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Equivalent Waveguide Representation for Dirac Plane Waves

Giuliano Bettini” & Alberto Bicci
ABSTRACT

Ideas about the electron as a sort of a boundrefeagnetic wave and/or the electron as
electromagnetic field trapped in a (equivalent) eguide can be found more or less explicitly
in many papers. What we want to show here is thatDRirac equation for electron and
positron plane waves admits an equivalent eledteg@uit, consisting of an equivalent
transmission line. The same transmission line eagentative of a mode in waveguide, so
one can also say that the Dirac equation for pleenees includes an implicit representation in
terms of an equivalent waveguide. All calculatian be carried out in elementary form with
the usual notations of circuit theory and electrgnedism and without the need to resort to
Clifford algebra as in previous papers.
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1. Introduction

In this paper the equivalence between transmidierand Dirac plane waves is introduced.
The same transmission line is representative ofTNEmModes in waveguide, so you can also
say that the Dirac equation for plane waves induae implicit analogy with an equivalent
waveguide. In Section 2, starting from Maxwell afijons, equations in a waveguide for the
transverse components are derived. In SectioneSetkquations we decouple the dependence
on x, y introducing an analogue voltage and curkéand | equivalent to a waveguide mode
(a TE mode). This permits to define an equivalesmigmission line for the mode. In Section
4, there is a degree of freedom in the definitibra @cale factor for V and I. With a proper
choice of the scale factor for V, | (and the impemaZ) the equations for V, | are reduced to
the form of the Dirac equations for plane wavesuslthe plane wave Dirac equations admits
the proper equivalent circuit in terms of equivaléransmission line and/or equivalent
waveguide. For simplicity the calculation will berte in extended form only for a TE mode,
and shortly for TM. All the calculation will be derin the classical formalism, with the usual
notations of circuit theory and electromagnetisithaut the need to resort to Clifford algebra
as in [1].

2. Maxwell's equations in a waveguide for the trangerse components

In this section we derive the equations satisfigdtHe “transverse” component of tHe,
H guided fields. In particular we consider a cyliatiwaveguide (of whatever cross-section)
with the axis parallel to the z axis. The non-ewaee , H fields are therefore assumed to
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have a dependence on time and z coordinates dedchiye **. For “transverse”
component ofE, H we mean theE, +iE,) and (H, +iH ) component, transverse to the z-
axis.

We start from Maxwell's equations in natural uitsl):

rotE = —%—H,rotﬁ = a—E,divE =0,divd =0

r or
and in particular from these two equations:
rotg = ——H,divE =0
4
where

which, in terms of the individual components, are:
(1) okE,-0,E, =-0H,

2 e,k -0,E,=-0H,

(3) a><Ey_ayE><=_atHz

(4 o +0,E +0,E =0

Forming —(2)+i(1) i.e. summing i times the equation ¢lninus equation (2) we get:
-0,(E, +IE))+(0, +id )E, =—id,(H, +iH )

Similarly, forming (4) + i(3), we get:

(0,-i0,)E,+iE)+0,E, =-id H,

We can repeat the procedure for the other two Méxaguations, i.e.rotH = % and
divH =0. The resulting 4 equations are:

~9,(E, +iE,)+ (@, +id,)E, ==id, (H, +iH )
@, —id,)(E, +iE,) +a E, =-id H,

~9,(H, +iH,)+(0, +id,)H, =id, (E, +iE,)
@, —id,)(H, +iH ) +d,H, =id E,

Now we specialise to the waveguide case and we ieeafinst the TE model, = P The
above equations become:
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(®)  -0,(E(+iE))=-i0,(H +iH,)
6)  (0,-i9,)(E, +iE,) =-id H,
(7)  -0,(H +iH )+, +id,)H, =i0,(E, +IE,)

(8) (0,0 )(H,+iH )+0,H,=0

Suppose now a z-propagation with an exponeetf&l** (IEEE convention).
Replace everywhe® - ia:

(5)  0,(E, +iE,)=—a(H, +iH )
6) (9, -i0,)E, +iE,)=aH,

(7)  =0,(H, +iH,)+(@,+id,)H, = -a(E, +iE,)
®)  (0,-id,)(H,+iH,)+d,H, =0

We want equations expressed in terms of the trassve&omponents(E, +iE, and
(H, +iH ) only. Take equation (7’) and use equation (6’gliminate the componert, as
follows. From (6”) we get:

@, +id,)H, =£(ax +i0,)@, -i0,)(E, +iE,)
and then, as it is well know from the theory of wguides, being:

(3, +i9,)(3, ~i0,)(E, +IE,) = (82 +02)(E, +IE,) = -K*(E, +IE,)
we arrive at:

. 1, .
@, +i0,)H, ===KZ(E, +iE,)
w

which can be substituted in (7’), obtaining:

=0,(H, +iH)) —%kf(EX +iE,) = ~a(E, +iE,)
or:

0,(H, +iH,) =(w-6—10k3><Ex +iE,)

But (in natural units ¢ = 1):
ke =af = k]

so that:
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“lieyzpn-%
(w=—k:)=wll=—2)
From (5’) and (7’) we then have:

(9 0. (E +iE)=-a(H, +iH)

(10) 9,(H,+iH )= a)(l—%)(EX +iE,)

To establish a more direct correspondence witlrdresmission line equations:

(11) LU

dz

d _ . _a)_02
(12) o mr(l = )\/

we rewrite the equations (9) and (19) as:
(13) 0,i(E, +IE))=-ia(H, +iH))
Y S
(14) 0,(H +iH )= —|6«)(1—?)|(EX +iE,)
Note: this means that equations similar to those oftthasmission involve the quantities

i(E, +iE,) and(H, +iH ) andnot (E, +iE,) and(H, +iH ), ie there is an imaginany
between.

3. Decoupling the dependence on x, y

In this section we establish a clear correspondesicequations (13) and (14) with the
transmission line equations. The meaning of thegimaay uniti which multiplies the second
member of the equations (13) and (14) is well esged by equation (5):

() 0, (E +iE))=i0,(H,+iH,)

which shows thatE, +iE,) and (H, +iH ) are each other at 90° in the x, y plane; it's
i(E, +iE,) and (H, +iH ) which are "parallel’. Their quotient, as well as/M in a

transmission line, it is purely ohmic (or bettergly real) such that V = ZI with Z real, just as
in a lossless transmission line. More precisely,tlaes z,t dependence is given by the
exponential:

pict-ik;z

making the two derivatived, ando, :
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az - _ikz

0, - ia
we get from (5):

ik, (E, +IE))=a(H, +iH,)

This shows again and explicitly thafE, +iE, and (H, +iH ) are "parallel, and their
guotient is real:

i(E, +iE,)
(H, +iH,)

«
kZ

or:

i(EX+iEy):ki(Hx+iHy)

z

Write now the transverse field&, +iE,) and(H, +iH ) in the form:

E, = 4% Y)\V(2)

1s - .
H, = h(x y)1(2)

Note that if there are not physical conditions vahaetermine V and I, the amplitudes to be
assigned individually tc&(x,y),V(z) as well as toh(x,y), | Z )are arbitrary, provided their
product remains constant and equal to the ampliofide and respectivelyH, .

We can rewrite the previous equation:

(16) i(E, +iE,) :ki(HX +iH )

as.
17) i = ki H,
or even.

(18) (% YV (2) = ki (% y)1(2)

The (18) shows what we need right now, a parafteietweenie X y )and h(x, y) . Express
the parallelism in the form:

(19) &% y) = Ah(x,y)
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This allows to eliminate the dependence on x, ystaswvn below. Thanks to the definition
(15), equations (13) (14) become:

0,iE, =—iaH,

z

2
9.H, =—iw(1—%)iEt

or
0,8V = —iahl
o hl = —ia)(l—%) iV
but being:
ie=Ah
we obtain:

o,V =—ia)|—
A

9,1 = —ia)(l—ﬁ;)Av
7
If there are not physical conditions that uniqueédyermine V and | (as it happens for example

for TE and TM in waveguide) you might make fér the choice which is most convenient ,
e.g. A=1. With this choice the above equations are wriitetie final form:

(200 9V =-al

1) 9, =-i w(l—ﬁg)v
(1

Compare it with the usual equations of the transioislines. Since V and | depend only on z
we can write the equations (20) and (21) in thealBarm of transmission line equivalent to a
TE mode in MKSA units (see for example Ramo Whigr&i):

d_V = -l
dz

ﬂ = —jE 1_0)_02
dz o’

The equations of a transmission line are:

(22)

LAt
dz

(23)
dl Y
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where Z and Y depend on the transmission line {?‘% is the characteristic impedance of

the line. Equations (22) then implicitly assumelescharacteristic line impedance:

Z=iau

2
Y:iazs[l—w—‘)z}
w

Note also that

(25) % =

is equal to the mode impedance ("Schelkunoff chigyice

N
-

The equivalent line has inductance and capacitaaée the following figure:

(24)

ZTE

L=u

{II

The transmission line is dispersive because theackexistic impedance (29) is frequency
dependent and it resonates when:

1 _
JiC

In natural units (see (20), (21)) we have instead:

(27) w-= w,
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Remains, for the waveguide, all the remaining eaiiitess in the definition of impedance and
thus V, | discussed [1], which we summarize herdéfollowing.

3. Reduction to the form of the Dirac equation
As we have seen in the previous section, in therthef waveguides, we can introduce an
equivalent voltage and current, V and |. For allde® but the TEM one the definition of V

and | leaves the freedom in the choice of a sad&of, as shown below. We remember the
definition of transverse fields in terms of V and |

E(xv2)=V(2)dxy))
(28)

H.(x %2 = 1(2)h(x v))
with the condition:
1 = = 1 .
(29) P=§RejEtthErrds=§Re(V| )
S
The physical meaning of (28) is that V and | del#ttely ignore the detailed configuration of
E, and H, on the transverse plane.

According to (29) V and | correctly reproduce tlaue of the total energy that propagates.
The impedance Z is given of course by:

(30) \I—’ -7

Equation (28) leaves a degree of freedom in thmidieh of V and I: we can alter V and | and
simultaneouslyé,ﬁ as follows:

V':aV,é':lé
a

(31)

which leaves condition (29) invariant:
(32) P:%Re(VI*):%Re(\/‘I'*)

Accordingly the value of the impedance Z becomes:
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(33) Z':\%:az\l—/:azz

This freedom does not change the value of quasititelated to energy storage and
propagation, such as:

2
V—,ZIZ,VI*
z

We can now derive an explicit form of the equivaleansmission line which is implied by

the Dirac equation for plane wave.

Select the scale factor in (31) as:
Jw+ w,
34) a=-—F7—
Jow

Substituting in (20), (21) we get:

OI—\{I+(ia)+ia)o)l':0

Z

(35)
£+(ia)—iw0)\/'=0
dz

and the new Z is:

a+a,
@

(36) Z'=

ZTE

It is immediate now to see that the equations (85)voltage and current are actually the
Dirac equation fory, andy; .

To see this we refer to the Dirac equation writterextended form, as can be found for
example in Schiff [3]:

0 .0 0 J .

i, =, +| —+ =0
x ay }//4 9z Ys ( or |mj¢/l

Jd .0 0 0 .
&“a—yJwa—&%’{E“m)wz =0
d .0 0 0 .

— ==, +—¢, +| —-Iim =0
ax oy)? 6zlﬂ1 [ar )1/13
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0o .0 0 0o . _
(&-Ha_ijl sz"'(g Imjl//4—0

Here y,,¢, @ ,@, are complex functions such as V, | in the usuaduii theory. By setting

W, =¢,=0 and assuming the"“ dependence on t, as it is for the Dirac’s plane@eva
solution we have for the two components differeairf zero:

oy
0z

S +(iw+iagp, =0
(37)
%%ia)—ia)o)z//3 =0
which coincide with (35).
Thus the Dirac equations (37) are perfectly analsgm the waveguide-transmission line
equations (35), once we select the choice (34)tlier scale factora. In particular the

characteristic impedance for the Dirac equationoisthe "Schelkunoff choice” (26), but it's
that determined by (35), i.e.:

7/ _ |Wt @,
(38) % /w_%

The equivalent transmission line has inductance apcitance as shown in the following

figure:

L=+
(73

— c=0-%
"

The natural units employed to write (35) and (3@ @onvenient but they may mask the true
meaning of the electrical parameters of inductacapacitance and impedance.
Rewrite the equations (35) in MKSA units:
I fiw+ia)u = -iaua+“or
dz w
(39)
dl’

ar_ . Gy,
- (w-iw,)eV'=-iae( a)V

Comparing (39) with (23) we deduce the parametktiseotransmission line.
The equivalent transmission line has serial Z aardlfel Y like this:



Prespacetime Journal| May 2010 | Vol. 1 | Issue&dg 413-425 423
Bettini, G. & Bicci, A. Equivalent Waveguide Representation for Dirac Plane Waves

—N

L= pa+ )
G @

C=e@1--2)
[

The "Dirac choice" for the characteristic impedaiscthen:

77 - (1 [ora _ o+,
(10) A \/: w- W, %o w- @,

For & — o« this impedance tends to the impedai@Geof empty space. The same holds for
a, =0, which holds for a TEM-like propagation (which meaalso no waveguide and
neutrino equations).

The equivalent circuit shows that far= «, there is voltage V while the current | is zero, as

can be seen also by the impedance (40). This spbysscally reasonable by the fact that the
whole calculation from the beginning has been deved for a TE. For < ., exponentially

damped evanescent waves propagate. Until now tlcalation was done in extended form
for a TE, from the Maxwell equations (5) and (7hisTwill be now briefly repeated for a TM
with the pair of equations (6), (8).

With similar procedure, for TM mode we get the daling equivalent circuit

1

C=
ey

and equations similar to (22):
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2
sz_mﬂ@_ﬁL}
dz

(41)
=iV

where we use the MKSA units.

Taking advantage of the arbitrariness inherentdltage and current and proceeding as for
(34) (35), but now with:

o
Jw+w,

(34bis) a=

we arrive at:

ﬂ+(ia)—ia)o),ul':0

Z

(42)

di* . . ,
E+(|a)+|a)o)e\/ =0

You can now see that the equations (42) for voltug current are now corresponding to the
Dirac equation fogy, andy,. These are, in a form similar to (37):

—%% +(iw+iw )y, =0
(43)
0 : .
_sz +(|w_|a)o)¢4 =0

Identify with (42) except for a complex conjugatpecation, which is interpreted as wave
propagatione™ % instead ofe'”™*. The equivalent circuit, deductible from (42)tiie

following

L= ua-0)
[

C =+
[

The " Dirac choice" for the characteristic impedargthen:
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[z = |1 0= _, (W=
(44) A \/: W+ @, %o W+ w,

The characteristic impedance assumes a highly symanrferm between the TE and TM
cases, see (40) and (44). Also the equivalentitikcuery symmetrical: it is always the same

apart for a change of sign ia,. For & - o« the impedance tends to the impedageof
empty space. The same holds togy = , which still means a TEM-like propagation (which

means also no waveguide and neutrino equationspdtwith opposite polarization). The
equivalent circuit shows now that far= «, there is current I, while voltage V is zero, as ca

be seen also by the impedance (40).

This seems physically reasonable by the fact tbatthe calculation has been developed for a
TM™.

5. Conclusion

We have thus shown that the Dirac equation forg@lamves can be put in correspondence
with an electrical circuit, equivalent to a transgion line. The same transmission line is
representative of a mode in waveguide, so you tamsay that the Dirac equation for plane
waves includes an implicit representation of aniaant waveguide. The equivalence is
embedded in the usual V and | description.

To quote Hestenes “we want to emphasize that ttesgretation is by no means a radical
speculation; it is a fact! The interpretation haet implicit in the Dirac theory all the time.
All we have done is make it explicit”. (Hesteneseheefers to the interpretation of the
imaginary “i”). The calculation was done in extedd®rm for a TE, from the Maxwell
equations (5) and (7). This was briefly repeatedafdM with the pair of equations (6), (8).
Doing so, the full set of plane wave Dirac equatioan be interpreted in terms of appropriate
equivalent transmission line circuits and/or eglémawaveguide.

Obviously solutions with opposite spin are représeénby opposite polarization in the
waveguide. The equivalent transmission line shaltdhe usual properties of the transmission
lines, including the dispersive character, and esaent waves. The evanescent waves may be
the correspondent of electrons propagating thr@upbtential barrier.
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