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Abstract

Using the results of a recent earlier article, it is pointed out that homogeneously linear, strictly oscil-

latory, conservative classical dynamical systems that have N degrees of freedom automatically simulate

N -state quantum systems. Because the simulating oscillatory classical system is not subject to the

information-destroying constraints which are imposed on the simulated quantum system by its probabil-

ity interpretation, that simulating classical system actually has a greater information-bearing capacity

than the N -state quantum system which it simulates. In addition, it is easy to ensure that the simulat-

ing oscillatory classical system is robust against the “decoherence” problems which typically beset the

simulated N -state quantum system. Though it therefore might seem tempting to classically simulate

two-state quantum systems, namely the much-discussed qubits, it appears to be far more advantageous

to use cavity electromagnetic standing-wave modes to simulate N -state quantum systems for which N is

as large as possible. A single such cavity-mode simulated “long qubyte” might even suffice as the random

access memory for an entire computer.
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Review of Schrödinger-equation rendition of oscillatory classical dynamics

It was pointed out in an earlier article [1] that homogeneously linear, strictly oscillatory, conservative classical
equations of motion (or classical field equations) which have the form,

q̈ +Kq = 0, (1a)

with the conserved energy,
EK [q, q̇] = ( (q̇, q̇) + (q,Kq) )/(2γ2), (1b)

where the real-valued constant γ is positive and the real-valued elastic coupling-strength matrix (or linear
operator) K is symmetric and positive-definite, are linearly equivalent to the Schrödinger equation,

ih̄ψ̇ = Hψ, (1c)

whose Hermitian Hamiltonian matrix (or linear operator) H is given by,

H = h̄K
1

2 , (1d)

and whose complex-valued wave vector (or wave function) ψ is given by the following one-to-one linear
mapping of the real-valued classical dynamical variable (or classical field) pair [q, q̇],

ψ = (K
1

4 q + iK−
1

4 q̇)/(2γ2h̄)
1

2 , (1e)

which has the explicit linear inverse,

[q, q̇] = [((γ2h̄)/2)
1

2K−
1

4 (ψ + ψ∗),−i((γ2h̄)/2)
1

2K
1

4 (ψ − ψ∗)], (1f)

and for which the time-invariant expectation value of the Hamiltonian matrix (or linear operator) H = h̄K
1

2

is precisely equal to the conserved classical energy,

(ψ∗, Hψ) = (ψ∗, h̄K
1

2ψ) = ( (q̇, q̇) + (q,Kq) )/(2γ2) = EK [q, q̇]. (1g)
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The reader can straightforwardly verify Eq. (1g) from the one-to-one linear mapping given by Eq. (1e),
and can likewise verify that the time-dependent Schrödinger equation of Eq. (1c) with the Hamiltonian
matrix (or linear operator) given by Eq. (1d) follows from the one-to-one linear mapping given by Eq. (1e)
together with the classical equation or motion (or classical field equation) given by Eq. (1a). Conversely,
that classical equation of motion (or classical field equation) given by Eq. (1a) can be verified to follow from
the inverse linear mapping given by Eq. (1f) together with the time-dependent Schrödinger equation and its
Hamiltonian matrix (or linear operator) that are given by Eqs. (1c) and (1d).

It is to be noted that a homogeneously linear, strictly oscillatory, conservative classical equation of motion
(or classical field equation) can always be brought to the form given by Eq. (1a); that is discussed in some
detail in the earlier article [1]. Here we simply point out that this type of classical equation of motion (or
classical field equation) is sometimes presented as a first-order in time equation,

ṡ =Ws, (2)

where the real-valued frequency matrix (or linear operator) W is antisymmetric and invertible (i.e., nonsin-
gular). That is specifically the case, for example, for Maxwell’s source-free electromagnetic field equations,
which we showed in the earlier article to be linearly equivalent to the time-dependent Schrödinger equation
for a single free photon [1]. It is, of course, apparent that in such cases one will obtain from Eq. (2) a form
of Eq. (1a) that has K equal to −W 2.

Classical simulation of N-state quantum systems

If the homogeneously linear, strictly oscillatory conservative classical dynamics described by Eqs. (1a) and
(1b) has N degrees of freedom, i.e., if K is an N -by-N matrix, then the Hermitian Hamiltonian H =
h̄K

1

2 of the linearly equivalent time-dependent Schrödinger equation of Eq. (1c) is also an N -by-N matrix,
which implies that Eq. (1c) describes an N -state quantum system. Thus any homogeneously linear, strictly
oscillatory conservative classical system which has N degrees of freedom automatically simulates an N -state
quantum system.

However, from the perspective of their respective theoretical information-bearing capacities, the simu-
lating oscillatory classical system which has N degrees of freedom turns out to actually be slightly superior

to the simulated N -state quantum system. This is most easily appreciated by considering the simplest pos-
sible case, namely that where N = 1, which reduces the simulating oscillatory classical system to a single
simple harmonic oscillator (i.e., K reduces to merely a positive real number which is the square of that
simple harmonic oscillator’s angular frequency ω). That simple harmonic oscillator can, in principle, be
made to carry information by making use of both its oscillation amplitude and phase. This gives it a two-
dimensional “information-bearing space”, of which only some bounded subregion can actually be available
in any particular practical implementation.

Now the simulated one-state quantum system’s wave vector has only one complex-valued component,
which is a function of time of the form C exp(−iEt/h̄), where E = h̄ω is the real-valued energy of that
state. From a purely mathematical perspective, the complex-valued constant C provides exactly the same

two-dimensional “information-bearing space” as is available from the simulating classical simple harmonic
oscillator. Unfortunately, however, the probability interpretation of quantum theory does away with any

possibility of reading off the value of C from physical measurement. Firstly, that interpretation attaches
physical (probabilistic) meaning to only absolute squares of inner products of wave vectors. The value of
the phase of the constant C obviously cannot be determined from such absolute squares. Secondly, full
consistency of the probability interpretation requires that all inner products of wave vectors with themselves

(which, because of the time-dependent Schrödinger equation, are always constant in time) must be forced to
take the value unity. That obviously does away with the possibility that the amplitude of the complex-valued
constant C could be utilized to carry information. We therefore see that the simulated one-state quantum
system provides no information-bearing capacity whatsoever, albeit, as we noted above, its simulating clas-

sical simple harmonic oscillator system does provide an implementation-dependent bounded subregion of a
two-dimensional “information-bearing space”.

Going on from the above discussion of the nil information-bearing capacity of the one-state quantum
system, we now consider the two-state quantum system, which, in the jargon of contemporary computing
studies, is called a qubit. A qubit can indeed carry a substantial amount of information, certainly very

much more than the binary digit or bit. The wave vector of a qubit has two complex-valued time-dependent
components, and taking account of both its Hilbert-space normalization to unity and the fact that its overall
constant phase factor cannot be physically measured, we can see that the qubit’s “information-bearing space”
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is conveniently portrayed as the surface of a unit sphere. This clearly is vastly more impressive than the
paltry set of but two discrete points which portrays the information capacity of the binary bit. However, the
homogeneously linear oscillatory classical system which simulates a qubit has two degrees of freedom, and
thus can be decomposed into two normal modes, each of which is an independent classical simple harmonic
oscillator [1]. Now the amplitude and phase of each such independent classical simple harmonic oscillator
provides a two-dimensional “information-bearing space”, which implies that the oscillatory classical system
of two degrees of freedom that simulates a qubit has a four -dimensional “information-bearing space”, of
which some bounded subregion would actually be available in a practical implementation. Thus even for the
qubit, the four-dimensional information-bearing capacity of its classical simulation can be expected to in
practice substantially outperform its own two-dimensional information-bearing capacity, albeit both of these
sophisticated systems are in a different league entirely from that of the binary bit, whose information-bearing
capacity encompasses just two discrete points.

Having gone through the above preparatory exercises with the simplest two special cases, it now becomes
straightforward to see that the N -state quantum system has an “information-bearing space” that is compact

and possesses (2N − 2) dimensions, whereas its oscillatory classical simulation of N degrees of freedom has
a noncompact “information-bearing space” of 2N dimensions, of which only some bounded subregion would
actually be available in a practical implementation.

It is also to be noted that true quantum qubits are extremely microscopic systems which are exquisitely
sensitive to random small disturbances in their environment—that is the cause of their celebrated “decoher-
ence” problems. The simulation of such systems by classical oscillatory ones can obviously be enormously
more robust, and it is surprising just how workaday and humdrum a classical simulation of so esoteric an
object as a qubit can actually be. A plumb line whose massive plumb bob makes only sufficiently small ex-
cursions from its equilibrium position moves in what is very nearly a horizontal plane and experiences what
are very close to vector Hooke’s Law type of restoring forces. Therefore a plumb line amounts essentially to
an oscillatory classical system of two degrees of freedom, one which is far less susceptible to environmental
decoherence than any true-quantum qubit which it simulates, and, as we have seen in the paragraphs above,
one which in theory can as well have far greater information-bearing capacity than such a qubit.

Qubits versus classical cavity-mode simulated “long qubytes”

There are, of course, a great wealth of oscillatory classical systems known to modern technology, so the
simulation of qubits by plumb lines is extremely unlikely to in any way be an optimal procedure! Even
beyond that, spellbound fascination with qubit quantum two-state systems in recent years as the ostensible
means of achieving immense computing power has inhibited exploration of using more general N -state
quantum systems, especially those with large values of N , for this same purpose and, even much more

regrettably, has as well inhibited exploration of using toward this end oscillatory classical systems of N
degrees of freedom which automatically simulate N -state quantum ones, albeit with far less susceptibility
to environmental decoherence as well as with more information-bearing capacity.

We therefore now eschew searching for “better qubits” in favor of seeking oscillatory classical systems
which have as many accessible degrees of freedom as is at all possible. Such a system could be dubbed a
classically-simulated “long qubyte”. The longer the classically-simulated “qubyte” is, i.e., themore accessible
oscillatory classical degrees of freedom it encompasses, the greater its information-bearing capacity: we have
seen above that a classically-simulated “qubyte” of length N , i.e., one with N degrees of freedom, has an
“information-bearing space” of 2N dimensions. This information-bearing capacity of a classically-simulated
“long qubyte” vastly outstrips that achievable with binary bits, but it will nevertheless take much hard
thinking and cleverness on the part of computing experts to come up with ways to make truly effective use
of data presented in the analog amplitude/phase format which is natural to classical oscillatory systems.

Now certain oscillatory classical fields, e.g., those of electromagnetism, in principle have an indefinitely

large number of degrees of freedom, albeit degrees of freedom of sufficiently high frequency will always tend to
become inaccessible to any particular apparatus. Nonetheless, standing electromagnetic wave modes confined

within a cavity with reflecting walls ought to offer immense classically-simulated “qubyte” length. As the
typical frequencies of these standing wave modes are made higher (one would hope that visible frequencies
and laser technology would eventually be used), so too would computing speeds ramp up, and the simulated
“qubyte” would get longer as well—one can speculate that a single cavity standing-wave-mode simulated
“long qubyte” might suffice as the random access memory for an entire typical computer. In addition, as
an ancillary technology, taking utilizable “snapshots” of the cavity standing-wave modes, and thus of the
information they carry, might eventually become feasible through holographic techniques.
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