Article

[z-t]-Type Plane Wave Solutions of Weakened Field Equations

Vilas R. Chirde* A. M. Metkar**, S. R. Bhoyar ${ }^{\#}$ \& A. G. Deshmukh
Dept. of Math., Govt.Vidarbha Inst. of Science \& Humanities Amravati-444604, India
*Dept. of Math., Gopikabai Sitaram Gawande College,Umerkhed- 445206, India
**Dept. of Math., Shri Shivaji Arts, Commerce \& Science College, Akola-444004, India
\#Dept. of Mathematics, College of Agriculture, Darwha-445202, India

Abstract

In this paper we have proved that the purely plane gravitational wave g_{ij} be the solutions of the Weakened Field Equations (WFE), in general relativity.

Keywords: WEF, plane gravitational waves, curvature tensor, Ricci tensor, Weyl curvature tensor.

1. INTRODUCTION

The plane gravitational waves g_{ij} are mathematically exposed by H.Takeno [1], in general relativity. S.N.Pandey [3] has proved that, the space-time,

$$
\begin{equation*}
\mathrm{ds}^{2}=-\mathrm{Adx} \mathrm{~A}^{2}-2 \mathrm{Ddx} d y-\mathrm{Bdy}{ }^{2}-\mathrm{dz}^{2}+\mathrm{dt}^{2} \tag{1.1}
\end{equation*}
$$

where A, B, D are the functions of $Z=(z-t)$, be the solutions of the five WFE $(I)-(V)$.

$$
\begin{align*}
& \mathrm{I}_{\mathrm{ijk}}=\mathrm{R}^{\mathrm{a}}{ }_{\mathrm{ijk} ; \mathrm{a}}=0, \tag{I}\\
& (-g)^{1 / 4}\left[g^{\text {ih }} R_{k j ; i h}-g^{i h} R_{i j ; k h}+(1 / 6) R_{; k j}-(1 / 6) g_{j k} g^{i h} R_{; i h}-R^{\text {ih }} C_{j h i k}\right. \\
& \left.+(\mathrm{R} / 6) \mathrm{g}^{\mathrm{ih}} \mathrm{C}_{\text {jhik }}\right]=0, \tag{II}\\
& (-\mathrm{g})^{1 / 2}\left[\mathrm{~g}^{\mathrm{hj}} \mathrm{~g}^{\mathrm{ki}}\left\{2 \mathrm{R}_{\mathrm{jlim}} \mathrm{R}^{\mathrm{ml}}+\mathrm{g}^{\mathrm{ml}} \mathrm{R}_{\mathrm{ij} ; \mathrm{lm}}-\mathrm{R}_{; \mathrm{ij}}\right\}-(1 / 2) \mathrm{g}^{\mathrm{hk}}\left(\mathrm{R}^{1}{ }_{\mathrm{m}} \mathrm{R}^{\mathrm{m}}{ }_{1}-\mathrm{g}^{\mathrm{lm}} \mathrm{R}_{; \mathrm{lm}}\right)\right]=0, \tag{III}\\
& (-g)^{1 / 2}\left[\left(g^{h k} g^{t u}-(1 / 2) g^{h t} g^{k u}-(1 / 2) g^{\text {hu }} g^{k t}\right) R_{; u t}+R\left(R^{k h}-(1 / 4) g^{k h} R\right)\right]=0, \tag{IV}\\
& \Theta^{\mathrm{ij}}{ }_{\mathrm{k}}=\mathrm{R}^{\mathrm{ij}}{ }_{; \mathrm{k}}=0, \tag{V}
\end{align*}
$$

where $\mathrm{C}_{\text {jhik }}$ is Weyl curvature tensor \& semicolon (;) denotes the covariant derivative. These field equations are solved by Lovelock [2] \& they are originally suggested by Kilmister and Newman, Pirani, Rund, Eddington \& Rund respectively.

[^0]In this paper we have proved that the plane waves g_{ij} given by the space-time

$$
\begin{equation*}
\mathrm{ds}^{2}=-A \mathrm{dx}^{2}-2 \mathrm{D} d x \mathrm{dy}-\mathrm{B} \mathrm{dy}^{2}-(\mathrm{C}-\mathrm{E}) \mathrm{dz}^{2}-2 \mathrm{Edzdt}+(\mathrm{C}+\mathrm{E}) \mathrm{dt}^{2} \tag{1.2}
\end{equation*}
$$

where A, B, C, D, E are the functions of $Z=(z-t)$ satisfying $A, B>0, C>|E|$, be the solutions of the WFE (I) - (V).

2. DEFINITION

The plane gravitational waves $g_{i j}$ are defined as the non-flat solutions of the field equation

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij}}=0 ; \quad \mathrm{i}, \mathrm{j}=1,--, 4, \tag{2.1}
\end{equation*}
$$

in an empty region of the space-time with

$$
\begin{equation*}
\mathrm{g}_{\mathrm{ij}}=\mathrm{g}_{\mathrm{ij}}(\mathrm{Z}) ; \quad \mathrm{Z}=\mathrm{Z}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \tag{2.2}
\end{equation*}
$$

in some suitable coordinates system such that

$$
\begin{equation*}
\mathrm{g}^{\mathrm{ij}} \mathrm{Z}, \mathrm{i}, \mathrm{Z}_{, \mathrm{j}}=0 ; \quad \mathrm{Z},{ }_{\mathrm{i}}=\frac{\partial \mathrm{Z}}{\partial \mathrm{x}^{\mathrm{i}}} \tag{2.3}
\end{equation*}
$$

such that $\mathrm{Z}_{\mathrm{i}} \neq 0$.
The signature convention adopted is as follows,

$$
\mathrm{g}_{11}<0 ; \quad\left|\begin{array}{ll}
\mathrm{g}_{11} & \mathrm{~g}_{1 \mathrm{k}} \tag{2.4}\\
\mathrm{~g}_{\mathrm{k} 1} & \mathrm{~g}_{\mathrm{kk}}
\end{array}\right|>0 ; \quad\left|\begin{array}{lll}
\mathrm{g}_{11} & \mathrm{~g}_{12} & \mathrm{~g}_{13} \\
\mathrm{~g}_{21} & \mathrm{~g}_{22} & \mathrm{~g}_{23} \\
\mathrm{~g}_{31} & \mathrm{~g}_{32} & \mathrm{~g}_{33}
\end{array}\right|<0 ; \quad \mathrm{g}_{44}>0
$$

(No summation for $1, \mathrm{k}=1,2,3$).
And accordingly $\mathrm{g}=\operatorname{det}\left(\mathrm{g}_{\mathrm{ij}}\right)<0$.

3. SOLUTIONS OF THE WFE

From (1.2), we have,

$$
\mathrm{g}^{\mathrm{ij}}=\left[\begin{array}{rrrr}
-\frac{B}{m} & \frac{D}{m} & 0 & 0 \tag{3.1}\\
\frac{D}{m} & -\frac{A}{m} & 0 & 0 \\
0 & 0 & \frac{-C-E}{\mathrm{C}^{2}} & -\frac{E}{\mathrm{C}^{2}} \\
0 & 0 & -\frac{E}{C^{2}} & \frac{\mathrm{C}-\mathrm{E}}{\mathrm{C}^{2}}
\end{array}\right]
$$

where $\mathrm{m}=\mathrm{AB}-\mathrm{D}^{2}>0$.
From (1.2) \& (3.1), the non-vanishing components of the Christoffel's symbols are as follow,

$$
\begin{array}{ll}
\Gamma_{13}^{1}=-\Gamma_{14}^{1}=\frac{1}{2 \mathrm{~m}}(\mathrm{~B} \overline{\mathrm{~A}}-\mathrm{D} \overline{\mathrm{D}}), & \Gamma_{23}^{1}=-\Gamma_{24}^{1}=\frac{1}{2 \mathrm{~m}}(\mathrm{~B} \overline{\mathrm{D}}-\mathrm{D} \overline{\mathrm{~B}}), \\
\Gamma_{13}^{2}=-\Gamma_{14}^{2}=\frac{1}{2 \mathrm{~m}}(\mathrm{~A} \overline{\mathrm{D}}-\mathrm{D} \overline{\mathrm{~A}}), & \Gamma_{23}^{2}=-\Gamma_{24}^{2}=\frac{1}{2 \mathrm{~m}}(\mathrm{~A} \overline{\mathrm{~B}}-\mathrm{D} \overline{\mathrm{D}}), \\
\Gamma_{11}^{3}=\Gamma_{11}^{4}=-\frac{\overline{\mathrm{A}}}{2 \mathrm{C}}, & \Gamma_{12}^{3}=\Gamma_{12}^{4}=-\frac{\overline{\mathrm{D}}}{2 \mathrm{C}}, \tag{3.2}\\
\Gamma_{22}^{3}=\Gamma_{22}^{4}=-\frac{\overline{\mathrm{B}}}{2 \mathrm{C}}, \\
\Gamma_{33}^{3}=-\Gamma_{34}^{3}=\Gamma_{44}^{3}=\frac{1}{2 \mathrm{C}^{2}}[2 \mathrm{E} \overline{\mathrm{C}}+\mathrm{C}(\overline{\mathrm{C}}-\overline{\mathrm{E}})], & \\
\Gamma_{33}^{4}=-\Gamma_{34}^{4}=\Gamma_{44}^{4}=\frac{1}{2 \mathrm{C}^{2}}[2 \mathrm{E} \overline{\mathrm{C}}-\mathrm{C}(\overline{\mathrm{C}}+\overline{\mathrm{E}})] . &
\end{array}
$$

Using (1.2), (3.1) and (3.2), the non-vanishing components of the curvature tensor
$\mathrm{R}_{\mathrm{ijk} \mathrm{l}}$ and Ricci tensor R_{ij} are obtained as follow,
$\left.\begin{array}{l}\begin{array}{rl}R_{1313}=-R_{1314}=R_{1414}=\frac{\overline{\bar{A}}}{2}-\frac{1}{4 m}\left[B \bar{A}^{2}+A \bar{D}^{2}-2 D \bar{A} \bar{D}\right]-\frac{\bar{A} \bar{C}}{2 C}=u, \\ R_{1323}=-R_{1324}=-R_{1423}=R_{1424}=\frac{\bar{D}}{2}-\frac{1}{4 m}\left[B \bar{A} \bar{D}+A \bar{B} \bar{D}-D \bar{A} \bar{B}-D \bar{D}^{2}\right]-\frac{\bar{C} \bar{D}}{2 C} \\ =w,\end{array} \\ R_{2323}=-R_{2324}=R_{2424}=\frac{\overline{\bar{B}}}{2}-\frac{1}{4 m}\left[A \bar{B}^{2}+B^{2}-2 D \bar{D} \bar{D}\right]-\frac{\bar{C} \bar{B}}{2 C}=v, \text { and }\end{array}\right\}$
By using (3.1), (3.3) and (3.4), we deduced,
a) $R=0$,
b) $g=-C^{2}\left(A B-D^{2}\right)$,
c) $\left.R_{m}^{1} R^{m}=0, d\right) R_{j l i m} R^{m l}=0$.

Also,by (3.4), $\mathrm{R}_{33 ; 11}=\mathrm{R}_{33 ; 12}=\mathrm{R}_{33 ; 22}=\mathrm{R}_{34 ; 11}=\mathrm{R}_{34 ; 12}=\mathrm{R}_{34 ; 22}=\mathrm{R}_{44 ; 11}=$

$$
\begin{equation*}
=\mathrm{R}_{44 ; 12}=\mathrm{R}_{44 ; 22}=0 \tag{3.6}
\end{equation*}
$$

and $R_{33 ; 33}=-R_{33 ; 34}=R_{33 ; 44}=-R_{34 ; 33}=R_{34 ; 34}=-R_{34 ; 44}=$

$$
=\mathrm{R}_{44 ; 33}=-\mathrm{R}_{44 ; 34}=\mathrm{R}_{44 ; 44}=\mathrm{Q}=\overline{\overline{\mathrm{P}}}-\frac{2 \mathrm{P} \overline{\overline{\mathrm{C}}}}{\mathrm{C}}-\frac{5 \overline{\mathrm{P}} \overline{\mathrm{C}}}{\mathrm{C}}+\frac{8 \mathrm{P}^{2}}{\mathrm{C}^{2}}
$$

Now we shall prove the gravitational plane waves g_{ij} given by (1.2) be the solutions of the WFE (I) - (V) in the form of theorems as follow.

Theorem 1: Prove that the plane wave g_{ij} given by (1.2) be the solutions of WFE (I), (II) and (IV).

Proof: The curvature tensor $\mathrm{R}^{\mathrm{i}}{ }_{\mathrm{ijk}}$ satisfies the Bianchi identity

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ijk} ; \mathrm{m}}^{\mathrm{a}}+\mathrm{R}_{\mathrm{ikm} ; \mathrm{j}}^{\mathrm{a}}+\mathrm{R}_{\mathrm{imj} \mathrm{j}, \mathrm{k}}^{\mathrm{a}}=0 \tag{3.7}
\end{equation*}
$$

Contracting a with m , we get,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij} ; \mathrm{a} ; \mathrm{a}}^{\mathrm{a}}+\mathrm{R}_{\mathrm{ik} ; \mathrm{j}}-\mathrm{R}_{\mathrm{ij} ; \mathrm{k}}=0 \tag{3.8}
\end{equation*}
$$

But from (3.4), we get, $\quad \mathrm{R}_{\mathrm{ik} ; \mathrm{j}}-\mathrm{R}_{\mathrm{ij} ; \mathrm{k}}=0$,
hence from (3.8), we get, $\mathrm{R}_{\mathrm{ijk} ; \mathrm{a}}^{\mathrm{a}}=0$.
So, WFE (I) is satisfied.
Also, from (3.9), it follows that,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ik} ; \mathrm{jh}}=\mathrm{R}_{\mathrm{ij} \text { jkh }}, \tag{3.10}
\end{equation*}
$$

using (3.10) \& (3.5), WFE (II) reduces to,

$$
\begin{equation*}
(-\mathrm{g})^{1 / 4}\left[\mathrm{~g}^{\mathrm{ih}} \mathrm{R}_{\mathrm{kj} ; \mathrm{h}}-\mathrm{g}^{\mathrm{ih}} \mathrm{R}_{\mathrm{ij} ; \mathrm{kh}}-\mathrm{R}^{\mathrm{ih}} \mathrm{C}_{\mathrm{jhik}}\right]=0, \tag{3.11}
\end{equation*}
$$

which on simplification, becomes

$$
\begin{equation*}
(-\mathrm{g})^{1 / 4} \mathrm{R}^{\mathrm{ih}} \mathrm{C}_{\mathrm{jhik}}=0, \tag{3.12}
\end{equation*}
$$

by the virtue of (3.5), (3.12) is identically satisfied.

Also, WFE (IV) is satisfied by a) in (3.5). Hence the theorem.
Theorem 2: A necessary and sufficient condition that $g_{i j}$ given by (1.2) be a solutions of WFE (III) is $\mathrm{Q}=0$, where $\mathrm{Q}=\overline{\overline{\mathrm{P}}}-\frac{2 \mathrm{P} \overline{\overline{\mathrm{C}}}}{\mathrm{C}}-\frac{5 \overline{\mathrm{P}} \overline{\mathrm{C}}}{\mathrm{C}}+\frac{8 \mathrm{P} \overline{\mathrm{C}}^{2}}{\mathrm{C}^{2}}$.
[Bar (-) over a letter denotes the derivative with respect to Z .]
Proof: Let g_{ij} given by (1.2) be the solutions of WFE (III).
By the virtue of (3.5), (III) reduces to

$$
\begin{equation*}
(-\mathrm{g})^{1 / 2} \mathrm{~g}^{\mathrm{hj}} \mathrm{~g}^{\mathrm{ki}} \mathrm{~g}^{\mathrm{ml}} \mathrm{R}_{\mathrm{ij} j \mathrm{~lm}}=0 \tag{3.13}
\end{equation*}
$$

(3.13) is identically satisfied for all values of h, k expect for $\mathrm{h}, \mathrm{k}=3,4$.

When $\mathrm{h}, \mathrm{k}=3,4$, equation (3.13), on simplication gives,

$$
\mathrm{Q}=\overline{\overline{\mathrm{P}}}-\frac{2 \mathrm{P} \overline{\overline{\mathrm{C}}}}{\mathrm{C}}-\frac{5 \overline{\mathrm{P}} \overline{\mathrm{C}}}{\mathrm{C}}+\frac{8 \mathrm{P} \overline{\mathrm{C}}^{2}}{\mathrm{C}^{2}}=0, \quad \text { by (3.4) \& (3.6). }
$$

Conversely, if $\mathrm{Q}=\overline{\overline{\mathrm{P}}}-\frac{2 \mathrm{P} \overline{\overline{\mathrm{C}}}}{\mathrm{C}}-\frac{5 \overline{\mathrm{P}} \overline{\mathrm{C}}}{\mathrm{C}}+\frac{8 \mathrm{P} \overline{\mathrm{C}}^{2}}{\mathrm{C}^{2}}=0$.

$$
\begin{equation*}
\Rightarrow(-\mathrm{g})^{1 / 2} \mathrm{~g}^{\mathrm{hj}} \mathrm{~g}^{\mathrm{ki}} \mathrm{~g}^{\mathrm{ml}} \mathrm{R}_{\mathrm{ij} j \mathrm{~lm}}=0, \quad \text { by (3.4) \& (3.6). } \tag{3.14}
\end{equation*}
$$

LHS of $(\mathrm{III})=0$, by (3.5) and (3.14).
So, WFE (III) is identically satisfied. Hence the theorem.

Theorem 3: A necessary and sufficient condition that g_{ij} given by (1.2) be the solutions of WFE (V), is $\left[\overline{\mathrm{P} / \mathrm{C}^{2}}\right]=0$.

Proof: Let g_{ij} given by (1.2) be the solutions of WFE (V).
Equation (V), implies $\mathrm{R}^{\mathrm{ij}}{ }_{\mathrm{k}}=0$

$$
\begin{equation*}
\Rightarrow \frac{\partial \mathrm{R}^{\mathrm{ij}}}{\partial \mathrm{x}^{\mathrm{k}}}+\Gamma_{\mathrm{sk}}^{\mathrm{i}} \mathrm{R}^{\mathrm{sj}}+\Gamma_{\mathrm{sk}}^{\mathrm{j}} \mathrm{R}^{\mathrm{is}}=0 . \tag{3.15}
\end{equation*}
$$

Equation (3.15) is identically satisfied for all values of i, j, k, except for $i, j, k=3,4$,
by using the components of $\mathrm{R}^{\mathrm{ij}} \&$ Christoffel's symbols $\Gamma_{\mathrm{sk}}^{\mathrm{i}}$.
Equation (3.15) for $\mathrm{i}, \mathrm{j}, \mathrm{k}=3,4$ gives

$$
\begin{equation*}
\left[\overline{\mathrm{P} / \mathrm{C}^{2}}\right]=0, \text { by }(3.4) . \tag{3.16}
\end{equation*}
$$

Conversely, if $\left[\overline{\mathrm{P} / \mathrm{C}^{2}}\right]=0$,

$$
\begin{align*}
& \Rightarrow \frac{\mathrm{d}}{\mathrm{dZ}}\left[\mathrm{P} / \mathrm{C}^{2}\right]=0 \\
& \Rightarrow \frac{\mathrm{~d}}{\mathrm{dZ}}\left[\mathrm{P} / \mathrm{C}^{2}\right] \frac{\partial \mathrm{Z}}{\partial \mathrm{x}^{\mathrm{k}}}=0 \text {, for all } \mathrm{k}=1,2,3,4 \text {. } \\
& \Rightarrow \frac{\partial}{\partial \mathrm{x}^{\mathrm{k}}}\left[\mathrm{P} / \mathrm{C}^{2}\right]=0 . \\
& \Rightarrow \quad\left[\mathrm{P} / \mathrm{C}^{2}\right]_{\mathrm{k}}=0 . \tag{3.17}\\
& \text { Hence, } \\
& \mathrm{R}^{\mathrm{ij}}{ }_{\mathrm{k}}=\frac{\partial \mathrm{R}^{\mathrm{ij}}}{\partial \mathrm{x}^{\mathrm{k}}}+\Gamma_{\text {sk }}^{\mathrm{i}} \mathrm{R}^{\text {sj }}+\Gamma_{\text {sk }}^{\mathrm{j}} \mathrm{R}^{\text {is }} \\
& =\left[\mathrm{P} / \mathrm{C}^{2}\right]_{{ }_{\mathrm{k}}}+\Gamma_{\mathrm{sk}}^{\mathrm{i}} \mathrm{R}^{\mathrm{sj}}+\Gamma_{\mathrm{sk}}^{j} \mathrm{R}^{\text {is }} \text { by (3.4), } \\
& =0 \text {, by (3.2), (3.4) \& (3.17). } \\
& \Rightarrow \mathrm{R}^{\mathrm{ij}}{ }_{\mathrm{k}}=0 .
\end{align*}
$$

Implies g_{ij} be the solutions of WFE (V). This proves the theorem.

CONCLUSION

The plane waves g_{ij} given by (1.2) be the solutions of the WFE (I) - (V). Also we note that, [3] is the special case (when $\mathrm{E}=0, \mathrm{C}=1$) of this paper.

Acknowledgement: Author (*) wishes to thank UGC officers for awarding Faculty Improvement Programme.

REFERENCES

[1] H.Takeno(1961): The mathematical theory of plane gravitational waves in general relativity, Sci.Rep.Inst.Theo.Phy.Hiroshima University,Japan.
[2] D.Lovelock (1967): Weakened Field Equations in general relativity admitting an "unphysical" metric, Commun. Math. Phys.,5, 205-214.
[3] S.N.Pandey (1975): Plane wave solutions of Weakened Field Equations in general relativity,Tensor N.S.,29, 297-298.

[^0]: * Correspondence Author: Vilas R. Chirde, Department of Mathematics, Gopikabai Sitaram Gawande College, Umerkhed- 445206, India. E-mail: vrchirde333@yahoo.co.nz

