.3 Is it really necessary to introduce p-adic space-time sheets?

The (Hilbert) adelization of imbedding space, space-time, and WCW as well as spinors fields of imbedding
space and WCW would be extremely elegant manner to realize number theoretic universality. One must
however keep the skeptic attitude. The definition of p-adic imbedding space and space-time surfaces is
not free of technical problems. The replacement of M* x C'P, with M? in p-adic sectors could help solve
these problems. The conservative approach would be based on giving up p-adicization in imbedding space
degrees of freedom. It is certainly not an imaginative option but must be considered as a manner to gain
additional insights.

1.

p-Adic mass calculations do not mention anything about the p-adicization of space-time sheets
unless one wants to answer the question what is the concrete realizations of various conformal
algebras. Only p-adic and adelic interpretation of conformal weights would be needed. Adelic
interpretation of conformal weights makes sense. The replacement n — n, (interpreted originally
as quantum p-adicization) brings in only O(p?) corrections which are typically extremely small in
elementary particle scales.

. Is the notion of p-adic or Hilbert p-adic (Hilbert adelic) spinor field in imbedding space absolutely

necessary? If one has p-adic spinors one must have also p-adic spinor connection. This does not
require p-adic imbedding space and space-time surface if one restricts the consideration to algebraic
points and if the components of connection are algebraic numbers or even rational numbers and allow
p-adic interpretation. This assumption is however in conflict with the universality of adelization.

. What about Hilbert adelic WCW spinor fields. They are needed to give both p-adic and real

quantum states. These fields should have adelic values. Their arguments could be algebraic partonic
surfaces. There would be no absolute need to perform completions of algebraic partonic 2-surfaces
although this would be very natural on basis of number theoretical universality.

. p-Adic space-time sheets are identified as correlates of intention and cognition. Transformation

of intention to action as leakage from p-adic to real sector of imbedding space. This idea provides
strong support for p-adic space-time. But could one assume only that the quantum states are p-adic
or quantum p-adic but that space-time is real? Does it mean only that the WCW spinor field or
zero energy state assignable to light-like 3-surface or partonic 2-surface is Hilbert adelic. Quantum
transitions between states for which initially WCW spinor field is p;-adic and in the final state
pg-adic. Only the number field for WCW spinors would change in the transition. One could say
that partonic 2-surface is p-adic if the value of WCW spinor field assigned with it is p-adic. This
idea does not look attractive and is in complete conflict with the adelization idea.

. The vision about life in the intersection of real and p-adic worlds is very attractive. The p-adicization

of algebraic surfaces is very natural as completion meaning that one just solves the algebraic equa-
tions using series in powers of p. Imaginary unit is key number of quantum theory and the fact that
v/—1 exists for p mod 4 =1 is potential problem for p-adic quantum mechanics. For these primes
also splitting occurs in the ring of Gaussian integers. For quantum adeles this problem disappears
if one allows only the p-adic number fields for which p does not slit in algebraic extension (now
Gaussian rationals).
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