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Abstract 
In this paper we have proved that the purely plane gravitational wave gij be the solutions 

of the Weakened Field Equations (WFE), in general relativity. 
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1. INTRODUCTION 

 

The plane gravitational waves gij  are mathematically exposed by  H.Takeno [1], in 

general relativity. S.N.Pandey [3] has proved that, the space-time, 

            ds
2
 = – A dx

2
 – 2 D dx dy – B dy

2
 – dz

2
 + dt

2
,
                                                                       

(1.1) 

where A,B,D are the functions of Z = (z – t), be the solutions  of the  five WFE (I) – (V).  
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                                              
ij
 k = R

ij
 ;k = 0,  (V) 

where Cjhik  is Weyl curvature tensor & semicolon (;) denotes the covariant derivative. 

These field equations are solved by Lovelock [2] & they are originally suggested by 

Kilmister and Newman, Pirani, Rund, Eddington & Rund respectively.  
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In this paper we have proved that the plane waves gij  given by the space-time  

            ds
2
 = – A dx

2
 – 2D dx dy – B dy

2
 – (C– E) dz

2
 –2E dz dt + (C+E ) dt

2
,            (1.2) 

where A,B,C,D,E are the functions of  Z = (z – t ) satisfying A,B  0, C  E,  be the 

solutions of the WFE (I) – (V). 

 

2. DEFINITION 

The plane gravitational waves gij are defined as the non-flat solutions of the  field 

equation 

                        Rij = 0; i,j =1,--,4,                                                                  (2.1) 

 

in an empty region of the space-time with 

 

                                             gij  = gij (Z) ;   Z = Z(x, y, z, t),                                          (2.2) 

 

in some suitable coordinates system such that  

 

                                             g
ij
 Z,i Z,j = 0;                                                                      

 

 

such that  Z,i 0. 

 

The signature convention adopted is as follows, 

                                   

 

 

 

 

(No summation for l,k = 1,2,3).  

 

And accordingly g = det (gij) < 0.                                                            (2.5) 

 

 

3. SOLUTIONS OF THE WFE 

 

From (1.2), we have, 
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where m =  AB – D
2
  0. 

 

From (1.2) & (3.1), the non-vanishing components of the Christoffel’s symbols are as 

follow, 
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Using (1.2), (3.1) and (3.2), the non-vanishing components of the curvature tensor 

 

Rijkl and Ricci tensor Rij are obtained as follow,   
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By using (3.1), (3.3) and (3.4), we deduced, 

(3.2) 

(3.3) 

(3.4) 
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Now we shall prove the gravitational plane waves gij  given by (1.2) be the solutions  of 

the WFE ( I ) – (V) in the form of theorems as follow. 

 

Theorem 1: Prove that the plane wave gij  given by (1.2) be the solutions of  WFE  

 

                     (I), (II) and (IV). 

 

Proof:  The curvature tensor R
a
ijk satisfies the Bianchi identity 

 

                                          R
a
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a
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a
imj;k = 0.                                                 (3.7) 

 

Contracting a with m, we get, 

 

                                          R
a
ijk;a  + Rik;j – Rij;k = 0.                                                        (3.8) 

 

But from (3.4), we get,     Rik;j – Rij;k = 0,                                                                      (3.9) 

 

hence  from (3.8), we get, R
a
ijk;a  = 0. 

 

So, WFE (I) is satisfied. 

 

Also, from (3.9), it follows that, 

  

                                         Rik;jh = Rij;kh  ,                                                                                                         (3.10) 

 

using (3.10) & (3.5), WFE (II) reduces to,    
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which on simplification, becomes  

                                          (– g )
1/4

  R
ih

 Cjhik = 0,                                                          (3.12) 

by the virtue of (3.5),  (3.12) is identically satisfied. 

(3.6) 
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Also, WFE (IV) is satisfied by a) in (3.5). Hence the theorem.  

Theorem 2: A necessary and sufficient condition that gij  given by (1.2) be a 

                    solutions of  WFE (III) is Q = 0, 

                    where .
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Proof:  Let  gij  given by  (1.2) be the solutions of WFE (III). 

By the virtue of (3.5), (III) reduces to  
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LHS of (III) = 0, by (3.5) and (3.14).                                                                                                                                                                                               

So, WFE (III) is identically satisfied. Hence the theorem. 

 

Theorem 3: A necessary and sufficient condition that gij  given by (1.2) be the 

                     solutions of WFE (V), is .0]C/P[ 2   
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Equation (3.15) is identically satisfied for all values of i, j, k, except for i,j,k = 3,4, 

by using the components of R
ij
 & Christoffel’s symbols i

sk . 

Equation (3.15) for i, j, k = 3,4 gives 

                                   ,0]C/P[ 2    by (3.4).                                                                 (3.16) 
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Implies gij  be the solutions of WFE (V). This proves the theorem.  

 

CONCLUSION 

 

The plane waves gij  given by (1.2) be the solutions of the WFE (I) – (V). Also we note 

that, [3] is the special case (when E = 0, C = 1) of this paper. 
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