Proposed Coordinate System in which $g_{a a}=0$ and the Line Element for Plane Gravitational Waves of Type $\mathbf{Z}=\left(t_{1}-t_{2}+t_{3}\right) /(\sqrt{ } 3 z)$

S. W. Bhaware ${ }^{*}$, D. D. Pawar ${ }^{\#}$, \& A. G. Deshmukh ${ }^{\text {\& }}$
*Department of Mathematics, Shri R.L.T.College of Science Akola- 444001, India
"Dept. of Math., Government Vidarbha Inst. of Sci. \& Humanities, Amaravati-444604, India
${ }^{\&}$ Joint Director, Higher Education, Nagpur Division, Nagpur, India.

Abstract

For the study of t / z type plane gravitational waves, we have considered the six-dimensional space-time with three time axes. We have chosen the plane wave of type $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$ and made the essential investigations in the paper [6]. Adopting the same notations and results as in above paper, and using the transformations given in the proof of Theorem 1 below, we have proved that the co-ordinate system in which $g_{a \alpha}=0,(a=1,2 ; \alpha=3,4,5,6)$ can be obtained in the six-dimensional space-time, which is our proposed co-ordinate system. In this paper, we have proved the three necessary theorems supporting the existence of such a co-ordinate system. The whole work is on the lines of H . Takeno (1961). The consequent line element in the form $d s^{2}=g_{m n} d x^{m} d x^{n}$ is also obtained for $m, n=1, \ldots, 6$.

Keywords: general relativity; plane gravitational waves; three time axes; line element.

1. Introduction

In general theory of relativity, Takeno (1961) [1] studied rigorously the plane gravitational waves $g_{i j}(Z) ; i, j=1,2,3,4 ; Z=Z(z, t)$ and obtained numerous results, one of which is the coordinate system in which $g_{a \alpha}=0, a=1,2 ; \alpha=3,4$; for $Z=(z-t)$ and $Z=(t / z)$ types of waves. Thengane and Karade (2000) [2] extended the work for five dimensional space-time with two time axes, and obtained the plane wave solutions of the Einstein's field equation by choosing the co-ordinate system in which $g_{a \alpha}=0$; for $a=1,2 ; \alpha=3,4,5$. Khapekar and Deshmukh [3] determined this chosen co-ordinate system. Pawar, Bhaware and Deshmukh [4] obtained the plane wave solutions of the Einstein's field equations in six dimensions with three time axes. Bhaware, Pawar and Deshmukh [5] obtained the plane wave solutions for $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$ type

[^0]waves assuming the co-ordinate system in which $g_{a \alpha}=0$; for $a=1,2 ; \alpha=3,4,5,6$. Pawar et al [6] had obtained the line element for $(z-t)$ type waves $Z=\left[z-\frac{1}{\sqrt{3}}\left(t_{1}-t_{2}+t_{3}\right)\right]$. In the present paper we have obtained this assumed co-ordinate system and the line element for the plane gravitational waves $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$.

If $g_{i j}$ satisfies, $g_{i j}=g_{i j}(Z), Z=Z\left(x^{i}\right)$,

$$
\begin{array}{ll}
& \phi_{1} \omega^{3}+\omega^{4}+\phi_{2} \omega^{5}+\phi_{3} \omega^{6}=0 \\
& \rho_{a}=\bar{g}_{a i} \omega^{i}=0 \\
\text { and } \quad & Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z} \tag{1.2}
\end{array}
$$

then by suitable co-ordinate transformation we get $g_{a \alpha}=0$.

2. Preliminaries

H. Takeno (1961) has defined the plane gravitational waves as follows.

A plane gravitational wave $g_{i j}$ is a non-flat solution of the field equation

$$
\begin{equation*}
R_{i j}=0 \tag{2.1}
\end{equation*}
$$

in an empty region of space time with
$g_{i j}=g_{i j}(Z), Z=Z\left(x^{i}\right)$, where $x^{i}=\left(x^{1}, x^{2}, x^{3}, x^{4}\right)=(x, y, z, t)$
in some suitable co-ordinate system such that,

$$
\begin{equation*}
g^{i j} Z,{ }_{i} Z,{ }_{j}=0 \quad, \quad\left(Z,_{i}=\frac{\partial Z}{\partial x^{i}}\right) \tag{2.3}
\end{equation*}
$$

and $Z=Z(z, t),\left(Z,{ }_{3} \neq 0, Z,{ }_{4} \neq 0\right)$.

The signature convention adopted was
$g_{a a}<0,\left|\begin{array}{ll}g_{a a} & g_{a b} \\ g_{b a} & g_{b b}\end{array}\right|>0,\left|\begin{array}{lll}g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33}\end{array}\right|<0, g_{44}>0$, for $a=1,2 ; \alpha=3,4$ (Not summed for
a and $b ; a, b=1,2$)
and accordingly, $g=\operatorname{det}\left(g_{i j}\right)<0$.

We extended this definition for six dimensional space time with three time axes as:
A plane gravitational wave $g_{i j}$ is a non-flat solution of the field equation

$$
\begin{equation*}
R_{i j}=0 \tag{2.6}
\end{equation*}
$$

in an empty region of space time with
$g_{i j}=g_{i j}(Z), \quad Z=Z\left(x^{i}\right), \quad$ where $x^{i}=\left(x^{1}, \ldots, x^{6}\right) \equiv\left(x, y, z, t_{1}, t_{2}, t_{3}\right)$
in some suitable co-ordinate system such that,

$$
\begin{equation*}
g^{i j} Z,,_{i} Z,_{j}=0 \quad, \quad\left(Z,_{i}=\frac{\partial Z}{\partial x^{i}}\right) \tag{2.8}
\end{equation*}
$$

and $Z=Z\left(z, t_{1}, t_{2}, t_{3}\right),\left(Z,{ }_{3} \neq 0, Z,{ }_{4} \neq 0, Z,{ }_{5} \neq 0, Z,{ }_{6} \neq 0\right)$.
The signature convention adopted is

$$
g_{a a}<0,\left|\begin{array}{ll}
g_{a a} & g_{a b} \\
g_{b a} & g_{b b}
\end{array}\right|>0,\left|\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{array}\right|<0, g_{44}>0, g_{55}>0, g_{66}<0
$$

for $a=1,2 ; \alpha=3,4,5,6$ (Not summed for a and $b ; a, b=1,2$)
and accordingly, $g=\operatorname{det}\left(g_{i j}\right)>0$.

3. Co-ordinate system:

Theorem 1: If $g_{i j}$ satisfies (1.1) with $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$ then we can transform the co-ordinates so that $g_{i j}$ satisfies

$$
\begin{equation*}
g_{14}=g_{24}=g_{15}=g_{25}=g_{16}=g_{26}=0 \tag{3.1}
\end{equation*}
$$

and (1.1) is kept invariant.
Proof: We use the following transformations satisfying the conditions in the hypothesis:
$x=x^{\prime}+\alpha z^{\prime}, \quad y=y^{\prime}+\beta z^{\prime}, \quad z=z^{\prime}, \quad t_{1}=t_{1}^{\prime}, \quad t_{2}=t_{2}^{\prime}, \quad t_{3}=t_{3}^{\prime}$
and hence $\operatorname{det}\left(\frac{\partial x^{i}}{\partial x^{\prime j}}\right)=1, \quad Z=Z^{\prime}$,
where α, β are the functions of $Z=Z^{\prime}$ satisfying

$$
\begin{align*}
& g_{11} \bar{\alpha}+g_{12} \bar{\beta}=-\sqrt{3} g_{14}=\sqrt{3} g_{15}=-\sqrt{3} g_{16} \\
& g_{12} \bar{\alpha}+g_{22} \bar{\beta}=-\sqrt{3} g_{24}=\sqrt{3} g_{25}=-\sqrt{3} g_{26} . \tag{3.4}
\end{align*}
$$

With these transformations we obtained $\frac{d}{d Z}=\frac{d}{d Z^{\prime}}$ and

$$
\begin{aligned}
& \omega^{\prime 1}=\omega^{1}-\alpha \omega^{3} \\
& \omega^{2}=\omega^{2}-\beta \omega^{3}
\end{aligned}
$$

Prespacetime Journal| January 2012 | Vol. 3 | Issue 1 | pp. xx-xx
Bhaware, S. W., Pawar, D. D, \& Deshmukh, A. G., Proposed Coordinate System in which $g_{a a}=0$ and the Line Element for Plane Gravitational Waves of Type $Z=\left(t_{1}-t_{2}+t_{3}\right) /(v 3 z)$
where $\omega^{i}=\phi_{1} g^{3 i}+g^{4 i}+\phi_{2} g^{5 i}+\phi_{3} g^{6 i}$,

$$
\begin{align*}
& \sqrt{3} z \omega^{3}-\omega^{4}+\omega^{5}-\omega^{6}=0 \tag{3.5}\\
& \omega^{\prime \alpha}=\omega^{\alpha}, \quad(\alpha=3,4,5,6) .
\end{align*}
$$

Using $g_{a b}^{\prime}=g_{m n} \frac{\partial x^{m}}{\partial x^{\prime a}} \frac{\partial x^{n}}{\partial x^{\prime b}}$, it can be proved that
$g_{a b}^{\prime}=g_{a b}$,
$g_{a 3}^{\prime}=g_{a 1} \alpha+g_{a 2} \beta+\sqrt{3} Z g_{a 4}+g_{a 3}$,
$g_{a 4}^{\prime}=g_{a 5}^{\prime}=g_{a 6}^{\prime}=0, \quad(a, b=1,2)$
$g_{33}^{\prime}=\left(\alpha^{2} g_{11}+2 \alpha \beta g_{12}+\beta^{2} g_{22}\right)+2\left(\alpha g_{13}+\beta g_{23}\right)+g_{33}$ $-Z\left[\alpha \bar{\alpha} g_{11}+\beta \bar{\beta} g_{22}+(\bar{\alpha} \beta+\alpha \bar{\beta}) g_{12}+2\left(\bar{\alpha} g_{13}+\bar{\beta} g_{23}\right)\right]$
$g_{34}^{\prime}=\frac{1}{\sqrt{3}}\left(g_{13} \bar{\alpha}+g_{23} \bar{\beta}\right)+g_{34}$,
$g_{35}^{\prime}=-\frac{1}{\sqrt{3}}\left(g_{13} \bar{\alpha}+g_{23} \bar{\beta}\right)+g_{35}$,
$g_{36}^{\prime}=\frac{1}{\sqrt{3}}\left(g_{13} \bar{\alpha}+g_{23} \bar{\beta}\right)+g_{36}$,
$g_{44}^{\prime}=\frac{1}{\sqrt{3}}\left(g_{14} \bar{\alpha}+g_{24} \bar{\beta}\right)+g_{44}$,
$g_{45}^{\prime}=-\frac{1}{\sqrt{3}}\left(g_{14} \bar{\alpha}+g_{24} \bar{\beta}\right)+g_{45}$,
$g_{46}^{\prime}=\frac{1}{\sqrt{3}}\left(g_{14} \bar{\alpha}+g_{24} \bar{\beta}\right)+g_{46}$,
$g_{55}^{\prime}=-\frac{1}{\sqrt{3}}\left(g_{15} \bar{\alpha}+g_{25} \bar{\beta}\right)+g_{55}$,
$g_{56}^{\prime}=\frac{1}{\sqrt{3}}\left(g_{15} \bar{\alpha}+g_{25} \bar{\beta}\right)+g_{56}$,
$g_{66}^{\prime}=\frac{1}{\sqrt{3}}\left(g_{16} \bar{\alpha}+g_{26} \bar{\beta}\right)+g_{66}$
which proves the theorem.

Theorem 2: If $g_{i j}$ satisfies (1.1) and (3.1) with $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$ then

$$
\begin{equation*}
g_{13}=c_{1} g_{11}+c_{2} g_{12}, g_{23}=c_{1} g_{21}+c_{2} g_{22} \tag{3.7}
\end{equation*}
$$

where $c \mathrm{~s}$ are constants.

Bhaware, S. W., Pawar, D. D, \& Deshmukh, A. G., Proposed Coordinate System in which $g_{a a}=0$ and the Line Element for Plane Gravitational Waves of Type $Z=\left(t_{1}-t_{2}+t_{3}\right) /(\mathrm{V} 3 z)$
Proof: By using theorem 3.1, we have

$$
\begin{align*}
& u_{1}=u_{2}=u_{3}=0, \\
& s_{1}=s_{2}=s_{3}=s_{4}=s_{5}=s_{6}=0, \tag{3.8}\\
& p_{a}=-\bar{g}_{a 3}, \tag{3.8}\\
& q_{a}=-g_{a 3}
\end{align*}
$$

$s_{3}=g_{12} g_{25}-g_{22} g_{15}$,
$s_{4}=g_{11} g_{25}-g_{12} g_{15}$,
$s_{5}=g_{12} g_{26}-g_{22} g_{16}$,
$s_{6}=g_{11} g_{26}-g_{12} g_{16}$.

$u_{2}=g_{15} g_{23}-g_{13} g_{25}$,
$u_{3}=g_{16} g_{23}-g_{13} g_{26}$,
$s_{1}=g_{12} g_{24}-g_{22} g_{14}$,
$s_{2}=g_{11} g_{24}-g_{12} g_{14}$,

From (1.1), $\rho_{a}=\bar{g}_{a i} \omega^{i}=0$, and noting $p_{i}=\phi g_{4 i}-g_{3 i}$ and $q_{i}=\phi \bar{g}_{4 i}-\bar{g}_{3 i}$ we get $\omega^{3} q_{1}=\omega^{1} \bar{g}_{11}+\omega^{2} \bar{g}_{12}$,

$$
\begin{equation*}
\omega^{3} q_{2}=\omega^{1} \bar{g}_{12}+\omega^{2} \bar{g}_{22} \tag{3.10}
\end{equation*}
$$

Solving equations (3.9) we get

$$
\begin{aligned}
& m \bar{g}_{13}=-k_{1} \bar{g}_{11}+k_{2} \bar{g}_{12}, \\
& m \bar{g}_{23}=-k_{1} \bar{g}_{12}+k_{2} \bar{g}_{22},
\end{aligned}
$$

where $m=g_{11} g_{22}-g_{12}{ }^{2}$,
$k_{1}=g_{12} g_{23}-g_{13} g_{22}$,
$k_{2}=g_{11} g_{23}-g_{12} g_{13}$.
From equations (3.7) and (3.10), we have

$$
\begin{equation*}
m \bar{k}_{1}-\bar{m} k_{1}=0, \quad m \bar{k}_{2}-\bar{m} k_{2}=0 \tag{3.12}
\end{equation*}
$$

where $\frac{k_{1}}{m}=c_{1}, \quad \frac{k_{2}}{m}=-c_{2}$

On integrating equation (3.11), we get

$$
\begin{align*}
& g_{13}=c_{1} g_{11}+c_{2} g_{12}+c_{3} \tag{3.13}\\
& g_{23}=c_{1} g_{21}+c_{2} g_{22}+c_{4} .
\end{align*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}$ are integration constants.

Using the definition of $k^{\prime} \mathrm{s}$ in (3.11), we get equation (3.7).

Hence the theorem is proved.

Theorem 3: If $g_{i j}$ satisfies (1.1) and (3.1) with $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$ and theorem 2, then there exists a co-ordinate transformation by which $g_{a \alpha}=0,(a=1,2 ; \alpha=3,4,5,6)$. Moreover by this transformation, (1.1) is kept invariant.

Proof: If we transform the co-ordinate by

$$
\begin{equation*}
x=x^{\prime}-c_{1} z^{\prime}, y=y^{\prime}-c_{2} z^{\prime}, z=z^{\prime}, t_{1}=t_{1}^{\prime}, t_{2}=t_{2}^{\prime}, t_{3}=t_{3}^{\prime} . \tag{3.14}
\end{equation*}
$$

where $c s$ are constants as in equation (3.7),
then $\operatorname{det}\left(\frac{\partial x^{i}}{\partial x^{\prime j}}\right)=1, \quad Z=Z^{\prime}$.
By this transformation $\frac{d}{d Z}=\frac{d}{d Z^{\prime}}$ and from equation (3.7) we get

$$
\begin{aligned}
& \omega^{\prime 1}=\omega^{1}+c_{1} \omega^{3}, \\
& \omega^{\prime 2}=\omega^{2}+c_{2} \omega^{3}, \\
& \omega^{\prime \alpha}=\omega^{\alpha}, \quad(\alpha=3,4,5,6),
\end{aligned}
$$

where $\omega^{i}=\phi_{1} g^{3 i}+g^{4 i}+\phi_{2} g^{5 i}+\phi_{3} g^{6 i}$,

$$
\begin{equation*}
\rho_{i}^{\prime}=\rho_{i}, \quad(i=1, \ldots, 6) \tag{3.15}
\end{equation*}
$$

It can be shown that

$$
\begin{array}{ll}
g_{a b}^{\prime}=g_{a b}, & (a, b=1,2), \\
g_{a \alpha}^{\prime}=0, & (a=1,2),(\alpha=3,4,5,6) \\
g_{33}^{\prime}=g_{33}-\left(c_{1}^{2} g_{11}+2 c_{1} c_{2} g_{12}+c_{2}^{2} g_{22}\right), \\
g_{34}^{\prime}=g_{34}, & g_{35}^{\prime}=g_{35}, \quad g_{36}^{\prime}=g_{36}, \\
g_{44}^{\prime}=g_{44}, & g_{45}^{\prime}=g_{45}, \quad g_{46}^{\prime}=g_{46}, \tag{3.16}\\
g_{55}^{\prime}=g_{55}, & g_{56}^{\prime}=g_{56}, \quad g_{66}^{\prime}=g_{66} .
\end{array}
$$

In this new co-ordinate system we have

$$
\begin{align*}
\omega^{i}= & \left(\omega^{1}, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, \omega^{6}\right) \\
= & \left(0,0, \phi_{1} g^{33}+g^{43}+\phi_{2} g^{53}+\phi_{3} g^{63}, \phi_{1} g^{34}+g^{44}+\phi_{2} g^{54}+\phi_{3} g^{64},\right. \\
& \left.\phi_{1} g^{35}+g^{45}+\phi_{2} g^{55}+\phi_{3} g^{65}, \phi_{1} g^{36}+g^{46}+\phi_{2} g^{56}+\phi_{3} g^{66}\right) \tag{3.17}
\end{align*}
$$

which proves that (1.1) is invariant. Hence the theorem is proved.

4. The line element

Considering equations (2.8), (2.9) and noting $\phi_{1}=Z,_{3} / Z,_{4}, \phi_{2}=Z,{ }_{5} / Z,_{4}$ and $\phi_{3}=Z,_{6} / Z,_{4}$ and using the co-ordinate system, determined in section 3 above in which $g_{a \alpha}=0, a=1,2$, $\alpha=3,4,5,6$, we get
$\phi_{1}{ }^{2} g^{33}+2 \phi_{1} g^{34}+2 \phi_{1} \phi_{2} g^{35}+2 \phi_{1} \phi_{3} g^{36}+g^{44}+2 \phi_{2} g^{45}+2 \phi_{3} g^{46}+\phi_{2}{ }^{2} g^{55}+2 \phi_{2} \phi_{3} g^{56}+\phi_{3}{ }^{2} g^{66}=0$.
Noting $\phi_{1}=-\sqrt{3} Z, \phi_{2}=-1$ and $\phi_{3}=1$, the matrix $\left(g_{i j}\right)$ can be written as

$$
\left(g_{i j}\right)=\left[\begin{array}{cccccc}
-P & -Q & 0 & 0 & 0 & 0 \tag{4.2}\\
-Q & -R & 0 & 0 & 0 & 0 \\
0 & 0 & 3 Z^{2}(-S+T) & -\sqrt{3} Z T & \sqrt{3} Z(-S+U) & -\sqrt{3} Z U \\
0 & 0 & -\sqrt{3} Z T & (S+T) & -U & (S+U) \\
0 & 0 & \sqrt{3} Z(-S+U) & -U & (S+T) & -T \\
0 & 0 & -\sqrt{3} Z U & (S+U) & -T & (-S+T)
\end{array}\right]
$$

where P, Q, R, S, T, U are functions of Z satisfying (2.5),
i.e. $\quad P, R>0 \quad, \quad m>0 \quad, \quad S>|T| \quad, \quad S>|U|$.

The corresponding matrix $\left(g^{i j}\right)$ is

$$
\left(g^{i j}\right)=\left[\begin{array}{cccccc}
\frac{-R}{m} & \frac{Q}{m} & 0 & 0 & 0 & 0 \tag{4.4}\\
\frac{Q}{m} & \frac{-P}{m} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{-2 S^{2}(S+T+U)}{3 Z^{2} n} & \frac{-2 S^{2}(T+U)}{\sqrt{3} Z n} & \frac{-2 S^{3}}{\sqrt{3} Z n} & 0 \\
0 & 0 & \frac{-2 S^{2}(T+U)}{\sqrt{3} Z n} & \frac{2 S^{2}(S-T-U)}{n} & 0 & \frac{2 S^{3}}{n} \\
0 & 0 & \frac{-2 S^{3}}{\sqrt{3} Z n} & 0 & \frac{2 S^{2}(S-T+U)}{n} & \frac{2 S^{2}(U-T)}{n} \\
0 & 0 & 0 & \frac{2 S^{3}}{n} & \frac{2 S^{2}(U-T)}{n} & \frac{2 S^{2}(U-S-T)}{n}
\end{array}\right]
$$

where $m=P R-Q^{2}>0$ and $n=12 Z^{2} S^{4}$.

Therefore, $g=m n=12 Z^{2} m S^{4}>0$, so that the condition (2.5) is satisfied. Also by using the $g^{i j}$ s from (4.4), condition (4.1) is satisfied. Hence the line element obtained from (4.2) is
$d s^{2}=-P d x^{2}-2 Q d x d y-R d y^{2}+3 Z^{2}(T-S) d z^{2}-2 \sqrt{3} Z T d z d t_{1}+2 \sqrt{3} Z(U-S) d z d t_{2}-2 \sqrt{3} Z U d z d t_{3}$

$$
\begin{equation*}
+(S+T) d t_{1}^{2}-2 U d t_{1} d t_{2}+2(S+U) d t_{1} d t_{3}+(S+T) d t_{2}^{2}-2 T d t_{2} d t_{3}+(T-S) d t_{3}^{2} \tag{4.5}
\end{equation*}
$$

where P, Q, R, S, T, U are the functions of Z satisfying (2.5), (4.1) and (4.3).

5. Conclusion

Thus if $g_{i j}$ satisfies (1.1) with $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$, then there exists a co-ordinate system in which $g_{a \alpha}=0,(a=1,2 ; \alpha=3,4,5,6) ;$ and (1.1) is kept invariant. Also we have obtained the line element for $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$ type plane gravitational waves as given by (4.5).

Acknowledgement: The author wishes to thank UGC for granting a financial support under the Minor Research Project scheme.

References

[1] Takeno H. (1961), "The Mathematical Theory of Plane Gravitational Waves in General Relativity", a scientific report of Research Institute for Theoretical Physics, Hiroshima University, Japan.
[2] Thengane K. D. (2000), "The Plane Gravitational Waves in Five-Dimensional Space-Time (1)", a thesis, Nagpur University, Nagpur.
[3] Khapekar G. U., Deshmukh A. G. (2008), "Co-ordinate System for Five-Dimensional Space-Time with Two Time Axes", Vidarbha Journal of Science, Vol. III, no.1, pp 56-79.
[4] Pawar D. D., Bhaware S. W., Deshmukh A. G. (2007), "The Co-ordinate System in which $g_{a \alpha}=0$ for the Plane Gravitational Waves $Z=\left[z-\frac{1}{\sqrt{3}}\left(t_{1}-t_{2}+t_{3}\right)\right] \prime$, Acta Ciencia Indica, Vol. XXXIII, M. no. 2, pp 385.
[5] Bhaware S. W., Pawar D. D., Deshmukh A. G. (2008), "Mathematical Study of $Z=\frac{t_{1}-t_{2}+t_{3}}{\sqrt{3} z}$ Type Plane Gravitational Waves", Acta Ciencia Indica, Vol. XXXIV M, No. 2, 623.
[6] Pawar D. D., Bhaware S. W., Deshmukh A. G. (2007), "The Metric of lane Gravitational Waves with three Time Axes", ARJPS, Vol. 10, No. 1-2.

[^0]: * Correspondence Author: Suresh W. Bhaware, Department of Mathematics, Shri R.L.T.College of Science Akola, 444001, India. Email: swbhaware@gmail.com

