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Abstract
Analogically to the representations of classicalotty of electromagnetic waves, whose non-
linear generalization our theory is, we assume thatreason of appearance of elementary
particles’ spectra is the superposition of simplaronic) nonlinear (de Broglie) waves, and
the reason of disintegrations of particles is thigntegration of the compound nonlinear
waves. The purpose of present article will be towslthat such superposition exists and its
description completely corresponds to modern tha@lerepresentations.
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1. Introduction. The modern state of the interactio n description

In previous articles we have shown, that in thelinear electrodynamics, i.e., in theory of
elementary particles (NTEP), the equations of frasicles are mathematically equivalent to the
equations of quantum field theory. The purposere$gnt part is to show that the mathematical
description of interaction in NTEP are also equmato that in quantum theory.

1.0. Introduction

We identify the area of interference, the diffractibalo, with the
atom; we assert that the atom in reality is mertig diffraction
phenomenon of an electron wave captured us it Werihe nucleus of
the atom It is no longer a matter of chance that the sfztne atom and
the wavelength are of the same order of magnititds: a matter of
course. Erwin  Schrodinger. The fundamental idea of wave
mechanicsNobel Lecture, December 12, 1933

According to modern representations all elemergariicles are the bound states of a small set of
more light particles. Among all these objects awes mecognized as fully stable only electron,
neutrino, proton and neutron in a bound state endtable nuclei. All other particles are the
spectra of particles, which decay into one another.

1.1. The spectra of the elementary particles

Generally, each elementary particle is defined bsetof various characteristics: mass, spin,
electric charge, strong and weak "charges" (ieectiaracteristics, which define intensity of strong
and weak interaction), numbers of “affinity" (numdedue to which one family of particles
differs from another: lepton number, baryon nunavet others), etc.
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We say that the particles, which are charactel@edentical characteristics, except for any one
of them, compose a spectrum regardih chosen characteristic. For example, if as such
characteristic the mass of particles is acceptedspeak about a mass spectrum of elementary
particles.

The first Gottfried and Weisskopf, 1984jere the atomic and molecular photon radiationtspec
the second the nuclear gamma-quantum spectra, ielh whature offers us a series of well-defined
guantum states. Further were disclosed the lepigtadron spectra.

The heavy charged leptons (muon and tauon) araédnga®., more massive) replicas of the electron,
and each has its own neutrino. Thus the electréreiground state of a spectrum that we can all th
spectrum of charged lepton; and the electron meuisithe ground state of a spectrum of non-charged
leptons — neutrinos. The proton is merely the gilostate of a complex spectrum that we called the
baryon spectrum. In an analogous manner, e are the lowest-lying members of the meson
spectrum.

According to the contemporary theory there are stimiéng conditions of the composition of
elementary particles, which can be named the cesisen laws of this characteristic: e.g. the
laws of conservation of energy, momentum, angulamentum, electric charge and charges of
other interactions, laws of conservation of numleéraffinity”, etc. Some laws (principles) also
exist - the uncertainty principle of Heisenberg,iclihrestrict the transition from one family or
spectrum to another.

If to speak, for example, about mass spectra dicfes, there are following limitations for
shaping of such spectra:

1) according to the energy-momentum conservatiortte rest free light particles cannot decay
to heavier particles, but heavy particles can déxayore light particles;

2) nevertheless, according to a uncertainty priacif Heisenberg, heavy particles cannot
comprise the light particles as a ready partidl@sexample, the neutron cannot comprise electron
as a free particle).

As is known, the existing theory cannot explain thecurrence of elementary particle
characteristics and of their conservation lawsy #re entered as consequences of experiments.

The conclusions of the quantum theory are undolptedrrect and was confirmed by
experiments. Thus we should show that they do arttadict to the results of nonlinear theory of
elementary particles (NTEP).

Within the framework of NTEP the fundamental pdetcare the simple harmonic nonlinear
waves. The purpose of this chapter is to showttigaspectra of elementary particles appear due
to the superposition of these nonlinear waves. Mdball we will be interested in mass spectra.
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2.0. A hypothesis of formation of spectra of elemen  tary particles in
NTEP

The electromagnetic nonlinear waves have the sdiaeaderistics as elementary particles. The
nonlinear harmonic waves have the masses, canihgger or half spin, can be charged or
neutral, etc.

The mass of particles within the frameworks of NTiERhe "stopped" energy of the nonlinear
standing wave, which are defined by frequency f Wave. Therefore to a heavy patrticle the
nonlinear wave of relatively high frequency mustrespond, and to light particle - the nonlinear
wave of lower frequency. What another can changerihss of particle?

The nonlinear harmonic waves of NTEP corresponthdosimple harmonic waves of classical
electrodynamics (briefly CED). What possibility ¢bange the characteristics of EM wave does
exist in the classical electrodynamics?

As we know, the most simple possibility consistshia waves’ superposition. In this case the
harmonic waves of various frequencies can coaxsbime composite formations.

Analogically to the results of classical theory BM waves, whose quantum non-linear
generalization our theory is, we assume that ifrtreework of NTEP:

1) the cause of formation of spectrum of compositgiciess is the superposition of simple
(harmonic) nonlinear waves;

2) the cause of decay of particles is the disirgtégin of the composite nonlinear waves to the
simple waves.

We will recall the description of the superpositmnwaves in the classical theory, to attempt to
use these ideas in NTEP.

2.1. Superposition of «linear» waves

As is known (Crawford, 1970), the composite systinwaves can be represented by the
superposition of the simpler waves, called “modé®ite that the terms: “simple harmonic
oscillation”, “harmonics”, “normal oscillation”, ‘@n oscillation”, “normal mode” or simply
“mode” are identical; recall also that under “lifeaave we understand the wave, which is the
solution of linear wave equation). Let's considairaple case of such superposition.

In many physical phenomena the system represesupeaposition of two harmonic oscillations,
having various angular frequencies and «,. These oscillations can, for example, correspond

to two normal modes of the system, having two deyof freedom. The known example of such
system is the molecule of ammonia (Crawford, 1970).

It is possible to illustrate this fact based onreple of energy spectrum of electron in hydrogen
atom. Really, the electron energy spectrum in elagbroton system is from the general point of
view a spectrum of electron masses. Then it isilples® speak about a basic mass (basic energy)
of electron in the not excited state and about aflmasses of electron in the excited states, when
electron receives additional portions of energysgha
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These portions are very small in comparison wiéhrést electron energy (mass). The increase of
electron mass occurs due to absorption of photors the reduction of mass takes place due to
emission of photons. On the other hand, we cartiothiat the electron contains a photon as a

ready particle. In the case of particle compositod decay we cannot say the same about the
energy portions. But nevertheless, it does nouekecthat these are the same phenomenon.

It is easy to show (Crawford, 1970) that the chasfgelectron energy as a result of its excitation
corresponds to a hypothesis about the productioneaf particles owing to superposition of
waves.

Let's consider the stable states of the electraongrdimensional potential well with infinitely
high walls, whose coordinates are —% andz= +% . We will assume that the electron state is

defined by superposition of the basic state andirsteexcited state:
W(zt) =g (z1) + ¢, (21), (13.2.1)

wherey, (z,t) = Ae"“ coskz, kL =7, ¢,(zt) = Ae"“sink,z, k,L =27.
The probability of electron state in the positiprin the time moment is equal to:

(b’ :‘Ae““i‘ coskz+ Ae " sin kzz‘2 = A’ cos kz+
+ AZsin® k,z+ 2A A, cosk z[3in k,z[0os, — w)t ’

(13.2.2)

We can see that the expression (13.2.2) has awérith makes harmonic oscillations with beats
frequency between two Bohr frequencies and «,. The average electron position in space
between the wells can be found by means of theeegjan:

_J#ldz_sa an
ﬂ[//|2dz o A2+ A

NI

cosiw, —aw)t, (13.2.3)

where the integration is from one W&"% up to the otherr% :

Obviously, the frequency of radiation is defineddaats frequency. Actually, electron is charged
and, consequently, it will emit out the electrometgnradiation of the same frequency, with
which it oscillates. From the equation (13.2.3) see that average position of charge oscillates

with beats frequencye, —«; . Therefore the frequency of radiation is equabé¢ats frequency
between two stationary states:

Qpag =Gy~ (13.2.4)
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In the framework of NTEP, the non-normalized quantuave function is simply the wave field.
As a consequence of this fact, the square of thigeviunction (i.e. the possibility density in the
framework of QED) is the energy density.

As other example of such problem we will consider talculation of more general case of the
interference between waves of various frequencies.

We will assume that we have two EM waves 1 ancaging electric field€, and. E,. The full

field in the fixed point P of space will be the egmsition of E, and E,. Using complex
representation of oscillations, we will write thepeession for superposition of oscillations:

E(t) = Ee™ @) + E e (@492 (13.2.5)

The energy flux is proportional to average valueEdft) for period T of the "fast" oscillations,
occurring with average frequency:

2

2<EXT) >=|E(t 2 _ e—i(wlt+¢1) +E e—i(w21+¢2)
M>=Eer =I5 j : (13.2.6)

= El2 + Ezz + 2E1E2 m:05[(6’~)2 _a)l)t + (¢1 _402)]

As we see, the energy flux varies with relativétysbeats frequency, — a, .

3.0. Superposition of the nonlinear electromagnetic waves

We should show at first that the superpositiornefrionlinear electromagnetic waves exists, and
secondly that due to this superposition it is gadssio obtain all those results, which are known
from the theory of “linear” electromagnetic wavisother words, it is necessary to show, that in
this case there are actually the series (spedtragrucles, each of which represents complication
due to the superposition with other nonlinear waves

As is known, all the phenomena of superpositiowa¥es and their disintegration are described
by Fourier theory. The Fourier theory of analysistsesis of functions show that any composite
wave field consists from harmonic waves and caaradysed to harmonic waves.

We will show that Fourier theory is true not onydase of “linear” waves, but also in case of the
nonlinear waves.

3.1. The real and complex form solutions of the wav e equation as reflection of

an objective reality

As we showed the wave equation can be describ@ebiforms:

| CED form: | NTEP form: |
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[;—Z—&ﬁj ®(y) =0, [(5’0“ F-cla b } ¢=0,

where X
q)(y):{Ex!Ez’Hx’Hz} whered = 'HZ g':ih—,

iH,
p=-in0 and d,; a; f=4,
are Dirac's matrices

and has the solution, which can be written dowrthim form of real periodic (in particular,
trigonometric) functions, as well as in the formcofnplex (exponential) functions:

CED form: NTEP form:
d(F,t) = D, cos@t —k ) ® = P e ) o
PO(F,t) = D, sin(wt -k [F) E=E gl

H = Hoe_i(mky)1

Nowadays it is considered that the representafidheowave equation solution in complex form
is only a formal mathematical method, since thal faolutions should be real. It was also marked
that the use of complex representation is dictatdg by the reasons of convenience: in many
cases the mathematical operations with exponefuiattions are much easier, than with
trigonometric.

We have shown (see (Kyriakos, 2010)), that witie framework of NTEP the exponential
solutions have the actual meaning, if we understiech in geometrical sense. For instance, the
description of wave motion along the circular tcégey can be represented as the sum of two
linear mutual-perpendicular oscillations.

Thus, it is possible to assume, that the existehtiee real and complex descriptions indicates the
existence of two types of real objectslittear and nonlinear waves. In this case the re
functions describe “linear” waves, and the complexctions describe the nonlinear waves

As is known, the Fourier analysis-synthesis theahyws equally to work both with real and
complex functions.

From this two extremely important conclusions fako
1) all tools of the Fourier analysis-synthesis thelorgomplex representation is the mathematical
apparatus of the superposition and decompositiocomplex nonlinear waves description (i.e.

description of elementary particles).

2) the non-linear theory of the nonlinear waves ig tieory, in which the principle of
superposition takes place as well as in the lirtbaory.
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For this reason the classical (real) Maxwell-Lorgreory can be written down in a complex form
and it looks in such form simple and consistenangition from the nonlinear waves to "linear”

(i.e. to one of components of the nonlinear waee)esponds to transition from complex values
to real.

Let us consider now some details of the Fourielyaizasynthesis theory in case of superposition
of the nonlinear waves.

4.0. Elementary particles as stable wave packets of  nonlinear waves

As is known, in case of superposition of more ttvem running harmonic waves the wave groups
or wave packetare formed, which are the limited in space fdioms, which transfer energy
and move with some group speed.

In the quantum mechanics a wave packet is the pgraescribed a field of matter, i.e. de Broglie
particle waves, which is concentrated in the lichitgea. The probability to find a particle is
distinct from zero only in the area, occupied hyeve packet.

This wave field is the result of superposition lué set of de Broglie plane waves, corresponding
to the different wavelengths. The composition aacbdnposition of wave packets is described by
Fourier theory.

It is meaningful to apply the concept of a wavekeaavhen the used wave numbéks are
grouped near to somlE\0 with small variationAk, Ak <<k, . In this case the wave field, i.e.
wave packet will move during some time as a whel#) a little deformation. The group speed

kou = (d_w} corresponds to a speed of a particle, describédidyave packet. As is known,
k=ko

the “smearing” of the wave packet does not takeepifit can be decomposed on standing waves,

i.e. if in the decomposition series for each vedtorthe vector—k with the same amplitude
exists.

Since the superposition of “linear” waves lead$otonation of the “linear” wave packets, it is
consistently to conclude that superposition ofribalinear waves will lead to formation of the
nonlinear wave packets, i.e. to the composite ai¢sng particles.

It is characteristic that the representation ofevawnction by the Fourier sum:

In the real forr: In the comple)
- form:
f(t) =&+Z(an cosnwt +b, sin(wt), o
2 n=1 f (t) - z Cne_inwt
wherea,, b, are the Fourier coefficients, n=—c

where c, are the
Fourier coefficients.
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(.e. the Fourier series or Fourier integral), taors the negative frequencies, which in the
“linear” theory have no place. In the classical i@pt(Matveev, 1985) it is taken that

e'“'describes the complex unit vector, which is stafiedn the origin of coordinates. At
increase of time it rotates around this origin in a positive direct(by a rule of the right screw).

In the same time the complex unit vecesr”" rotates in the negative direction.

The above completely corresponds to our hypothesisthe correspondence of Fourier
mathematical tools to the requirements of NTEP.

As a simple example of a wave packet formation,wile consider a packet, formed by the
rectangular equidistant frequency spectrum of wawésequal amplitudes. The description of
superposition of such waves can be made both i{Ceawford, 1970) and in a complex form
(Matveev, 1985), which reflects the existence ef‘ttmear” and non-linear world of particles.

We will find the expression for a packet(t) formed by superposition &f various harmonic
components, which have equal amplitidean identical initial phase, equal to zero, andcivh
frequencies distributed by regular intervals betwé®e lowest frequency., and the highest

frequency, . Generally we have:

in the real form in the complex form
t) = Acosa,t + = i(wtn
l//() 1 l//(t)zAze( t+ndat)
n=0

N-1
+ A cos@; +ndw) t + Acosw,t

n=1

where o« is the difference of frequencies of two next comgus, n= 123...,N-1 and
w, =w, +Now.

These formulas represent the composite wave fun(ﬁ(cb) in the form of linear superposition
of the lot of harmonic components. It appears thiatsum can be expressed in the form, which
are the generalization of the above case of twitlaigms:

Y(t)=A¢)xos,t, (13.4.1)

sin(05NJw (1)
sin(050w )
packet. The amplitudé\(t) describes a wave packet envelope. It is possisaaw (Crawford,

1970) that for a wave packet the Heisenberg unogrtarinciples are true, what proves their
origin in wave origin of matter.

where A(t) = A is the variable amplitude, , is the average frequency of a wave

Since the nonlinear waves already represent thetinobjects, the elementary particles can be
combined not from infinite Fourier series of wavast they can be presented by the sum of the
limited number of the nonlinear waves.

Let us show that any nonlinear wave packet carrdsepted as the sum of wave sub-packets. In
this case, obviously, superposition of severapligkets can be considered not as superposition of
their separate harmonic components, but as sujitespad their sub-packets.
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Let's consider the splitting of a big packet inteotsub-packets. We will present a composite
wave /(t) (see above (13.4.1)) in the following form:

N-1
Y(t) = Acoswit + A cos@, + NAw)t + Acosw,t =
n=1
N,-1 .
= (Acoswit + A" cos@; + mdw)t + Acoswyt) + (13.4.2)
m=1
' Nz_l '
+(Acoswit + A cos@, +1dw)t + Acosw,t)

1=1

whereN =N, + N, ,w, =@, + N,ow, @ = +(N, +1)dw= w, + dw.

Thus, we can represent the wave pagk@g} as two sub-packets:

Yt) =g (t) + (1), (13.4.3)
where ¢, (t) = Acoswt + ANilcos@)l +mdw)t + Acosw,t and
m=1

W,(t) = Acoswit + A cosgu, +1dw) t+Acoswit .
1=1

It is convenient to enter for a normal harmoni sgmboly(t), for a packet of wave packets -
the symbol¢(t), for a sub-packet the symbay, (t), where sigma means the sum . Then in the
general case any packet can be written down ifotheof the sum of sub-packets:

YOO+ A0 =3 w0, (13.4.4)

From the above follows that decomposition of paziehot single-valued, since harmonic waves
can be grouped in the sub-packets in various ways.allows to explain the possibility of the
disintegration of particle along the different chels.

Using the above representations it is easy to patsgethat superposition of sub-packets leads to
the same consequences as superposition of separatenic waves. In other words, it leads to
beats and to change of the energy level, as ioabe the particles’ interaction.

Besides the nonlinearity in NTEP there is one moegiogs difference from linear
electrodynamics. In NTEP together with the fullipeic nonlinear waves (bosons), the half-
period nonlinear waves - fermions - exist alsasTneates a great number of additional variants
of the wave superposition, which are not preseninar electrodynamics. Furthermore, the
nonlinearity is the origin of one more characterist particles - the currents.

It is clear also that the superposition of the me&ar waves in comparison with the superposition
of "linear” waves has more variants of the spatishngement of waves, and, hence, more
complex mathematical description. Actually we ca@ this in the case of description of hadrons.

Prespacetime Journal www.prespacetime.com
Published by QuantumDream, Inc.



Prespacetime Journal| August 2011 | Vol. 2 | ISsusp. 1246-1263 1255
Kyriakos, A. G. Nonlinear Theory of Elementary Particles Part Xlll: On the Spectra of Elementary Particles

It is easy to see that the principle of superpmsitiloes not provide stability of composite
particles. Thus, we should additionally find ow¢ ttonditions of stability of the nonlinear waves.

5.0. Conditions of stability and quantization of el ementary particles
in NTEP

In framework of NTEP the particles are the spatatiations or spatial packets. As an example
of three-dimensional packets we can consider dlsosuperposition of the usual waves of
different direction in the space.

As is known (Shpolskii, 1951), at such superpasitsd harmonic waves can be formed the

Lissajous figures of two various types. At the wawsth commensurable frequencies (i.e. when
frequencies are correlated as the rational fragfiare formed the standing waves and Lissajous
figures are stable. At incommensurable frequerttiesnotion of waves is referred to as quasi-

periodic, and Lissajous figures are not stabletfiey constantly change their form).

In the physics of waves and oscillations two sorthie tasks exist, which lead to the formation of
the composite waves and oscillations.

An example of first type is oscillation of the boslyrface or volume (sphere, cylinder, torus, etc.),
by which we represent a particle. Here the suitai@ehanical example is the oscillation of the
drop of liquid in zero gravity. In a nuclear physithe similar model is the drop model of a
nucleus.

The same types problems the oscillation of voriegsrin a perfect liquid or gas is that, which
studied by Kelvin (we will conditionally name theas “Kelvin's problems”). In case of the

oscillations of the linear vortex (Kelvin, 1867) bbtained the exact solution. Here Kelvin has
compared the radiation spectra of the atoms (addalittle time before by Bunsen) to possible
spectra of oscillation of vortex (nhote that in Kelg articles the term “atom” is used in sense of
“elementary particle”).

Comparison of such type of oscillations with obabtg results is also available in contemporary
works, e.g. in (Paper collection, 1975; Kopiev &iwernyshev, 2000) and others. Certain of the
Kelvin significant conclusions from the paper “Oortéx Atom” (Kelvin, 1867) we cite below:

“As the experiments illustrate, the vortex atom pedectly definite fundamental modes of
vibration, depending solely on that motion the texise of which constitutes it. The discovery of
these fundamental modes forms an intensely inigggstoblem of pure mathematics...

One very simple result... is the following. Let saclortex be given with its section differing from
exact circular figure by an infinitesimal harmordeviation of ordei. This form will travel as
waves round the axis of the cylinder in the samexton as the vortex rotation, with an angular
velocity equal toi{1)/i of the angular velocity of this rotation. Hencs,the number of crests in a
whole circumference is equal itpfor an harmonic deviation of orderthere arei-1 periods of
vibration in the period of revolution of the vortésor the case=1 there is no vibration, and the
solution expresses merely an infinitesimally dispthvortex with its circular form unchanged.
The casé=2 corresponds to elliptic deformation of the cilausection; and for it the period of
vibration is, therefore, simply the period of raxan’.
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As examples of other type of problems are osaifetiof sound and electromagnetic waves into
various types of the closed cavities, whose surfaoeotionless. Such cavities refer to as closed
wave-guides or resonators and consequently wecanltlitionally name this type of problems as

“resonator problems”. In the classical physics tadderesearches is devoted to such type of
problems.

The above first and second type of problems leadkd solution in the form of the standing
waves. Thus, it is possible to assume that staldfitelementary particles is connected with a
formation of standing waves.

As we noted, the condition of standing wave fororais the commensurability of wavelength
with the size of body, in which the wave propagaldeerefore, the possible solution of these
sorts of problems must be defined by the boundangitions, which specify the value or the
normal derivative of the function on a surface.

Below we will show that from the boundary statefiof@ the quantization conditions for
elementary patrticles.

5.1. Photon wave equation of classical electrodynam ics

From Maxwell-Lorentz equations it is easy to obtéitatveev, 1989) wave equation for the
electric and magnetic field vectors:

62 22 = —
{W—c . JF(r,t)—O, (135.0)

where F is whichever of the EM wave functions.

The general harmonic solution of this wave equatasthe complex
F(F,t) = F(F)e™™ = R« (13.5.2)
or trigonometric forms

F(F,t) = F, coskF - wt), (13.5.2")

wherew. = 27v is the angulafrequency, k =%ﬁ is the wave vector (herg is the linear

p
frequency, k =‘IZ‘ called thewave number)Using these solutions it is also easy to obtain the
dispersion law for EM waves:
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2
W _ o 2,12
— =k, +k; +k;

Putting this solution in (13.5.1) we find fé1(") the following equation for stationary waves:

(B2 +k?)F () =0, (13.5.3)
wherek =a/v=2n/vT =2n/A, T is the period and - wavelength.

The equation (13.5.3) refers to as Helmholtz eqoatial is universal for the description of space
dependence of characteristics of harmonic waves.

Using this equation, Kirchhoff developed the theofyhe diffraction and interference of light,
which was excellently confirmed by the numerouseeixpents.

5.2. Wave equation solution for resonator

To analyse the electromagnetic wave equation saludtr resonator we will take (Wainstein,
1957) an orthogonal box from metal withb andd sites as our model of resonator. We will show
that this solution is the standing electromagnetives.

According to (13.5.3) the electric field must satishe equations(ﬁ2+k2)E(F)=0 and

CJE =Owith the boundary stat€, =0 at the walls of the cavity (because inside thdsathke
electric energy will be rapidly dissipated becaa$epolarization currents, the electric field
intensity drops rapidly to zero into the walls). Hoxer, the perpendicular to the walls electric
field can exists, which is caused by surface chargese define the possible solution:

E, = Eo.k, cosk,x sink,y sink,z
E, = Eo K, sink,x cosk,y sink,z, (13.5.4)
E, = E, K, sink x sink,y cosk,z

For example, taking any, for which sink x= 0, we will obtain that the second and third
terms of system (13.5.4) are identically zero,tbatfirst term certainly isn't.

Also if we will choosek so thatk [E, =0, from divE =0 using (13.5.4) we find:

OE = (Eg,K, + Eo K, +Eq K, )sink x$ink, y 3ink,z=0.

0x"*x oy y

In this case wave equation requires fulfiling & trelationshipsk, =mzn/a, k, =nm/b,
k,=ln/d, o = cz(kx2 +kJ + kf) or w=c,k; +ki + k7 , where(I,m,n) are positive integers,
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e.g. (1, 1, 0) or (3, 2, 4). In other words, eachksjble standing electromagnetic wave in the box
corresponds to a point in ttk, , Kk, k, ) space, labelled by three positive integers.

Since the magnetic field satisfies the same equeatiad the boundary states as the electric field,
the solution for magnetic field will look exactligg same as for the electric field (an alternative

way is to use the relationshi =[x E/iw, which can be easily obtained from Maxwell theory)

Thus, the character of the general solution for EMvevin the cavity is the standing
electromagnetic wave.

It is easy to see that the above description ekarrance of the “linear” electromagnetic waves, if
we make it in the complex form, will correspond te ttiescription of the resonance of the
nonlinear waves.

Let us show now that solutions of quantum wave éopgtfor the steady states give identical
results.

6.0. The quantum wave equations and their solutions for stationary
waves

6.1. De Broglie waves as nonlinear EM waves

De Broglie has assumed that mater particles togetiiercorpuscular properties have the wave
properties and can be described by the same fowhugplane wave as electromagnetic wave:

L(pr-a)

Y1) =@(P)e’™™ =g e = el

He shows that to the energy and momentum of acfeaith corpuscular picture the wave
frequency and wavelength in a wave picture cormedps follows:

Thus the dispersion law for de Broglie wave it isye#o find from the energy-momentum
conservation law for a particle:

2
3 2 2
_=m0

o2

c’+p

Really, replacing the energy and momentum by theewaharacteristics, we will obtain the
dispersion correlation for waves of matter:
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2 2
C —
w _rnO +k2

c? h?

It is easy to see, that within the framework of NPTEhis dispersion correlation satisfies the
equation of the nonlinear photon.

We will consider now, to what wave equation thipérsion correlation corresponds.

6.1. Helmholtz equation for de Broglie waves

The Helmholtz equation (13.5.3) describes the wat/garious nature in homogeneous mediums
with constant frequencya( = cons) and vacuum. The constancy of wavelength is hete n
supposed.

Planck's correlatiorz = i shows that the condition = cons entails the equality = cons.

Hence, Helmholtz equation can be applied to de Bragéives at the description of motion of
corpuscles in potential fields when their full enels constant:

=g, +¢&, = p?/2m+eg, =const, (13.6.1)

where £, = p?/2m is a kinetic energyg, () =V (r) is potential energy of a corpuscle in a

field. From de Broglie’s correlatiop = 7k in view of (13.6.1) the equality follows:
k? :?(E_Ep)’ (13.6.2)
Substituting the expression (13.6.2) in (13.5.3yeeeive the equation:
e 4 2 F) = 13.6.3
0 +h_2(£_£p) F(r)_ov ( B )1

named the Schrodinger stationary equation.

From this follows, that the existing calculation thezls of the energy, momentum, angular
momentum and other characteristics of particleée stathe quantum field theory are calculations
of resonance states of elementary particles indheus types of resonators (boxes), which in the
guantum theory are usually named the potentiaswetbm the mathematical point of view these
problems refer to as eigenvalues problems.

Consider the connection of these problems with NTEP

6.2. Particle in a box
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In quantum mechanics, the particle in a box moéstdbes a particle free to move in a small
space surrounded by impenetrable barriers. Thelpart a box model provides one of the very
few problems in quantum mechanics which can beedohnalytically, without approximations.
We will use this model as an example to illustrite similarity between our and quantum
approaches.

In quantum mechanics, the wavefunction, as elecigmetic field vectors in classical
electrodynamics, gives the most fundamental desmmipf the behavior of a wave-particle. The
wavefunctiony (T, t) can be found by solving the Schrddinger equgtidr.3).

Inside the box, no forces act upon the particleicivimeans that the part of the wavefunction

inside the box oscillates through space and tintle the same form as a free particle. For a three
dimensional box, the solutions are

W n = /% sin(k, x)rsin{k, y)sin(k, 2), (1364)

If a particle is trapped in a three-dimensional,ibxnay freely move in tha, y, z- directions,
between barriers separated by lengithd.,, L, respectively

The energies which correspond with each of the peihwave numbers may be written as

2,2
c _ h knX,ny,nZ
nny.n, om , (13.6.5),
where the three-dimensional wavevector is given by
~ o . _nm. 7 njT,
N knxeX + knyzey +k € = Ij e + i e, + LZ €, (13.6.6),
X y z

As we can see, the obtained solution coincides thrabove solution for electromagnetic waves
in the waveguide.

7.0. Formation of elementary particles’ spectra

The first calculations of quantum systems relatedhe electron motion in the orbits of the
hydrogen atom (Shpolskii, 1951). The formulas ddrgization of electron characteristics in the
hydrogen atom have been first found empiricallyn(folas of Balmer, Paschen, etc.). Then, it has
been shown that they turn out as consequence ditioms of Bohr quantization.

Wilson and Sommerfeld have made the generalizafidohr quantization rules independently.
They have shown that in case of systems with anybeu of degree of freedom it is possible to
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find such generalized coordinatgs,q,,...,q;, in which the motion of system is separatedi on

harmonic oscillations; in this case a known rulesdillator quantization can be applied for any
of degrees of freedom.

The representation of any quantum system as thaf sstillators completely corresponds to the

representation of the elementary particles in tefof nonlinear electromagnetic waves within
the framework of NTEP.

Due to Wilson-Sommerfeld’s theorem can recefvguantum conditions:

cj'pldq1 :(n1+%jh, ijqug :(n2 +%)h, cj'polqi :(ni +%jh’ (13.7.1)

where the integers,,n,,...,n; refer to as quantum numbers.

As an example of the application of these ruleswiepresent the calculation results of the
hydrogen-like atom. Electron position in spacdsatriotion around a nucleus is characterized by
three polar coordinates,,¢/, which describe the radial, equatorial and azieduthotions,

respectively. Therefore quantum conditions in tlaise take the form

1 1 1
dp,dr =(nr +§jh,§[pﬁdz9 =(n§ +§jh,§pwd¢/ =(n¢ +Ejh , (13.7.2)

The generalized momentumg,, p,,p,  are calculated by the following rules: at fittsts
necessary to write the expression of kinetic engrgylar coordinates,?,y :

o2 . 2 . 2
£, :guzzg£r +r29 +r?sin’ Sy j, (13.7.3)

and next to find the derivatives regarding theegalized velocities (which correspond to linear
momentums):

pr:ai-kzml:’ pﬂ:ai.k:mrzé, pw:ai:erSinzﬂljll (1374)

ar GE; I,

Then, using (13.7.2) it is possible to obtain threrfulas of the momentums’ quantization, defined
by radial, equatorial and azimuthal quantum numhgrs,,n,,

As de Broglie showed later, the Bohr and Wilson-8@rield’s quantisation rules define the
conditions ofintegrality of the electron wavelengths in different closegettories.

Obviously within the framework of NTEP these rutkgermine the resonance conditions of the
nonlinear electromagnetic waves, if we take intmaat a quantization of their energy according
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to Planck. Since any field can be representedeasdtillators’ sum, we can consider this rule as
true for any quantum systems.

The results of Wilson and Sommerfeld were obtaiaggt as solutions of the wave equation for
standing de Broglie waves, i.e. of the Schroedimggration for different potential wells. Note,
that also the boundary states are expressed h#ne bgme way, as in the classical EM theory:

(@) =0, ¢(b)=0, ¢(d)=0, (13.7.5)

Thus, we can say that Schrodinger’s equation iedjo@tion for calculation of resonance states of
nonlinear EM wave in potential wells (resonatordifferent type, in which the boundary of
wave motion are defined by potential energy ofsiystem.

This problem is identical to the problem of stagdieM wave in resonator. The difference
consists only in that theave vector is not constant here, but by some @nwehy depends on
spatial coordinates; in other words, the dispersrefation is here defined by the potential of
system, which varies from a point to point acawyd{13.6.2). Moreover, the mathematical
descriptions would coincide here completely if wegine that medium in the EM resonator can
have dispersion, depending on spatial coordinatéeruthe same law as potential energy in a
potential well of quantum-mechanical problem.

Conclusion. On calculation of the spectra of the el ementary
particles

Thus we showed that the wave spectra in NTEP appdhe same manner as into CED and
QED, but at the same time these spectra are tioeapé elementary particles.

The calculation of own particle spectra in NTEP inggortant peculiarity in comparison with the
calculation of stable states of the patrticle indlternel field, i.e., in field of other particlete
particle itself acts here as potential wéli order to calculate the energy-mass spectruemust
calculate the resonance states of the partick dseesonator.

Additionally, in this case the initial equation rle a nonlinear equation. But as the studies
showed, solution of nonlinear tasks has great madlieal difficulties. In spite of a number of the
successes, final solutions are not obtained umi. n

Therefore we will attempt firstly to obtain the widn on the basis of the resonance conditions,
described above. This way corresponds to calcualaticenergy levels of hydrogen atom in the
early time of development of quantum theory.
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