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ABSTRACT 

 

Ideas about the electron as a sort of a bound electromagnetic wave and/or the electron as 
electromagnetic field trapped in a (equivalent) waveguide can be found more or less explicitly 
in many papers. What we want to show here is that the Dirac equation for electron and 
positron plane waves admits an equivalent electrical circuit, consisting of an equivalent 
transmission line. The same transmission line is representative of a mode in waveguide, so 
one can also say that the Dirac equation for plane waves includes an implicit representation in 
terms of an equivalent waveguide. All calculations will be carried out in elementary form with 
the usual notations of circuit theory and electromagnetism and without the need to resort to 
Clifford algebra as in previous papers. 

 
Key Words: equivalent, waveguide, Dirac plane wave, electric circuit, electromagnetic field. 

 
1. Introduction  
 
In this paper the equivalence between transmission line and Dirac plane waves is introduced. 
The same transmission line is representative of TE, TM modes in waveguide, so you can also 
say that the Dirac equation for plane waves includes an implicit analogy with an equivalent 
waveguide.  In Section 2, starting from Maxwell equations, equations in a waveguide for the 
transverse components are derived. In Section 3, these equations we decouple the dependence 
on x, y introducing an analogue voltage and current V and I equivalent to a waveguide mode 
(a TE mode). This permits to define an equivalent transmission line for the mode. In Section 
4, there is a degree of freedom in the definition of a scale factor for V and I. With a proper 
choice of the scale factor for V, I (and the impedance Z) the equations for V, I are reduced to 
the form of the Dirac equations for plane waves. Thus the plane wave Dirac equations admits 
the proper equivalent circuit in terms of equivalent transmission line and/or equivalent 
waveguide. For simplicity the calculation will be done in extended form only for a TE mode, 
and shortly for TM. All the calculation will be done in the classical formalism, with the usual 
notations of circuit theory and electromagnetism, without the need to resort to Clifford algebra 
as in [1].  
 
 
2. Maxwell's equations in a waveguide for the transverse components  
 
In this section we derive the equations satisfied by the “transverse” component of the E

r

, 
H
r

guided fields. In particular we consider a cylindrical waveguide (of whatever cross-section) 
with the axis parallel to the z axis. The non-evanescentE

r

, H
r

 fields are therefore assumed to 
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have a dependence on time and z coordinates described by zikti ze −ω . For “transverse” 

component of E
r

, H
r

we mean the )( yx iEE +  and )( yx iHH +  component, transverse to the z-

axis. 
 
We start from Maxwell's equations in natural units (c=1):  

0,0,, ==
∂
∂=

∂
∂−= HdivEdiv

E
Hrot

H
Erot

rr

r

r

r

r

ττ
 

and in particular from these two equations: 

     0, =
∂
∂−= Ediv
H

Erot
r

r

r

τ
 

where 
 

kEjEiEE zyx
ˆˆˆ ++→

r

 

kHjHiHH zyx
ˆˆˆ ++→

r

 

 
which, in terms of the individual components, are:  
 
(1)     xtyzzy HEE −∂=∂−∂  

(2)     ytzxxz HEE −∂=∂−∂  

(3)     ztxyyx HEE −∂=∂−∂  

(4)     0=∂+∂+∂ zzyyxx EEE  

 
Forming –(2)+i(1) i.e. summing i times the equation (1) to minus equation (2) we get:  
 

)()()( yxtzyxyxz iHHiEiiEE +∂−=∂+∂++∂−  

 
Similarly, forming (4) + i(3), we get: 
 

ztzzyxyx HiEiEEi ∂−=∂++∂−∂ ))((  

 

We can repeat the procedure for the other two Maxwell equations, i.e. 
τ∂

∂= E
Hrot

r

r

and 

0=Hdiv
r

. The resulting 4 equations are: 
 
               )()()( yxtzyxyxz iHHiEiiEE +∂−=∂+∂++∂−  

                 ztzzyxyx HiEiEEi ∂−=∂++∂−∂ ))((  

               )()()( yxtzyxyxz iEEiHiiHH +∂=∂+∂++∂−  

                ztzzyxyx EiHiHHi ∂=∂++∂−∂ ))((  

 
Now we specialise to the waveguide case and we examine first the TE mode ( 0=zE ). The 
above equations become:  
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(5)         )()( yxtyxz iHHiiEE +∂−=+∂−  

(6)         ztyxyx HiiEEi ∂−=+∂−∂ ))((  

(7)         )()()( yxtzyxyxz iEEiHiiHH +∂=∂+∂++∂−  

(8)         0))(( =∂++∂−∂ zzyxyx HiHHi  

 
Suppose now a z-propagation with an exponential zikti ze −ω  (IEEE convention). 
Replace everywhere ωit →∂ : 
 
(5’)         )()( yxyxz iHHiEE +−=+∂ ω  

(6’)         zyxyx HiEEi ω=+∂−∂ ))((  

(7’)         )()()( yxzyxyxz iEEHiiHH +−=∂+∂++∂− ω  

(8’)         0))(( =∂++∂−∂ zzyxyx HiHHi  

 
We want equations expressed in terms of the transverse components )( yx iEE + and 

)( yx iHH +  only. Take equation (7’) and use equation (6’) to eliminate the component zH  as 

follows. From (6’) we get: 
 

         ))()((
1

)( yxyxyxzyx iEEiiHi +∂−∂∂+∂=∂+∂
ω

 

 
and then, as it is well know from the theory of waveguides, being: 
 
         )())(())()(( 222

yxcyxyxyxyxyx iEEkiEEiEEii +−=+∂+∂=+∂−∂∂+∂  

 
we arrive at: 
 

        )(
1

)( 2
yxczyx iEEkHi +−=∂+∂

ω
 

 
which can be substituted in (7’), obtaining:  
 

         )()(
1

)( 2
yxyxcyxz iEEiEEkiHH +−=+−+∂− ω

ω
 

or: 

         ))(
1

()( 2
yxcyxz iEEkiHH +−=+∂

ω
ω  

 
But (in natural units c = 1): 

 
222

0
2

zc kk −== ωω  

 
so that: 
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)1()
1

(
2

2
02

ω
ωω

ω
ω −=− ck  

 
From (5’) and (7’) we then have: 
 
(9)      )()( yxyxz iHHiEE +−=+∂ ω  

(10)    ))(1()(
2

2
0

yxyxz iEEiHH +−=+∂
ω
ωω  

 
To establish a more direct correspondence with the transmission line equations: 
 

(11)                        Ii
dz

dV ωµ−=  

(12)                        Vi
dz

dI













−−=

2

2
01

ω
ωωε  

 
we rewrite the equations (9) and (19) as:  
 
(13)      )()( yxyxz iHHiiEEi +−=+∂ ω  

(14)      )()1()(
2

2
0

yxyxz iEEiiiHH +−−=+∂
ω
ωω  

 
Note: this means that equations similar to those of the transmission involve the quantities 

)( yx iEEi +  and )( yx iHH +  and not )( yx iEE +  and )( yx iHH + , ie there is an imaginary i  

between.  
 
 
3. Decoupling the dependence on x, y  
 
In this section we establish a clear correspondence of equations (13) and (14) with the 
transmission line equations. The meaning of the imaginary unit i which multiplies the second 
member of the equations (13) and (14) is well expressed by equation (5): 
 
(5)         )()( yxtyxz iHHiiEE +∂=+∂  

 
which shows that )( yx iEE +  and )( yx iHH +  are each other at 90° in the x, y plane; it’s 

)( yx iEEi +  and )( yx iHH +  which are "parallel”. Their quotient, as well as V / I in a 

transmission line, it is purely ohmic (or better purely real) such that V = ZI with Z real, just as 
in a lossless transmission line. More precisely, as the z,t dependence is given by the 
exponential: 
 

zikti ze −ω  
 
making the two derivatives z∂  and t∂ : 
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zz ik−→∂  

ωit →∂  

we get from (5): 
 
         )()( yxyxz iHHiEEik +=+ ω  

 
This shows again and explicitly that )( yx iEEi +  and )( yx iHH +  are "parallel", and their 

quotient is real:  
 

)(

)(

yx

yx

z iHH

iEEi

k +
+

=ω
 

 
or: 

)()( yx
z

yx iHH
k

iEEi +=+ ω
 

 
Write now the transverse fields )( yx iEE +  and )( yx iHH +  in the form: 

 

(15)   
)(),(

)(),(

zIyxhH

zVyxeE

t

t
rr

r

r

=

=
 

 
Note that if there are not physical conditions which determine V and I, the amplitudes to be 

assigned individually to )(),,( zVyxe
r

  as well as to )(),,( zIyxh
r

 are arbitrary, provided their 

product remains constant and equal to the amplitude of tE
r

 and respectively tH
r

. 
 
We can rewrite the previous equation:  
 

(16)   )()( yx
z

yx iHH
k

iEEi +=+ ω
 

 
as: 
 

(17)   t
z

t H
k

Ei
rr ω=  

 
or even: 

(18)   )(),()(),( zIyxh
k

zVyxeì
z

r

r ω=  

 

The (18) shows what we need right now, a parallelism between ),( yxeì
r

 and ),( yxh
r

. Express 
the parallelism in the form: 
 

(19)   ),(),( yxhAyxeì
r

r =  
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This allows to eliminate the dependence on x, y, as shown below. Thanks to the definition 
(15), equations (13) (14) become:     
 

      ttz HiEi
rr

ω−=∂  

      ttz EiiH
rr

)1(
2

2
0

ω
ωω −−=∂  

or 

      IhiVeiz

r

r ω−=∂  

     VeiiIhz

r

r

)1(
2

2
0

ω
ωω −−=∂  

but being:    
 

hAeì
r

r =  
 
we obtain: 

      
A

I
iVz ω−=∂  

      AViIz )1(
2

2
0

ω
ωω −−=∂  

If there are not physical conditions that uniquely determine V and I (as it happens for example 
for TE and TM in waveguide) you might make for A  the choice which is most convenient , 
e.g. 1=A . With this choice the above equations are written in the final form: 
 
(20)      IiVz ω−=∂  

(21)      ViIz )1(
2

2
0

ω
ωω −−=∂  

 
Compare it with the usual equations of the transmission lines. Since V and I depend only on z 
we can write the equations (20) and (21) in the usual form of transmission line equivalent to a 
TE mode in MKSA units (see for example Ramo Whinnery [2]): 
 

                         Ii
dz

dV ωµ−=  

(22) 

                         Vi
dz

dI













−−=

2

2
01

ω
ωωε  

The equations of a transmission line are: 
 

                         ZI
dz

dV −=  

(23) 

                         YV
dz

dI −=  
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where Z and Y depend on the transmission line and Y
Z  is the characteristic impedance of 

the line. Equations (22) then implicitly assume as the characteristic line impedance: 
 
             ωµiZ =  
(24) 

             












−=

2

2
01

ω
ωωεiY  

Note also that 

(25)  

2

2
01

ω
ω
ε

µ

−
=Y

Z
 

is equal to the mode impedance ("Schelkunoff choice"):  
 

(26)       TEZ
Z

Y
Z =

−

=

2

2
0

0

1
ω
ω

 

 
The equivalent line has inductance and capacitance as in the following figure: 

 
The transmission line is dispersive because the characteristic impedance (29) is frequency 
dependent and it resonates when:  
 

(27)     0

1 ωω ==
LC

 

 
In natural units (see (20), (21)) we have instead: 
 
 
 
 
 
 
 
 

µ=L  

ε=C  2
0

1

εω
=L  

1=L  

1=C  2
0

1

ω
=L  
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Remains, for the waveguide, all the remaining arbitrariness in the definition of impedance and 
thus V, I discussed [1], which we summarize here in the following.  
 
 
3. Reduction to the form of the Dirac equation  
 
As we have seen in the previous section, in the theory of waveguides, we can introduce an 
equivalent voltage and current, V and I. For all modes but the TEM one the definition of V 
and I leaves the freedom in the choice of a scale factor, as shown below. We remember the 
definition of transverse fields in terms of V and I: 
 

                 ( )( ) ( )),),, yxezVzyxEt

r

r

=  
(28) 

                 ( )( ) ( )),),, yxhzIzyxH t

rr

=  
 
with the condition: 
 

(29)           ( )*Re
2

1
ˆRe

2

1
VIdSnHEP t

S

t =⋅×= ∫
rr

 

 
The physical meaning of (28) is that V and I deliberately ignore the detailed configuration of 

tE
r

 and tH
r

on the transverse plane. 
 
According to (29) V and I correctly reproduce the value of the total energy that propagates.  
The impedance Z is given of course by: 

(30)          Z
I

V =  

 
Equation (28) leaves a degree of freedom in the definition of V and I: we can alter V and I and 

simultaneously he
r

r

,  as follows:  
 

             eeVV
rr

α
α 1

',' ==  

(31) 

              hhII
rr

α
α

== ',
1

'  

 
which leaves condition (29) invariant: 
 

(32)             ( ) ( )'*'Re
2

1
Re

2

1 * IVVIP ==  

 
Accordingly the value of the impedance Z becomes: 
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(33)        Z
I

V

I

V
Z 22

'

'
' αα ===  

 
This freedom does not change the value of quantities related to energy storage and 
propagation, such as: 
 

*,, 2
2

VIZI
Z

V
 

 
We can now derive an explicit form of the equivalent transmission line which is implied by 
the Dirac equation for plane wave.  
 
Select the scale factor in (31) as: 
 

 (34)     
ω

ωω
α 0+

=  

 
Substituting in (20), (21) we get: 
 

                         ( ) 0'
'

0 =++ Iii
dz

dV ωω  

(35)               

                         ( ) 0'
'

0 =−+ Vii
dz

dI ωω   

 
and the new Z is: 
 

(36)          TEZ
I

V
Z

ω
ωω 0

'

'
'

+
==      

 
It is immediate now to see that the equations (35) for voltage and current are actually the 
Dirac equation for 3ψ  and 1ψ . 
 
To see this we refer to the Dirac equation written in extended form, as can be found for 
example in Schiff [3]: 
 

                0134 =






 +
∂
∂+

∂
∂+









∂
∂−

∂
∂ ψ

τ
ψψ im

zy
i

x
 

 

                0243 =






 +
∂
∂+

∂
∂−









∂
∂+

∂
∂ ψ

τ
ψψ im

zy
i

x
 

 

                0312 =






 −
∂
∂+

∂
∂+









∂
∂−

∂
∂ ψ

τ
ψψ im

zy
i

x
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                0421 =






 −
∂
∂+

∂
∂−









∂
∂+

∂
∂ ψ

τ
ψψ im

zy
i

x
   

 
Here 421 ,,, ψψψψ  are complex functions such as V, I in the usual circuit theory. By setting 

042 ==ψψ  and assuming the tie ω+ dependence on t,  as it is for the Dirac’s plane wave 
solution we have for the two components different from zero: 
 

                         ( ) 010
3 =++

∂
∂ ψωωψ

ii
z

 

(37)               

                         ( ) 030
1 =−+

∂
∂ ψωωψ

ii
z

 

 
which coincide with (35). 
 
Thus the Dirac equations (37) are perfectly analogous to the waveguide-transmission line 
equations (35), once we select the choice (34) for the scale factor α . In particular the 
characteristic impedance for the Dirac equation is not the "Schelkunoff choice” (26), but it’s 
that determined by (35), i.e.: 
 

(38)    
0

0

ωω
ωω

−
+

=Y
Z  

 
The equivalent transmission line has inductance and capacitance as shown in the following 
figure: 
 
 
 
 
 
 
 
 
 
The natural units employed to write (35) and (37) are convenient but they may mask the true 
meaning of the electrical parameters of inductance, capacitance and impedance.  
Rewrite the equations (35) in MKSA units: 
 

                         ( ) ')1('
' 0

0 IiIii
dz

dV

ω
ωωµµωω +−=+−=  

(39)               

                         ( ) ')1('
' 0

0 ViVii
dz

dI

ω
ωωεεωω −−=−−=   

 
Comparing (39) with (23) we deduce the parameters of the transmission line.  
The equivalent transmission line has serial Z and parallel Y like this: 

)1( 0

ω
ω

+=L  

)1( 0

ω
ω

−=C  
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The "Dirac choice" for the characteristic impedance is then: 
 

(40)    
0

0
0

0

0

ωω
ωω

ωω
ωω

ε
µ

−
+

=
−
+

= ZY
Z  

 
For ∞→ω  this impedance tends to the impedance 0Z  of empty space. The same holds for 

00 =ω , which holds for a TEM-like propagation (which means also no waveguide and 
neutrino equations). 
 
The equivalent circuit shows that for 0ωω =  there is voltage V while the current I is zero, as 
can be seen also by the impedance (40). This seems physically reasonable by the fact that the 
whole calculation from the beginning has been developed for a TE. For 0ωω ≤  exponentially 
damped evanescent waves propagate. Until now the calculation was done in extended form 
for a TE, from the Maxwell equations (5) and (7). This will be now briefly repeated for a TM 
with the pair of equations (6), (8).  
 
With similar procedure, for TM mode we get the following equivalent circuit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and equations similar to (22): 
 

)1( 0

ω
ωµ +=L  

)1( 0

ω
ωε −=C  

2
0

1

µω
=C  

ε=C  
µ=L  
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                       Ii
dz

dV













−−=

2

2
01

ω
ωωµ  

(41) 

                       Vi
dz

dI ωε−=  

                    
where we use the MKSA units.  
 
Taking advantage of the arbitrariness inherent in voltage and current and proceeding as for 
(34) (35), but now with: 
 

(34bis)               
0ωω

ωα
+

=  

 
we arrive at:  
 

                         ( ) 0'
'

0 =−+ Iii
dz

dV µωω  

(42)               

                         ( ) 0'
'

0 =++ Vii
dz

dI εωω  

 
You can now see that the equations (42) for voltage and current are now corresponding to the 
Dirac equation for 4ψ  and 2ψ . These are, in a form similar to (37):  
 

               ( ) 0204 =++
∂
∂− ψωωψ ii
z

 

(43) 

              ( ) 0402 =−+
∂
∂− ψωωψ ii
z

   

 
Identify with (42) except for a complex conjugate operation, which is interpreted as wave 
propagation zikti ze +− ω  instead of zikti ze −ω . The equivalent circuit, deductible from (42), is the 
following  
 
 
 
 
 
 
 
 
 
 
The " Dirac choice" for the characteristic impedance is then:  
 

)1( 0

ω
ωµ −=L  

)1( 0

ω
ωε +=C  
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(44)    
0

0
0

0

0

ωω
ωω

ωω
ωω

ε
µ

+
−

=
+
−

= ZY
Z  

 
The characteristic impedance assumes a highly symmetric form between the TE and TM 
cases, see (40) and (44). Also the equivalent circuit is very symmetrical: it is always the same 
apart for a change of sign in 0ω . For ∞→ω  the impedance tends to the impedance 0Z  of 

empty space. The same holds for 00 =ω , which still means a TEM-like propagation (which 
means also no waveguide and neutrino equations, but now with opposite polarization). The 
equivalent circuit shows now that for 0ωω =  there is current I, while voltage V is zero, as can 
be seen also by the impedance (40).  
 
This seems physically reasonable by the fact that now the calculation has been developed for a 
TM.  
 
 
5. Conclusion 
 
We have thus shown that the Dirac equation for plane waves can be put in correspondence 
with an electrical circuit, equivalent to a transmission line. The same transmission line is 
representative of a mode in waveguide, so you can also say that the Dirac equation for plane 
waves includes an implicit representation of an equivalent waveguide. The equivalence is 
embedded in the usual V and I description. 
 
To quote Hestenes “we want to emphasize that this interpretation is by no means a radical 
speculation; it is a fact! The interpretation has been implicit in the Dirac theory all the time. 
All we have done is make it explicit”. (Hestenes here refers to the interpretation of the 
imaginary “i”). The calculation was done in extended form for a TE, from the Maxwell 
equations (5) and (7). This was briefly repeated for a TM with the pair of equations (6), (8).  
Doing so, the full set of plane wave Dirac equations can be interpreted in terms of appropriate 
equivalent transmission line circuits and/or equivalent waveguide. 
 
Obviously solutions with opposite spin are represented by opposite polarization in the 
waveguide. The equivalent transmission line shares all the usual properties of the transmission 
lines, including the dispersive character, and evanescent waves. The evanescent waves may be 
the correspondent of electrons propagating through a potential barrier.   
 
REFERENCES 
 
[1] G. Bettini, “Clifford Algebra and Dirac equation for TE, TM in waveguide”,  

http://vixra.org/abs/0910.0059 
[2] S. Ramo, J. R. Whinnery, T. van Duzer, “Fields and Waves in Communication  

Electronics”, John Wiley (1994) 
[3] L. I. Schiff, “Quantum Mechanics”, McGraw-Hill (1968) 
 


