Article

Proposed Coordinate System in which $g_{aa}=0$ and the Line Element for Plane Gravitational Waves of Type $Z=(t_1-t_2+t_3)/(\sqrt{3}z)$

S. W. Bhaware^{*}, D. D. Pawar[#], & A. G. Deshmukh[&]

^{*}Department of Mathematics, Shri R.L.T.College of Science Akola- 444001, India [#]Dept. of Math., Government Vidarbha Inst. of Sci. & Humanities, Amaravati-444604, India [&]Joint Director, Higher Education, Nagpur Division, Nagpur, India.

Abstract

For the study of t/z type plane gravitational waves, we have considered the six-dimensional space-time with three time axes. We have chosen the plane wave of type $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3}z}$ and made the essential investigations in the paper [6]. Adopting the same notations and results as in above paper, and using the transformations given in the proof of Theorem 1 below, we have proved that the co-ordinate system in which $g_{a\alpha} = 0$, $(a = 1, 2; \alpha = 3, 4, 5, 6)$ can be obtained in the six-dimensional space-time, which is our proposed co-ordinate system. In this paper, we have proved the three necessary theorems supporting the existence of such a co-ordinate system. The whole work is on the lines of H. Takeno (1961). The consequent line element in the form $ds^2 = g_{mn}dx^m dx^n$ is also obtained for m, n = 1, ..., 6.

Keywords: general relativity; plane gravitational waves; three time axes; line element.

1. Introduction

In general theory of relativity, Takeno (1961) [1] studied rigorously the plane gravitational waves $g_{ij}(Z)$; i, j = 1,2,3,4; Z = Z(z,t) and obtained numerous results, one of which is the coordinate system in which $g_{a\alpha} = 0$, a = 1,2; $\alpha = 3,4$; for Z = (z-t) and Z = (t/z) types of waves. Thengane and Karade (2000) [2] extended the work for five dimensional space-time with two time axes, and obtained the plane wave solutions of the Einstein's field equation by choosing the co-ordinate system in which $g_{a\alpha} = 0$; for a = 1,2; $\alpha = 3,4,5$. Khapekar and Deshmukh [3] determined this chosen co-ordinate system. Pawar, Bhaware and Deshmukh [4] obtained the plane wave solutions of the Einstein's field equations with three time axes. Bhaware, Pawar and Deshmukh [5] obtained the plane wave solutions for $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3}z}$ type

^{*} Correspondence Author: Suresh W. Bhaware, Department of Mathematics, Shri R.L.T.College of Science Akola, 444001, India. Email: <u>swbhaware@gmail.com</u>

waves assuming the co-ordinate system in which $g_{a\alpha} = 0$; for a = 1,2; $\alpha = 3,4,5,6$. Pawar et al [6] had obtained the line element for (z-t) type waves $Z = \left[z - \frac{1}{\sqrt{3}}(t_1 - t_2 + t_3)\right]$. In the present paper we have obtained this assumed co-ordinate system and the line element for the plane gravitational waves $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3}z}$. If g_{ij} satisfies, $g_{ij} = g_{ij}(Z)$, $Z = Z(x^i)$, $\phi_1 \omega^3 + \omega^4 + \phi_2 \omega^5 + \phi_3 \omega^6 = 0$, $\rho_a = \overline{g}_{ai} \omega^i = 0$, and $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3}z}$, (1.2)

then by suitable co-ordinate transformation we get $g_{a\alpha} = 0$.

2. Preliminaries

H. Takeno (1961) has defined the plane gravitational waves as follows.

A plane gravitational wave g_{ij} is a non-flat solution of the field equation

$$R_{ij} = 0 \tag{2.1}$$

in an empty region of space time with

$$g_{ij} = g_{ij}(Z), \ Z = Z(x^i), \text{ where } x^i = (x^1, x^2, x^3, x^4) = (x, y, z, t)$$
 (2.2)

in some suitable co-ordinate system such that,

$$g^{ij}Z_{,i}Z_{,j} = 0$$
 , $\left(Z_{,i} = \frac{\partial Z}{\partial x^{i}}\right)$ (2.3)

and Z = Z(z,t), $(Z_{,_3} \neq 0, Z_{,_4} \neq 0)$.

The signature convention adopted was

$$g_{aa} < 0 , \begin{vmatrix} g_{aa} & g_{ab} \\ g_{ba} & g_{bb} \end{vmatrix} > 0 , \begin{vmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{vmatrix} < 0 , g_{44} > 0 , \text{ for } a = 1,2 ; \alpha = 3,4 \text{ (Not summed for } a =$$

a and *b*; a, b = 1, 2) and accordingly, $g = det(g_{ij}) < 0$. (2.4)

We extended this definition for six dimensional space time with three time axes as:

A plane gravitational wave g_{ij} is a non-flat solution of the field equation

$$R_{ij} = 0 \tag{2.6}$$

in an empty region of space time with

$$g_{ij} = g_{ij}(Z), \quad Z = Z(x^i), \quad \text{where} \quad x^i = (x^1, ..., x^6) \equiv (x, y, z, t_1, t_2, t_3)$$
 (2.7)

in some suitable co-ordinate system such that,

$$g^{ij}Z_{,i}Z_{,j} = 0$$
 , $\left(Z_{,i} = \frac{\partial Z}{\partial x^{i}}\right)$ (2.8)

and
$$Z = Z(z, t_1, t_2, t_3)$$
, $(Z_{,3} \neq 0, Z_{,4} \neq 0, Z_{,5} \neq 0, Z_{,6} \neq 0)$. (2.9)

The signature convention adopted is

$$\begin{aligned} g_{aa} < 0 , & \begin{vmatrix} g_{aa} & g_{ab} \\ g_{ba} & g_{bb} \end{vmatrix} > 0 , & \begin{vmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{vmatrix} < 0 , g_{44} > 0 , g_{55} > 0 , g_{66} < 0 \end{aligned}$$

for $a = 1,2$; $\alpha = 3,4,5,6$ (Not summed for a and b ; $a,b = 1,2$)
and accordingly, $g = \det(g_{ij}) > 0$. (2.10)

3. Co-ordinate system:

Theorem 1: If g_{ij} satisfies (1.1) with $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3} z}$ then we can transform the co-ordinates so

that g_{ij} satisfies

$$g_{14} = g_{24} = g_{15} = g_{25} = g_{16} = g_{26} = 0$$
 (3.1)
and (1.1) is kept invariant.

Proof: We use the following transformations satisfying the conditions in the hypothesis:

$$x = x' + \alpha z'$$
, $y = y' + \beta z'$, $z = z'$, $t_1 = t'_1$, $t_2 = t'_2$, $t_3 = t'_3$ (3.2)

and hence
$$det\left(\frac{\partial x^{i}}{\partial x'^{j}}\right) = 1$$
, $Z = Z'$, (3.3)

where α , β are the functions of Z = Z' satisfying

$$g_{11}\overline{\alpha} + g_{12}\overline{\beta} = -\sqrt{3}g_{14} = \sqrt{3}g_{15} = -\sqrt{3}g_{16} ,$$

$$g_{12}\overline{\alpha} + g_{22}\overline{\beta} = -\sqrt{3}g_{24} = \sqrt{3}g_{25} = -\sqrt{3}g_{26} .$$
(3.4)

With these transformations we obtained $\frac{d}{dZ} = \frac{d}{dZ'}$ and

$$\omega^{\prime 1} = \omega^{1} - \alpha \omega^{3} ,$$

$$\omega^{\prime 2} = \omega^{2} - \beta \omega^{3} ,$$

(2.10)

where $\omega^{i} = \phi_{1}g^{3i} + g^{4i} + \phi_{2}g^{5i} + \phi_{2}g^{6i}$, $\sqrt{3}z\omega^3 - \omega^4 + \omega^5 - \omega^6 = 0$. (3.5) $\omega^{\prime \alpha} = \omega^{\alpha}$, $(\alpha = 3, 4, 5, 6)$. Using $g'_{ab} = g_{mn} \frac{\partial x^m}{\partial r'^a} \frac{\partial x^n}{\partial r'^b}$, it can be proved that $g'_{ab} = g_{ab}$, $g'_{a3} = g_{a1}\alpha + g_{a2}\beta + \sqrt{3}Zg_{a4} + g_{a3},$ $g'_{a4} = g'_{a5} = g'_{a6} = 0,$ (a,b=1,2) $g'_{33} = (\alpha^2 g_{11} + 2\alpha\beta g_{12} + \beta^2 g_{22}) + 2(\alpha g_{13} + \beta g_{23}) + g_{33}$ $-Z\left[\alpha\overline{\alpha}g_{11}+\beta\overline{\beta}g_{22}+(\overline{\alpha}\beta+\alpha\overline{\beta})g_{12}+2(\overline{\alpha}g_{13}+\overline{\beta}g_{23})\right]$ $g'_{34} = \frac{1}{\sqrt{2}} (g_{13}\overline{\alpha} + g_{23}\overline{\beta}) + g_{34},$ $g'_{35} = -\frac{1}{\sqrt{3}} (g_{13}\overline{\alpha} + g_{23}\overline{\beta}) + g_{35},$ (3.6) $g'_{36} = \frac{1}{\sqrt{3}} (g_{13}\overline{\alpha} + g_{23}\overline{\beta}) + g_{36},$ $g'_{44} = \frac{1}{\sqrt{3}} (g_{14}\overline{\alpha} + g_{24}\overline{\beta}) + g_{44},$ $g'_{45} = -\frac{1}{\sqrt{3}} (g_{14}\overline{\alpha} + g_{24}\overline{\beta}) + g_{45},$ $g'_{46} = \frac{1}{\sqrt{2}} \left(g_{14}\overline{\alpha} + g_{24}\overline{\beta} \right) + g_{46},$ $g'_{55} = -\frac{1}{\sqrt{2}} (g_{15}\overline{\alpha} + g_{25}\overline{\beta}) + g_{55},$ $g_{56}' = \frac{1}{\sqrt{2}} \left(g_{15} \overline{\alpha} + g_{25} \overline{\beta} \right) + g_{56},$ $g_{66}' = \frac{1}{\sqrt{3}} \left(g_{16} \overline{\alpha} + g_{26} \overline{\beta} \right) + g_{66}$

which proves the theorem.

Theorem 2: If g_{ij} satisfies (1.1) and (3.1) with $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3} z}$ then $g_{13} = c_1 g_{11} + c_2 g_{12}, g_{23} = c_1 g_{21} + c_2 g_{22}$

where *c*s are constants.

(3.7)

Proof: By using theorem 3.1, we have

$$u_{1} = u_{2} = u_{3} = 0,$$

$$s_{1} = s_{2} = s_{3} = s_{4} = s_{5} = s_{6} = 0,$$

$$p_{a} = -\overline{g}_{a3},$$

$$q_{a} = -g_{a3}$$
where $u_{1} = g_{14}g_{23} - g_{13}g_{24},$

$$u_{2} = g_{15}g_{23} - g_{13}g_{25},$$

$$u_{3} = g_{16}g_{23} - g_{13}g_{26},$$

$$s_{1} = g_{12}g_{24} - g_{22}g_{14},$$

$$s_{2} = g_{11}g_{24} - g_{12}g_{14},$$

$$s_{3} = g_{12}g_{25} - g_{22}g_{15},$$

$$s_{4} = g_{11}g_{25} - g_{12}g_{15},$$

$$s_{5} = g_{12}g_{26} - g_{22}g_{16},$$

$$s_{6} = g_{11}g_{26} - g_{12}g_{16}.$$

From (1.1), $\rho_a = \overline{g}_{ai}\omega^i = 0$, and noting $p_i = \phi g_{4i} - g_{3i}$ and $q_i = \phi \overline{g}_{4i} - \overline{g}_{3i}$ we get $\omega^3 q_1 = \omega^1 \overline{g}_{11} + \omega^2 \overline{g}_{12}$, $\omega^3 q_2 = \omega^1 \overline{g}_{12} + \omega^2 \overline{g}_{22}$.

(3.11)

(3.13)

Solving equations (3.9) we get

$$m\overline{g}_{13} = -k_1\overline{g}_{11} + k_2\overline{g}_{12}$$
,

where $m = g_{11}g_{22} - g_{12}^2$, $k_1 = g_{12}g_{23} - g_{13}g_{22}$, $k_2 = g_{11}g_{23} - g_{12}g_{13}$.

From equations (3.7) and (3.10), we have

$$m\bar{k}_{1} - \bar{m}k_{1} = 0, \qquad m\bar{k}_{2} - \bar{m}k_{2} = 0,$$

where $\frac{k_{1}}{m} = c_{1}, \qquad \frac{k_{2}}{m} = -c_{2}$ (3.12)

On integrating equation (3.11), we get

$$g_{13} = c_1 g_{11} + c_2 g_{12} + c_3$$

$$g_{23} = c_1 g_{21} + c_2 g_{22} + c_4.$$

where c_1, c_2, c_3, c_4 are integration constants.

Using the definition of k's in (3.11), we get equation (3.7).

(3.8)

(3.9)

Hence the theorem is proved.

Theorem 3: If g_{ij} satisfies (1.1) and (3.1) with $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3}z}$ and theorem 2, then there exists a co-ordinate transformation by which $g_{a\alpha} = 0$, $(a = 1, 2; \alpha = 3, 4, 5, 6)$. Moreover by this transformation, (1.1) is kept invariant.

Proof: If we transform the co-ordinate by

$$x = x' - c_1 z', \quad y = y' - c_2 z', \quad z = z', \quad t_1 = t'_1, \quad t_2 = t'_2, \quad t_3 = t'_3.$$
(3.14)

where cs are constants as in equation (3.7),

then det
$$\left(\frac{\partial x^{i}}{\partial x^{\prime j}}\right) = 1$$
, $Z = Z^{\prime}$.
By this transformation $\frac{d}{dZ} = \frac{d}{dZ^{\prime}}$ and from equation (3.7) we get
 $\omega^{\prime 1} = \omega^{1} + c_{1}\omega^{3}$,
 $\omega^{\prime 2} = \omega^{2} + c_{2}\omega^{3}$,
 $\omega^{\prime \alpha} = \omega^{\alpha}$, $(\alpha = 3,4,5,6)$,
where $\omega^{i} = \phi_{1}g^{3i} + g^{4i} + \phi_{2}g^{5i} + \phi_{3}g^{6i}$,
 $\rho_{i}^{\prime} = \rho_{i}$, $(i = 1,...,6)$.
(3.15)

It can be shown that

$$g'_{ab} = g_{ab}, \quad (a, b = 1, 2), g'_{a\alpha} = 0, \quad (a = 1, 2), \quad (\alpha = 3, 4, 5, 6) g'_{33} = g_{33} - (c_1^2 g_{11} + 2c_1 c_2 g_{12} + c_2^2 g_{22}), g'_{34} = g_{34}, \quad g'_{35} = g_{35}, \quad g'_{36} = g_{36}, g'_{44} = g_{44}, \quad g'_{45} = g_{45}, \quad g'_{46} = g_{46}, g'_{55} = g_{55}, \quad g'_{56} = g_{56}, \quad g'_{66} = g_{66}.$$

$$(3.16)$$

In this new co-ordinate system we have

$$\omega^{i} = (\omega^{1}, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, \omega^{6})$$

= (0, 0, $\phi_{1}g^{33} + g^{43} + \phi_{2}g^{53} + \phi_{3}g^{63}, \phi_{1}g^{34} + g^{44} + \phi_{2}g^{54} + \phi_{3}g^{64},$
 $\phi_{1}g^{35} + g^{45} + \phi_{2}g^{55} + \phi_{3}g^{65}, \phi_{1}g^{36} + g^{46} + \phi_{2}g^{56} + \phi_{3}g^{66})$ (3.17)

which proves that (1.1) is invariant. Hence the theorem is proved.

4. The line element

Considering equations (2.8), (2.9) and noting $\phi_1 = Z_{,3}/Z_{,4}$, $\phi_2 = Z_{,5}/Z_{,4}$ and $\phi_3 = Z_{,6}/Z_{,4}$ and using the co-ordinate system, determined in section 3 above in which $g_{a\alpha} = 0$, a = 1,2, $\alpha = 3,4,5,6$, we get

$$\phi_{1}^{2}g^{33} + 2\phi_{1}g^{34} + 2\phi_{1}\phi_{2}g^{35} + 2\phi_{1}\phi_{3}g^{36} + g^{44} + 2\phi_{2}g^{45} + 2\phi_{3}g^{46} + \phi_{2}^{2}g^{55} + 2\phi_{2}\phi_{3}g^{56} + \phi_{3}^{2}g^{66} = 0.$$
(4.1)

Noting $\phi_1 = -\sqrt{3Z}$, $\phi_2 = -1$ and $\phi_3 = 1$, the matrix (g_{ij}) can be written as

$$(g_{ij}) = \begin{bmatrix} -P & -Q & 0 & 0 & 0 & 0 \\ -Q & -R & 0 & 0 & 0 & 0 \\ 0 & 0 & 3Z^{2}(-S+T) & -\sqrt{3}ZT & \sqrt{3}Z(-S+U) & -\sqrt{3}ZU \\ 0 & 0 & -\sqrt{3}ZT & (S+T) & -U & (S+U) \\ 0 & 0 & \sqrt{3}Z(-S+U) & -U & (S+T) & -T \\ 0 & 0 & -\sqrt{3}ZU & (S+U) & -T & (-S+T) \end{bmatrix}$$
(4.2)

where P,Q,R,S,T,U are functions of Z satisfying (2.5), i.e. P,R>0, m>0, S>|T|, S>|U|. (4.3)

The corresponding matrix (g^{ij}) is

$$(g^{ij}) = \begin{bmatrix} -\frac{R}{m} & \frac{Q}{m} & 0 & 0 & 0 & 0 \\ \frac{Q}{m} & -\frac{P}{m} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{-2S^2(S+T+U)}{3Z^2n} & \frac{-2S^2(T+U)}{\sqrt{3Zn}} & \frac{-2S^3}{\sqrt{3Zn}} & 0 \\ 0 & 0 & \frac{-2S^2(T+U)}{\sqrt{3Zn}} & \frac{2S^2(S-T-U)}{n} & 0 & \frac{2S^3}{n} \\ 0 & 0 & \frac{-2S^3}{\sqrt{3Zn}} & 0 & \frac{2S^2(S-T+U)}{n} & \frac{2S^2(U-T)}{n} \\ 0 & 0 & 0 & \frac{2S^3}{\sqrt{3Zn}} & \frac{2S^2(U-T)}{n} & \frac{2S^2(U-S-T)}{n} \\ \end{bmatrix}$$
(4.4)

where $m = PR - Q^2 > 0$ and $n = 12Z^2S^4$.

Therefore, $g = mn = 12Z^2mS^4 > 0$, so that the condition (2.5) is satisfied. Also by using the g^{ij} s from (4.4), condition (4.1) is satisfied. Hence the line element obtained from (4.2) is $ds^2 = -Pdx^2 - 2Qdxdy - Rdy^2 + 3Z^2(T-S)dz^2 - 2\sqrt{3}ZTdzdt_1 + 2\sqrt{3}Z(U-S)dzdt_2 - 2\sqrt{3}ZUdzdt_3 + (S+T)dt_1^2 - 2Udt_1dt_2 + 2(S+U)dt_1dt_3 + (S+T)dt_2^2 - 2Tdt_2dt_3 + (T-S)dt_3^2$ (4.5) where P, Q, R, S, T, U are the functions of Z satisfying (2.5), (4.1) and (4.3).

5. Conclusion

Thus if g_{ij} satisfies (1.1) with $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3} z}$, then there exists a co-ordinate system in which

 $g_{a\alpha} = 0$, $(a = 1,2; \alpha = 3,4,5,6)$; and (1.1) is kept invariant. Also we have obtained the line element for $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3}\tau}$ type plane gravitational waves as given by (4.5).

Acknowledgement: The author wishes to thank UGC for granting a financial support under the Minor Research Project scheme.

References

- [1] Takeno H. (1961), "The Mathematical Theory of Plane Gravitational Waves in General Relativity", a scientific report of Research Institute for Theoretical Physics, Hiroshima University, Japan.
- [2] Thengane K. D. (2000), "The Plane Gravitational Waves in Five-Dimensional Space-Time (1)", a thesis, Nagpur University, Nagpur.
- [3] Khapekar G. U., Deshmukh A. G. (2008), "Co-ordinate System for Five-Dimensional Space-Time with Two Time Axes", Vidarbha Journal of Science, Vol. III, no.1, pp 56-79.
- [4] Pawar D. D., Bhaware S. W., Deshmukh A. G. (2007), "The Co-ordinate System in which $g_{a\alpha} = 0$ for the

Plane Gravitational Waves $Z = \left[z - \frac{1}{\sqrt{3}} (t_1 - t_2 + t_3) \right]''$, Acta Ciencia Indica, Vol. XXXIII, M. no. 2, pp

385.

[5] Bhaware S. W., Pawar D. D., Deshmukh A. G. (2008), "Mathematical Study of $Z = \frac{t_1 - t_2 + t_3}{\sqrt{3} z}$ Type

Plane Gravitational Waves", Acta Ciencia Indica, Vol. XXXIV M, No. 2, 623.

[6] Pawar D. D., Bhaware S. W., Deshmukh A. G. (2007), "The Metric of lane Gravitational Waves with three Time Axes", ARJPS, Vol. 10, No. 1-2.