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 ABSTRACT 
 

This paper, with its associated graphical software and movies, is an investigation of the universality of the 
cardioid at the centre of the cyclone of chaotic discrete dynamics, the quadratic ‘heart’ forming the main 
body of the classic Mandelbrot set. Using techniques investigating and exploring the continuity, 
bifurcations and explosions in its related Julia sets, we demonstrate its universality across a wide spread 
of analytic functions of a complex variable, extending from the classical quadratic, through higher 
polynomials and rational functions, to transcendental functions and their compositions. The approach 
leads to some interesting and provocative results, including decoding dendritic island periodicities, and 
multiple critical point analysis, leading to layered Mandelbrot set ‘parameter planes’, and intriguing issues 
of critical point sensitivity in the irregular structures in the Mariana trenches of the more complex 
functions. Part III of this article includes: 9. Getting to the Heart of the Riemann Zeta Function; 
Conclusion; Software and Demonstrations; Appendix 1: Combined Methods of Depicting Julia Sets and 
Parameter Planes; and Appendix 2: Ray Tracing Hypercomplex and Multi-dimensional Chaotic Iterations. 
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9. Getting to the Heart of the Riemann Zeta Function 

 

As an exercise in using these techniques at the frontier of functional complexity, and as a basis to 
generate open source code, I developed Matlab code to perform rapid calculation of the Riemann Zeta 
function: 

(z) 
1

nzn1



 
1

1 pzp

  [9.1] 

on the entire complex plane, except the single pole at z = 1, using the Dirichlet Eta function (z) , and the 

Lanczos approximation to the gamma function (s) to extend the domain to Re(z)  0 : 
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[9.2] 

A satisfactory alternative I have used subsequently is simply (z) 
1

z

(11 / k)z

1 z / kk1



  

The Lanczos approximation is defined as follows: 
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with g  9  and pi (g)  calculated independently by Paul Godfrey as constants from the relation: 

pk (g)  C(2k 1,2a 1)
2
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where  
C(1,1)  C(2,2)  1, C(i,1)  C(i  2,1)

C(i,i)  2C(i 1,i 1), C(i, j)  2C(i 1, j 1)C(i  2, j), i  j
 are coefficients of the 

Chebyshev polynomial matrix.  
 

 
Fig 37: (a) The Riemann Zeta function  (z) , showing its pole at 1 the trivial zeros at even negative real values and 

the non-trivial zeros on the line x=1/2. (b) The Julia set of  (z) , highlighting eventually fixed points in the internal 

basin mapping to  ~ -0.2959 , to which the zeros are also mapped. Inset in right overlap of eventually fixed point 

and non-trivial zero (a, b) showing their proximity, with the eventually fixed point to   lying on the curve where 

Im((z))  0 . 

 

The iteration takes the first 2001 terms of (z)  and halves the next term to average contributions near 0, 

where the terms remain large. The overall process is computationally extremely intensive and the self-

organized criticality of (z) , launching the positive half-plane to the neighbourhood of the pole at 1, is 

liable to stress numerical calculation to the limit. However the results are intriguing and provide support 
for the dark heart of the parameter plane even under these extreme circumstances. As illustrated in fig 

37, the Julia set of (z)  (Woon) forms the boundary between the basin of attraction of   and the 

attracting fixed point   -0.2959050055752 . The first six non-trivial zeros of the function, from 

  0.5  14.1347i  on, famous for the Riemann hypothesis - that they are on all on the line x=1/2 - lie in 

the basin of attraction of this fixed point. In fact all the zeros of the function do, including the trivial ones at 

z  2n , as all are mapped to 0, which iterates to  . 
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The overwhelming reason for the zeros to be on the line x = ½ is that there is an internal symmetry in the 

analytic extension of the function to  {1} , which was expressed by Riemann  (1859), in the form of 

the reflection relation around x = ½: 


s

2
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






s

2(s)  
1 s

2










1 s

2 (1 s)  [9.4]. 

 
 

 
Fig 38: Above: The functions  ,   have the same set of non-trivial zeros but the latter also displays the internal 

symmetry about the roots. (Lower Left) Island iterating to  around -20 shows the Julia set contains disconnected 

components. (Centre) Region around -16 is in the main internal basin. (Right) Region around 8 in the divergent basin, 
shows critical behavior probably resulting from computational numerical overflow at the pole. 

 

Once expressed by Riemann in the form (t)  
s

2







(s 1)


s

2(s), s 
1

2
 it [9.5], this internal 

symmetry is made evident, as shown in fig 38, comparing  ,  .  It is also evident in the reflective 

dynamics of the iteration around the Julia set of (s)  in fig 37. The zeros are definitely confined to the 

critical strip x = [0,1], as x cannot be greater than 1 by the Euler product formula [9.1], whose individual 

terms immediately result in prime sieving of the series formula, when taken to the left hand side, and x 

cannot either be less than 0 as a result of the reflection formula.  
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Fig 39: (a) Parameter plane of 

c
(z)  (z)  c  iterating from the critical value 1 real [-40,6] imaginary [-40,40]. (b) 

Enlarged region [-20.5,-15.5] showing complex bifurcations. (c) A tiny fractal ‘lake’ barely visible around c = 0, shown 

expanded real [-0.1,1] imaginary [-1.1]. This corresponds to c for which the positive half-plane diverges due to the 

pole at 1.  Inset in (c) at half the scale of (b) is the corresponding ‘lake’ iterating from 0 corresponding to c for which 

the zeros of  (z)  diverge. (d) Sample Julia sets on the real line, with colour chosen to distinguish divergence, 

convergence to the critical strip and convergence into positive half plane - shades of blue for points tending to  , red 
for points asymptotic to a periodicity in the critical range, green asymptotic to a periodicity with real parts entirely 

positive, or including a periodic value greater than 10, and grey to black for non-periodic points (largely absent). The 
range from -15 to -0.1 is similar to 0.6 with no apparent bifurcations. (f) Inset of region marked by # in (a). 

 
Although the Julia set appears to be connected, this is unlikely, because all the trivial zeros on the 
negative real axis also iterate to the attracting fixed point and the dappled lacunae in the divergent basins 
are in a state of self-organized criticality, where divergent values and values convergent to   appear to 

densely interpenetrate, as emphasized in fig 38 where diverging points are black and those converging to 
  are coloured. This is likely to be a result of computational overflow at the pole and indeed testing 

values with Matlab’s own standard zeta function (presumably derived from the Maple engine as it is in the 
symbolic toolbox) froze the computation after three iterations. 
 
To test the question of parameter planes as a measure of the bifurcations of a family of Julia sets, we 

now examine the parameter planes of the function c(z) (z) c . The most outstanding critical value 

of (z)  is the value 1, to which all z with positive real values tend as Re(z) . This however is a 

case of self-organized criticality, as it projects the entire positive half plane directly on to the 

neighbourhood of the pole at 1. The Julia set Jc( )  is thus extremely sensitive to small changes in c, 

undergoing explosions of the positive half-plane for c as small as 0.001.  

 
In fig 39 we show the parameter plane for the critical value 1, in which the black regions indicate the 
critical value remains finite and colours indicate divergent iteration to  , along with corresponding 

illustrations of Julia sets, which highlight both complex bifurcations on the real line in the interval [-21,-15], 
and explosions of the positive half plane on either side of 0, at ~-0.005 and ~0.001. Both these features 
correspond closely to the parameter plane, which shows both complex fractal structure in the former 
range and a tiny fractal ‘lake’ around 0 connected by a dendritic thread of further ‘lakes’ winding in the 
imaginary direction to the divergent region. 
 
A second parameter plane iterating from the value 0, which, although it is not strictly a critical value is the 

value of all the zeros of (z) . This provides a similar characteristic in the range -21-15 and a fractal ‘lake’ 

centered on 1, corresponding to the bifurcations as the zeros cross the pole at 1 and escape the internal 
basins of the Julia set, which has already become disconnected into an infinite set of connected islands. 
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Fig 40: Examination of the region [-16,-15]x[-1,-2], marked * in fig 39, shows the role of the parameter planes on the 

‘critical’ values 0 (taken by iterating from the zero -2) and 1 (taken by iterating from 999) classify the Julia sets of 


c
(z) . For comparison the critical saddle at ~ -15.34 with critical value 0.5206 is also plotted in this domain displaying 

a classic period multiplying bulb. In the centre are shown the local parameter planes for these three values. Top left: 
The two parameter planes overlapped to show unions and intersection with locations of Julia set parameters 1 – 10 

(A is an artifact). Only 0 and 1 show classifying attributes, with c values in M
0

 displaying connected central regions 

(red) containing the attracting fixed point for the zeros.   By contrast, c values in M
1
 display bounded periodicities in 

the positiveve half-plane (here red). Values of c in both sets display both features, those in one, one , and those in 

neither, neither, confirming the classification. 

Conclusion: 

The approach gives a complete investigative approach to confirming the universality of the Mandelbrot 
‘dark heart of chaos’ across the very broad class of complex functions possessing polynomial-type critical 
points. The paper has demonstrated that multiple critical point analysis, as developed to deal with cubics 
and higher polynomials extends readily to composite transcendental functions and thus embraces the 
comprehensive majority of complex functions central to mathematics. The ultimate conclusion is that 
chaos, represented by the Julia sets, or their bifurcation kernels will always trap the critical points of the 
function as the last super-stable points of escape into basins of attraction if these kernels are locally 
homeomorphic to connected sets. 

Software and Demonstrations: 

The software used to investigate this was an intel native Mac OSX XCode application-generating project 
originally developed as a Mandelbrot explorer for the standard quadratic by Michael C. Thornburgh and 
converted to a generalized Mandelbrot/Julia function explorer by the author. A Metrowerks C program 
suite developed by the author was used to generate movies and Julia sequences at specific loci. The 
software, source code and movie demonstrations is available from a link at http://www.dhushara.com. 
 
All of the viewers work by dragging a rectangle to kexpand a sub-region. If you click you will switch 
between the parameter plane and the Julia set of that coordinate. Sometimes checking the random box 
will fill the interior basins. The Herman viewer toggles from a-Mandelbrot to a c-Mandelbrot with the 
chosen a and then to the ac-Julia set. Reset takes you back to the beginning. The number of threads 
accelerates the program at the expense of other threaded programs. Increasing the number of iterations 
gives a slower, but more accurate image. 

http://www.dhushara.com/
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1. Compiled viewers of each of the examples 
2. Source Code of: Layered Cubic, 2-parameter Herman, Illuminated Cosine, Sinz+Sin2z/2, 

Cosz+Cos2z, Layered Sinz/z 
 

 
 

Fig 41: Ghostly ‘Buddhabrot’ image plots the collective orbits of the critical point of f (z)  z
2
 c by adding 1 to each 

pixel that the orbit from the critical point of each c value on the plane visits. The orbits of c points outside M are 
iterated in cyan overlying the orbits of c points in M iterated in shades of ochre and magenta. 

 
 

Appendix 1: Combined Methods of Depicting Julia Sets and Parameter Planes 

Level Set Method LSM 

Begin with the point z0  (x,y) for a fixed c and iterate zn1  fc(zn ) c . If we are depicting the 

Mandelbrot parameter plane, we begin instead with the critical point z  0 and iterate for each c  (x,y) . 

If the point escapes a circle say of radius 10, zn  M , we colour it by the number of iterations.  If it 

remains bounded after a fixed number of iterations, we assume it cannot escape and colour it black (or 
white in the above examples). 
 
This method will work for the Julia set of any function provided we can determine basins of attraction of 

fixed or periodic points, to apply the algorithm to. In the case of fc(z)  z
2  c  this is   and the Julia set 

is the boundary of the basin of attraction of  . In other functions it may be finite and multiple. In the case 

of transcendental functions, such as cos and exp,   is an essential singularity and the Julia set is the 

closure of its basin of attraction and the target set may be imag(zn )  M  or real(zn )  M . The 

method will also work for the parameter plane (Mandelbrot set) of any function provided we can locate 
and handle the critical points and establish individual parameter planes for each.  
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Fig 42: Quadratic Julia sets depicted by combined methods. (a) A Siegel disc ( c 
e
i

2

e

2 i

4
,    (1 5 ) ). 

Exterior (blue) by level set, Julia (white) by modified inverse iteration, irrational flow (green) by the sine of the velocity. 

(b) Super-attracting period 3 (Solution of (c
2
 c)

2
 c  0 ). Exterior by continuous potential, Julia by modified 

inverse iteration, interior basins by level set. (c) Seahorse valley dendrite ( c  .74543 .11301i ) by distance 

estimator, exterior by level set. (d) Parabolic bifurcation period1 to 20 ( c  .27334  .00742i  adjacent to 

c 
e
i

2

e

2 i

4
,  

2

20
). Exterior by level set, Julia by modified inverse iteration, petals by velocity. 

 
Variation 1 Internal Basins:   
If the Julia set has an internal attracting periodic point we can test for this by also finding the periodic 

cycle by first iterating the critical point until it becomes within  of being periodic and then colour a non-

escaping point by the number of iterations to bring z0  (x,y)  within  of a point on the cycle. 

 
Variation 2 Continuous Potential (Quadratics only): 

We can derive a continuous potential with an even gradation but less sensitivity at the boundary of Jc  by 

using the continuous potential formula P 
log zn

2n
 for an escaping point. 

 




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Fig 43: Herman ring f (z)  (1 5 )z
2
z  4

1 4z
 Irrational annular flow depicted 

 by sine of the discrete velocity, interior basin level sets red, exterior blue. 
 

Variation 3 Distance Estimator (Quadratics only):  
 
For dealing with dendritic Julia sets, or the Mandelbrot set, to demonstrate connectivity, we can make two 

additional tests to detect proximity to Jc : 

(a) Test for overflow of the derivative of any point on the escaping orbit: z 'i O  

(b) Test for distance dist  2
zn

z 'n
log zn    

We can calculate orbit derivatives iteratively as follows z 'i1  ziz 'i , z '0 1 for the Julia set and 

z 'i1  ziz 'i1, z '0  0  for the Mandelbrot set, since we are differentiating with respect to c rather than 

z. In practice, O ~ 1600000,   ~ 0.1. The derivative overflow tests for highly repulsive dynamics adjacent 

to Jc . 

 
Variation 4 Discrete Velocity of non-attracting Basins and Petals: 

Compute, for the points that don’t escape, the average discrete velocity zi1  zi  on the orbit. 

 
Variation 5 Binary Decomposition: Split the level sets light or dark depending on whether the n-th 
iterate is in the upper or lower half plane - i.e. has imaginary part positive or negative. This highlights both 
equipotential level curves and sections of external rays. See fig 5. 
 
Variation 6: Pickover Stalks: Choose a target neighbourhood, e.g. narrow stalks along the x and y axes, 
or circles at the origin.  Iterate a point using the level set method, but if it enters the target region, colour it 
with the minimum number of steps to enter the target instead. 
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Fig 43(b) Pickover stalks emerging from the Julia set asterisked lower left 

 

Inverse Iteration Method IIM 

First find a repelling fixed point , u0 , by solving fc(z)  z . For fc(z)  z
2  c , one of the two fixed points

z 
1 1 4c

2
 is always a repeller as fc '(z)  2z  1 1 4c , unless c 

1

4
. Now plot the two 

inverse images zi   zi1  c  of this point and repeat to form the 2n   n-th inverse iterates. This 

method requires a heap, or some equivalent data structure, to keep track of the branching tree of inverse 
iterates. If memory is exceeded we can randomly plot one or other roots and its pre-images. However this 
method has the problem that it is computationally intractable because the points are exponentially 
unevenly distributed over the Julia set, due to multifractality (fractal redistribution of the probabilities), 
resulting in the inverse mapping being strongly contractive to some features leaving others 

unrepresented, and thus fails to represent significant features of Jc , even with exhaustive computation 

times. 
 
Variation 1 Modified Inverse Iteration MIIM (see figs 3, 13b): 

We cut off the sub tree from a given umk :  fc
(k )(umk )  u0  if the derivative ( fc

(k ))'(umk )  M . 

This eliminates dominant highly contractive regions of the inverse iteration, which have already been 

registered. We can calculate successive derivatives iteratively fc '(umi1
)  2 umi fc '(umi ) . 
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Fig 44: Wave function method developed during the production of this work portrays the dynamics leading to 

formation of Julia sets by iterating successive compositions of f(z) with the complex wave function illustrated by 
colouring the plane shades of red (r) and green (g) according to a conformal function, such as

w(z)  cos(kr real(z))  i sin(kg imag(z))  orw(z)  cos(kr z  crit )  i sin(kgarg(z  crit)) which highlights 

recursive pre-images of the critical point.  

 
Conformal Wave Function Method 
This method developed during production of this paper to gives a dynamic picture of the action of iteration 
of complex functions having two input and two output variables. A suitable function (see fig 45) is used to 
generate conformal interfering waves of oscillating colour, forming a Cartesian or polar grid.  Successive 

iterates of f(z) are then applied to form a sequence of images w( f n(z)) , with numbers which have 

exceeded computational bounds assigned black by default (Matlab does this automatically). The method 

generates a discrete dynamical movie of the recursive action of f on the plane, showing how the repeated 

application of f leads to formation of a Julia set, highlighting the internal dynamics of the basins, including 

attracting and neutral mode-locked periodic points, irrational flows and Cantor processes. The process is 

a form of inverse iteration since the n-th frame is drawing the n-th pre-image of the domain of the wave 

function. If polar coordinates about the critical point are used, this highlights pre-images of the critical 
point. 
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Fig 45: Wave function method highlights the dynamic periodicities of all regions of the parameter plane. The first 
frames immediately highlight periodicities of the critical point as images of the origin, showing both locations and 

periodicities of period 2 to 7 super-attracting bulbs and dendritic islands. Later iterations highlight the periodicities of 
the period 2, 3, 4, and 5 bulbs starting with frame 60 having all these bulbs showing images of the origin. 

 
One can also produce a dynamic movie of the internal periodicities on the Mandelbrot set by repeatedly 

inserting the original c value into each iterate of f, expressed in terms of the critical value. For 

f (z)  z2  c  this is just c, but for f (z)  cz(1 z) , with critical number ½ and critical value v=c/4, we 

need to insert 4v, and use a wave function centered on the v value which will fix the critical point, i.e. v=½  

or c=2. 

 
Chaotic Processes and Discrete Iteration 
 
All computer methods suffer from numerical over/underflow and the incapacity of any simulation to 
accurately approximate a dynamical process, which is sensitive to its initial conditions. Thus Mandelbrot 
originally thought ‘his’ set was disconnected into islands until Douady and Hubbard’s, conformal proof of 
its connectedness demonstrated the contrary. However these problems can lead to intriguing issues of 
computational complexity. 
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Fig 46: Cosine root principal explosion in 16384 iterations to show the initial stages of the explosion, using the arctan 

formula. As can be seen, in contrast to fig 29, the initial explosion is characterized as an atomic cosmological ‘big-
bang’ filling parabolic space with extremely high iteration number structures at the limits of complexity resolution, 

followed by successively slower explosion waves of successively simpler level set structure, as the process 
progresses. These suggest associations both with quantum chaos and with cellular automata, some of which, on the 

‘edge of chaos’ in discrete system terms, can act as universal computers. 

 

The function f (z)  cos( z )  shows how sensitive computer processes can be to underflow and 

overflow, resulting in discrete artifacts similar to a cellular automaton, which can be even more beautiful 
and complex than the underlying process. The underlying degree of the function is 1, since the first order 
degree of the cosine 2 is cancelled by the degree ½ of the root in composition. The process thus 
becomes highly sensitive to floating point over/underflow at bifurcation points, particularly the principal 
explosion point. A hint of why the phenomena of fig 46 may be happening can be seen from fig 47, where 
discrete effects emerge from the underflow of computations of a radial wave function under recursive 
dilation of the origin. 
 

In taking z , we can proceed in several ways. In fig 46 we have used rei  rei /2
 the apparently 

simplest route. However this involves both calculating a double square root r  x2  y2
and using 

the transcendental arctan to halve the angle 


2


1

2
tan1 y

x
 k , k  0,1  making allowance for 

singularities. 
 
Alternatively, we can proceed directly: 
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(a  ib)2  z  x  iy, a2  b2  x, 2ab  y, b 
y

2a
, a2 

y2

4a2
 x, 

(2a2 )2  2x(2a2 ) y2  0, 2a2 
2x  4x2  4y2

2
, a 

x  x2  y2

2

 

At this point we would be tempted to use b 
y

2a
, but this is liable to over/underflow error and singularity, 

resulting in gross divergence at the explosion point. Instead we can define: 

a 
y

2b
, 
y2

4b2
 b2  x, (2b2 )2  2x(2b2 ) y2  0, 2b2 

2x  4x2  4y2

2
, b 

x  x2  y2

2
 

This method gives the series of images in fig 33 which coincide with those for the other functions. 
 

 
Fig 47: Super-attracting basin of f (z)  cz(1 z)  becomes a Moire pattern when a radial wave function about the 

origin is used, as the inverse process is recursively dilating the origin. 

Appendix 2: Ray Tracing Hypercomplex and Multi-dimensional Chaotic Iterations 

 
We now investigate how Julia and Mandelbrot sets of the 4D Quaternions, bicomplex numbers and other 
systems, such as the spherical polar Mandelbulb iteration can be investigated in 3D space.   
 
Quaternionic and Hypercomplex Systems 
 
The quaternions Q are defined as: 

Q = {z  a  bi  cj  dk, i2  j2  k2  1, ij   ji  k,  jk  kj  i, ki  ik  j}  

Since i, j, k share a symmetrical relationship, a pure unit quaternion u = (0, b, c, d) behaves as a rotation 

in 3D space 
3

, with each of i, j, k corresponding to rotations of 180 about the axes. 
 
This symmetrical representation can be extended to 1+n dimensions, resulting in so-called hypercomplex 
systems (Dang et. al.). One needs to note however that the only true division rings over the reals where 
elements can be both multiplied and divided and give rise to a full suite of rational and transcendental 

functions are the complex numbers  and quaternions Q4
, with a non-associative extension to the 

octonians O, by effective quaternion ‘complexification’. 
 
Note that in the quaternions, De Moivre’s theorem still holds when we express a given element in terms of 

a pure quaternion unit vector z  a  bu  rcos() ursin(), zn  rn cos(n) usin(n) , but the 
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loss of commutativity means that, for example zpz  pz2
, so there is no unique way to write a poynomial 

in terms of powers of z, however, like , we can develop transcendental functions such as the log and 
exp. 
 

 
Fig 48: (Top left) Quarternionic Mandelbrot set in 3D is a solid of revolution of the complex 2D Mandelbrot set about 

the real axis. (Right): Quaternionic Julia set projected into 
3
. (Lower left) Symmetric projection.  A given Julia set of 

f (z)  z
2
 q, q Q can be represented in 3D because it can be rotated by an angle   in parameter space to a 

related Julia set f (z)  z
2
 c, c £ , z Q . The coordinates (R, I,)  can be used to define a Julia set of an 

arbitrary via the rotated mapping f

(z)  e

 i
z

2
 e

i
c, z Q, c  R  iI £ .  

 
If we are considering a quadratic mapping in H, we have:  

z2  (a  bi  cj  dk)2  a2  (b2  c2  d2 ) 2abi  2acj  2adk  

Hence, given the iteration f (z)  z2  c , we have the following four-assignments: 

a a2  (b2  c2  d2 ) cr , b 2ab  ci , c 2ac  c j , d, 2ad  ck  

Expressed in terms of vectors, for a level set, or escape-time algorithm, this becomes:  

a a2  r
2
 cr , r 2ar  c, a2  r2   'bailout' . 

 
Now an apparent paradox arises, in which the Mandelbrot set appears ‘simpler’ than the Julia set, in the 
sense that it can be fully represented in a lower dimensional space.  
 

If we are considering the Mandelbrot iteration 0 c c2  c ...  then r and c are co-directional. If c 

is written as c  cr  c u, u=
r

| r |
 then u2  1 and the iteration preserves the complex plane 

containing the real axis and the axis of u.  The quaternionic Mandelbrot set thus consists of a complex 2D 
Mandelbrot set rotated about the real axis to form a spherically symmetrical set in Q. This can be 

represented in 
3

as a rotation of the 2D complex Mandelbrot set about the real axis, as shown in fig 
1(a). 
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The same situation pertains for a Julia set f (z)  z2  r, r ° , zQ . 

 

Now let us consider an iteration of the form f (z)  c1z
2  c2, c1,c2 £ .  It turns out that the dynamics of 

this iteration are independent of the angle   in z  z1  e
iz2, z1,z2 £ . 

 

Let z  (a,b,c,d)Q then z  (a  bi) (c  di) j  z1  z2 j, z1,z2 £ . 

 

Now consider g (z)  a  bi  ei (cj  dk) . If we choose   so that  e i 
z2

z2

, then  

g (z)  z1  e
i jz2  z1 

z2z2

z2

j  z1  z2 j  a  bi  z2 j ° 3
. 

If  f(z) is as above then g ( f (g (z)))  f (z) , so the rotated dynamic is the same as the original. 

 

Now let us consider fq(z)  z
2  q, q,zQ . Given q there exists pQ : p 1, c£ : pqp1  c . 

The Julia set Jq  pJcp
1

 simply a rotation of the dynamic in Q4
to fc(z)  z

2  c, zQ, c£ .   

 

The effect of the function f ,c(z)  e
iz2  eic, zQ, c  R  iI £ , is to simply rotate the Julia set 

of the iteration unchanged within , but resulting in very different Julia sets in the 

expansion to the rest of Q4
. It is thus common to investigate the triple (R, I,)  and iterate the above 

function f ,c(z)  in Q4
, projecting the resulting points (z,zi ,z j ,zk ) to (z,zi ,z j )° 3

to give 3D 

projections of a representative spectrum of quaternionic Julia sets. 
 

Quaternionic versions of transcendental and other functions can be defined and portrayed using the 
above methods, according to the following definitions (Halayka 2009): 

 

Octonionic Julia Sets (Griffin and Joshi 1992) and a generalized Mandelbrot set (Griffin and Joshi 1993) 
can also be defined and portrayed, and display new features associated with their non-associativity, in 
which (ij)l=-i(jl)≠i(jl). 

 

f (z)  z2  c, c£

file:///C:/Users/king/Genesis/Preprint/DarkHeart/DarkHeart.htm%23Anchor-49575
file:///C:/Users/king/Genesis/Preprint/DarkHeart/DarkHeart.htm%23Anchor-47857
file:///C:/Users/king/Genesis/Preprint/DarkHeart/DarkHeart.htm%23Anchor-11481
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These can either be portrayed by inverse iteration, or by using a distance estimator and 3D ray tracing to 
reflect right rays from a source off a tangent plane determined by a normal from a point estimated 
iteratively to be arbitrarily close to the Julia set using an iterative process similar to that used to generate 
the sets themselves (Hart, Sandin and Kauffman). 
 
The standard distance estimator used for a complex or quaternionic quadratic iteration 

 is: D 
zn

z 'n
ln zn , zn  f

(n)(z0 ),  z 'n1  2 zn z 'n  applying the chain rule to 

f (n)
. This is unchanged for f ,c(z)  e

iz2  eic , since e
i  1. 

 
Fig 49: A succession of unbounding volumes 

iteratively determined using the distance 
function. 

 
The algorithm iteratively checks the 
distance to the set using successively 
smaller unbounding volumes not 
intersecting the region, to step along the 
ray closer, but not into the region until the 
distance to it falls below a given 
threshold. A calculation of the tangent 
plane is then made, either by 
differentiating to get a normal, or by 
approximating a tangent plane using 
neighbouring points ‘on’ the surface. The 
shading of the point projected onto the 
screen plane is then coloured according to the lighting and the orientation of the tangent plane. 
 
To calculate a normal, a variety of methods can be used.  A cross product of vectors to neighbouring 

points, finding the direction of the point z a fixed distance from z0  on the set whose distance estimation is 

maximal, finding the direction of maximal attraction, or using a gradient, for example calculated by picking 

six neighbouring points Nx  d(x  ,y,z) d(x  ,y,z)  and the same for y and z, or by directly 

differentiating the iterative function defining the region. 
 

f (z)  z2  c, c£
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Fig 50: A Julia Island synthesized using the free cross-platform ray-tracing package MegaPOV. 

 
The discrimination radius used to determine how closely neighbouring points on the screen are computed 

can be made a power law function of distance from the observation point or ‘camera’, (d) d , so 

that more distant parts of the image are computed in similar relative precision to nearby parts – a process 
called ‘clarity’. 
 
Bicomplex Numbers 
 

 
Fig 51: Level sets of the Mandelbrot set (left) correspond (centre, right gray) to product factors of the tetrabrot, for 

various values of  . 

 
Bicomplex numbers (Rochon) are defined a little differently from the quaternions:   

T ﹦{z  a  bi  ci  dk, i2  j2 1, k2 1, ij  ji  k,  jk  kj  i, ki  ik   j}  

Like the quaternions, bicomplex numbers can be expressed in terms of a pair of complex numbers: 

z  a  bi  ci  dk  a  bi  (c  di) j  z1  z2 j  



Prespacetime Journal | March 2012 | Vol. 3 | Issue 3 | pp. 254-273 

King, C., Exploding the Dark Heart of Chaos: Part III 

 

ISSN: 2153-8301  Prespacetime Journal 
Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

271 

One can define a generalized Mandelbrot set in T in the same way as the complex numbers: 

M2  {cT : fc
(n)(0) ,  fc(w)  w2  c}  

The so-called tetrabrot is then defined as the cross-section of this in 
3

 

  {c  (p,q,r,0)T : fc
(n )

(0) ,  fc(w)  w2  c}  

 
This set can then be portrayed by colouring the external level sets on the surface of the tetrabrot level set 
at distance   surrounding the actual fractal. As   is reduced, the fractal details of the 3D structure 

emerge, as shown in fig 3. 
 
T is a commutative unitary ring, but it is not a division ring like the quaternions, so it is not capable of 
developing a full suite of functions. 
 
The Mandelbulb and Spherical Polar Iterations 
 

 
Fig 52: Three views of the degree 8 Mandelbulb. 

 
A new development in 2009 driving the compilation of this appendix has been the extending the basic 
rules of the quadratic Mandelbrot set in 2D polar coordinates to 3D spherical polars. 
 

The iteration fc(z)  z
n  c  in polar coordinates takes the form: 

x  rcos() rn cos(n) cr , y  rsin() rn sin(n) ci  

This can be readily generalized to the 3D mapping gn : ° 3  ° 3
:  

x  cos()sin()n cos(n)sin(n) cx

y  cos()sin()n sin(n)sin(n) cy

z  cos()n cos(n) cz

 

 
Ray tracing the Mandelbulb in the above figures requires using the distance formula to iteratively 

differentiate the above function: dz '  nz
n1

 to produce a Jacobian matrix capable of determining the 

tangent plane. 
 

dzx  nr
n1rdz sin dz  (n 1) cos dz  (n 1) 1

dzy  nr
n1rdz sin dz  (n 1) sin dz  (n 1) 

dzz  nr
n1rdz cos dz  (n 1) 

 

 



Prespacetime Journal | March 2012 | Vol. 3 | Issue 3 | pp. 254-273 

King, C., Exploding the Dark Heart of Chaos: Part III 

 

ISSN: 2153-8301  Prespacetime Journal 
Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

272 

Although spherical polar coordinates do not form a number system, and indeed there is no division ring 
over the reals except for the complex numbers and quaternions, the above iteration at least is well-

defined for a variety of integer powers, and the 3D set Mb  {(x,y,z)° 3 :gn
(k )(0) } forms a 3D 

fractal set similar to the 2D complex Mandelbrot set, particularly for larger n in the range of 6 and above. 
 
Just as the complex iteration has odd symmetry for even powers and even symmetry for odd powers, 
corresponding to (n-1)-fold rotational symmetry, as noted in [4.2] and fig 14, the Mandelbulb displays the 

same symmetry types in both the   and   dimensions. 

 

 
Fig 5: (Left) Four degree 8 Julia sets of the Mandelbulb iteration. (Right) Mandelbulbs of degree -8, 4, 7 and 16. Even 

degrees have odd symmetry and odd degrees even (compare the degree 7 and 8 side views in figs 4 and 5). 
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