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Nonlinear Theory of Elementary Particles Part XII: 

The Interaction Description  

Alexander G. Kyriakos* 

Abstract 
In the present article it is shown, that all known interactions of elementary particles (except 

for gravity) have as a basis the electromagnetic interactions. In particular the classical (linear) 

electrodynamics describes only the 4-vector interaction. In the same time the nonlinear 

electrodynamics, or more general, the nonlinear theory of elementary particles (NTEP) 

includes both vector and axial interaction, integrating it into a unified electroweak interaction, 

and also the strong interaction. 
  

Keywords: non-linear quantum theory, vector interaction, axial-vector interaction. 

1. Introduction. The modern state of the interaction description 

In previous articles we have shown, that in the nonlinear electrodynamics, i.e., in theory of 

elementary particles (NTEP), the equations of free particles are mathematically equivalent to the 

equations of quantum field theory. The purpose of present part is to show that the mathematical 

description of interaction in NTEP are also equivalent to that in quantum theory.   

 

1.1 The force and energy forms of the interaction description  

 

It is known that interactions define the most important characteristics of the matter motion. They 

are included in all equations of motion: equations of Newton, Schrödinger, Dirac, equations of 

weak and strong interactions, etc.  

 

As it is known, interaction can be expressed as force and as energy. The force form of the 

description of interaction is integral, and the energy form relatively to the last is differential. These 

forms are interconnected and can be defined one through another. In classical physics, the force is 

equal to a gradient of potential energy. Generally this dependence is more complex, but is also 

defined by the operation of differentiation. This implies the particularity of the connection of these 

two kinds of interaction description: the full unambiguity of transition from force to energy (and 

on the contrary) does not exist. For example, it is always possible to add to the energy some 

function (at least, a constant) so that the force value does not change.  

 

In modern physics the most general forms of the interaction description are introduced by 

Lagrange and Hamilton approaches (Leech, 1958; Landau and Lifshitz, 1977). 

 

1.2 Lagrangian and Hamiltonian aproaches 

1.2.1 Mechanical system of a rigid body (particles) 
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The Lagrangian mechanics works generaly in n-dimensional configuration space, which includes 

all parameters, defining the state of mechanical system (coordinates of particles, orientation of 

rigid body, etc). A point x in this space draws a curve )(tx  in evolution ( n,...,2,1 , where n  

is a number of independent variables). For such curves a functional  )(txS , called action, is 

introduced. Only those curves, on which the action reaches an extremum, correspond to real 

evolution (Hamilton principle).  

 

Usually consideration is connected to functional of the form: 

 
2

1

t

t

dtLS ,   (12.1.1) 

with Lagrange function   xxLL ,  dependent only on generalized coordinates and velocities 

 xx , . For one material point this expression will be written down as follows 

     trLtrrLL ,,,, 


 ,   (12.1.2) 

where  tr ,,


 are radius-vector, velocity and time correspondingly. 

 

The condition of extremum for the action  

 0
2

1



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

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
 

t

t

dtLS  ,   (12.1.3) 

leads to Euler-Lagrange equations  

 0









ii x

L

x

L

dt

d


,   (12.1.4) 

This is (normally) a system of second order differential equations, with solutions uniquely defined 

by initial coordinates and velocities )0(),0(  xx  .  

In Hamiltonian’s mechanics approach the state of the system is described by point  px,  in 2n-

dimensional phase space, where p is momenta of particle. The dynamics is defined by a function 

 px, , called Hamilton function, via equations:  

 
x

p
p

x








  , ,   (12.1.5) 

Transition from Lagrange’s to Hamilton’s function mechanics is performed by Legendre 

transformation. It defines the momenta and Hamilton’s function as:  

   Lxppx
x

L
xxp 




 


 ),(,, ,   (12.1.6) 

The Hamilton function depends on coordinates and momenta, so one should express the velocities 

via momenta, inverting the definitions of momenta: ),( pxxx   , and substitute the result into 

Hamilton’s function.  

 

1.2.2 Continuous systems (fields) 

 

For fields the Lagrange function is defined by density of Lagrange function L in following way:  
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  LdL ,   (12.1.7)    

where d is an element of spatial volume. The Lagrange function density or Lagrangian depends 

generally on field functions and their derivatives, coordinates and time:  

 













 








 x

x
LL ,, ,  (12.1.8) 

where  are the field functions, N,...,2,1  ( N is a number of the functions); n,...,2,1  ( n  

is a number of independent variables). In this case the action will be written down as follows: 

 
2

1

...21

t

t

ndxdxLdxS ,   (12.1.9) 

and Euler-Lagrange equations in case of the continuous system (field) become: 

 0
1





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



 

 

LL

dx

n

i 
,   (12.1.10) 

 

In the present time the Lagrangians are selected on base of some general requirements of 

symmetry (invariance). 

 

The approach of Hamilton in case of a continuous system performs by following way. Putting the 

value  named density of Hamilton function, or Hamiltonian of the system:  

 













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


 


 x

x
,,, ,   (12.1.11) 

so that 

  d ,   (12.1.12) 

the Legendre transformation can be now writen down as: 

 











L
, L 



  ,    (12.1.13) 

where     is canonical momentum density. Then the dynamics is defined by Hamiltonian via 

equations:  

 
x

x








 


 , ,   (12.1.14) 

 

Hamilton’s function defines the full energy of system. When Hamiltonian is known, it is possible 

to express through it all other characteristics of system. This approach is most frequently used for 

the description of elementary particles and fields.  

 

1.3  Structure of Lagrangian and Hamiltonians of interaction systems 

 

Numerous testing established that any Lagrangian can be presented   in the form: 

     intLLL free  ,  (12.1.15)  
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where the first term  freeL  answers the sum of the Lagrangian of free particles, and the second 

term intL   answers their interaction by pairs with each other.  

 

Analogously can be recorded the Hamiltonian of the system of the interacting bodies (particles): 

 int free ,   (12.1.16) 

 

In the classical mechanics free particles are usually the moving solid bodies (material points). As 

interactions are here considered in essence only elastic and gravitational interactions (note that the 

development of the relativistic theory of gravity showed that would be more correctly to examine 

the gravitational field and gravitational interaction as the independent areas of physics). 

 

In the classical electrodynamics the system contains electromagnetic fields and charged particles. 

The Lagrangian and Hamiltonian of first and second systems are considered as free, without taking 

into account their interactions. With respect to their interactions there is a special feature: since in 

the usual cases the EM fields do not interact with each other, Lagrangian of interaction includes 

only interaction of EM field with the charge particles. 

 

In the quantum field theory (Kaempffer, of 1965; Ryder, 1985), as in the other cases, the 

Lagrangian is postulated as sum (12.1.15). But the quantum field theory has the following special 

feature: here fields and particles are considered equally. Therefore the boundary between 

Lagrangian of free particles and Lagrangian of interaction become relative. Lagrangian of free 

particles is written as the sum of the Lagrangian of each free particle, but some of these particles 

can be considered as the interaction fields.  

 

For example, in QED we have: 

    LLL efree  ,   (12.1.17) 

where LLe ,   are the Lagrangians of free electron and photon respectively. But photon is 

simultaneously both particle and interaction carrier. 

 

In this case Lagrangian of free electron is selected to give the Dirac electron equation. Lagrangian 

of interaction is postulated in the form “current-on-current” interaction (or it is derived on the 

basis of the gauge invariance principle). 

 

In other divisions of Standard Model (SM) the Lagrangian of free particles and their interaction 

are the generalization of Lagrangian of QED (Ryder, 1985; Frauenfelder and Henley, 1974). 

 

1.4 Some significant Lagrangians and Hamiltonians of classical physics 

1.4.1 Conservative systems of the material bodies 

 

As “conservative” we call here the narrow class of the systems, for which the forces are potential 

gradients. For such systems of material bodies (paticles), it was established that Lagrange's 

function could be expressed as follows: 

       xVxxTxxLL   ,, ,   (12.1.18) 
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where    



n m

xxT
1

2

2
,









  is total kinetic energy of the system of n  particles; 

   nxxxVxV ,...,, 21  is potential energy of system. Here the first term answers energy of free 

particles and corresponds to freeL , and the second term answers interaction energy of particles and 

corresponds to intL .   

 

Thus the expression (12.1.18) can be rewritten as: 

 intLLL free  ,   (12.1.19)  

Moreover force is expressed as gradient of potential energy )(rgradVF


 . 

 

Note also that in relativistic mechanics the correct equations of motion is obtained only when 

instead of kinetic energy the value is entered:  

 


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


2

2
2

0 11
c

cmK


,   (12.1.20) 

which is named the kinetic potential. 

 

From Euler-Lagrange equations we obtain the equations of motion of material point (which are 

practically the Newton equations of motion): 

 
iii x

V
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T

x

T

dt

d
















,   (12.1.21) 

where i

i

Q
x

T

dt

d







 are inertial forces; Kc

i

Q
x

T





 are the generalized form of centrifugal and 

Coriolis forces; Q
x

V

i





 are the generalized forces of interaction. 

 

1.4.2 Electrodynamics. Non-conservative forces 

 

In the vacuum Lagrangian of classical electrodynamics (Landau and Lifshitz, 1977; Jackson, 

1999) looks like sum (12.1.15). The Lagrangian: 

  22

8

1

16

1
HEFFL free







 ,   (12.1.22) 

answers free electromagnetic field. The Lagrangian of interaction describes only interaction of 

EM field and charged particles: 

 


 AjL int  

Expression for the Hamiltonian of free EM field has the form: 

  22

8

1
HEfree





,   (12.1.23) 

 

The Hamiltonian of interaction (i.e. the energy density of interaction) is written as: 
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  Aj


 
2

1
int ,   (12.1.24) 

In nature it is not always possible to assign the forces in the form of gradient of potential. In 

particular, this does not occur in the electrodynamics. But surprisingly (Leech, 1958) in this case 

the generalized components of force can be assigned so that it keep the form of Euler-Lagrange 

equations. 

 

It appears that instead of potential    nxxxVxV ,...,, 21 , which does not dependent on time, it is 

often possible to set the function   xxMM ,  so that the generalized force, instead of 

i

i
x

V
Q




 , can be written as: 
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



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





'

,   (12.1.25) 

 

For example in such important case as electrodynamics the Lorentz  force can be expressed in the 

above form  if as M -function we will choose the following expression: 

 




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
 A

c
eM




1
,   (12.1.26) 

where   is a scalar potential, and A


 is a vector potential of an electromagnetic field. Actually, 

substituting this expression in (12.1.20), we will obtain: 
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1
,  (12.1.27) 

 

By differentiation of (12.1.27) and taking into account that AB


  and 
t

A

c
E







 1
  , it is 

easy to obtain the usual expression of Lorentz force: 

 Bj
c

EeB
c

e
EeF




1
 ,   (12.1.28) 

Since in this case 

   xxML ,int  ,   (12.1.29) 

we have that the M -function is the energy of the electromagnetic interaction, corresponding to 

Lorentz force. In fact, using known relationships of  4-current and 4-potential: 

  


,iceeI  ,   (12.1.30) 

  AiA


,  ,   (12.1.31) 

we obtain the known expression of the current-on-current interaction energy:  

      AIM  ,    (12.1.32) 

Using 4-current density: 

  


,icj  ,   (12.1.33) 
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we can introduce the M -dencity: 

      AjM  ,    (12.1.34) 

 

1.5 About  the interaction description in the quantum field theory  

 

In quantum field theory the general Lagrangian is postulated in form (12.1.15). But there are no 

enough proved arguments here (Kaempffer, 1965), which allow to deduce theoretically the real 

interactions. 

 

The rule of replacement in the presence of an electromagnetic field p  with   Ajp   is 

known for a long time. It is successfully applied to the correct description of experimental 

situations, when the representation of an electromagnetic field through classical potentials is 

meaningful. The substantiation of this choice can be made, proceeding from the gauge invariance 

principle. But the gauge invariance is introduced in this case as postulate, which does not explain 

the matter. 

 

Let us note something that is important in connection with our theory.  It is noted (Kaempffer, 

1965) that derivative of phase  x  of  -function can be expressed through the electromagnetic 

potentials as follows: 

    




eA

x





,   (12.1.35) 

This relationship leads to some observable effects, whose sense for the understanding of 

interaction has been realized from Aharonov and Bohm (Aharonov and Bohm, 1959). In 

connection with NTEP it is interesting also (Kaempffer, 1965) that it is possible to formulate the 

QED without the potentials if we recognize that non-locality is inherent to the concept of the 

phase, which depends on the integration way, as Mandelstam has shown (Mandelstam, 1962). 

Then it is more reasonable to consider the Bohm-Aharonov experiment as the instruction of 

essential non-locality of  - function in  EM field. 

 

Note that the interaction of the type (10.1.34) is called the vector interaction in quantum field 

theory. Besides this, there is the axial-vector interaction, which, together with the vector 

interaction, defines the so-called electro-weak interactions of elementary particles 

 

1.5.1 Some features of the description of the interactions in quantum field 
theory 

In the classical field theory coordinate representation of the material particles and their 

interactions is used. In quantum field theory, in contrast to the classical field theory, there is the 

possibility of more than one equivalent descriptions of the motion of particles and their 

interactions. In particular, the use of Laplace or Fourier transformations allows to pass from the 

coordinate representation to the momentum representation (in other words, we can talk about the 

transition from coordinate space to momentum space). 

 

Currently, in the QFT the momentum representation is mainly used. As we noted, this creates 

difficulties in the modern theory (in particular, the renormalization procedure is then needed). In 
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NTEP we use the coordinate representation of the wave functions and energy (potential) 

interactions (see previous part of the study). 

 

In this section we will make a brief comparison of the interaction description in both views 

(Lokhtin, 2009; Valecka, 2008). 

 

The complete theory - quantum field theory - must incorporate both QM and relativity and 

individual forces are described here by QFT Lagrangians which essentially tell us, which particles 

interact with which other particles. But in special cases these equations coincide with the classical 

non-relativistic equations. 

 

For example, the Coulomb force equation is classical (both non-quantum mechanical and 

nonrelativistic) limit of QM theory. As for gravitation Newton law, that can be derived from 

general relativity. Strong force is confining, and we can not ever observe individual color charged 

particles; so we can not really have a macroscopic equation for them. But at the level of quantum 

hadron dynamics the Yukawa potential, though it is a semi-classical approximation, is good 

enough for experiment description. Etc. 

 

In the QFT in contrast to classical physics the forces among the elementary particles are 

considered as the exchange forces, i.e., the forces produced by the exchange of force carrier 

particles: photons, intermediate bosons and gluons. 

 

Electromagnetic forces  

 

In coordinate space r , the interaction energy is: 

  
r

ee
rem

1

4

21


 


 ,    (12.1.36) 

To get the force related to this we would take the derivative in r: 

  
r

r

r

ee
rgradF em 




2

21 1

4
  ,   (12.1.37) 

 

In momentum space q  the energy is written as: 

 2

3 ~)()(
q

rderq rqi

emem


 




,   (12.1.38)  

137/1  is electromagnetic constant. 

 

The exchange of energy (or force action) is realized by the virtual photons’ exchange. 

 

Strong interactions  

 

In coordinate space 

  
 

r

rg
r s

strong

1

4

2






 ,   (12.1.39) 

In the momentum space it is: 
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 2

3 ~)()(
q

rderq strqi

stst


 




,    (12.1.40)  

st  is strong constant. 

 

The exchange of energy (or force action) is realized by the virtual gluons’ exchange. 

 

From the study of the spectrum of quarkonium (bound system of quark and antiquark) and the 

comparison with positronium one finds as potential for the strong force 

  
 

kr
r

rcg
r s

st 
1

3

4



 ,    (12.1.41) 

where the constant k  determines the field energy per unit length and is called string tension. For 

short distances r ≈ 0,4 fm this resembles the Coulomb law, while for large distances the 

confinement  factor kr  dominates.  

 

     Yukawa potential of nuclear force 

 

The nuclear force is now understood as a residual effect of the more powerful strong force, or 

strong interaction. This force is mediated by particles called pions:  

   rMn
nuc

pie
rc

g
r




1

4 2

2





,    (12.1.42) 

where piM  is roughly the pion mass and ng  is an effective coupling constant.  

 

Weak force  

 

In coordinate space 

   rM

weak
Ze

r

gg
r




1

4

21





,    (12.1.43) 

 

In momentum space 

 22

3 ~)()(
Z

wrqi

ww
Mq

rderq


 
 




 ,    (12.1.44)    

21~ ZF MG  is the Fermi constant of weak interaction. 

The exchange of energy (or force action) is realized by the virtual Z bosons’ exchange. 

 

   Gravitational Newton force  

 

For complitness we also add to this list the gravitational interaction. 

 

In coordinate space 

  
r

mm
Gr Ngr

21


 ,    (12.1.45) 

In momentum space 
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 2

2113 ~)()(
q

mm
Grderq N

rqi

grgr 




 ,    (12.1.46) 

The exchange of energy (or force action) is realized by the virtual gravitons’ exchange. 

NG  is the gravitation constant.  

 

The target of following sections is to show that NTEP allows us to obtain the mathematical 

description of these interactions. 

 

 

2. The derivation of the Lagrangian and the Hamiltonian of 4-vector 
interactions 

2.1 The theorem of the Lagrangian and Hamiltonian structure of the vector 
interaction 

 

As we showed, special feature of NTEP is the unified description of all elementary particles as the 

nonlinear quantized electromagnetic wave fields. This result gives grounds to assume that the 

Lagrangian and Hamiltonian of non-linear electromagnetic field must describe all sides of the 

behavior of particles, including their interaction. 

 

We will prove below the theorem, which confirms this assumption. The proof of theorem is based 

on the properties of Lagrangian, which follow from the above brief review. A Lagrangian is a 

very convenient tool for the operating with composite systems: in the case of the joining up of 

several non-interacting bodies into the system (or even several systems into one), their Lagrange 

functions are added. With the appearance of interactions between the bodies, the corresponding 

interaction energy of these particles is added into Lagrange's function. The same can be said of the 

Hamiltonian. 

 

We will accept as initial the expressions of Lagrangian and Hamiltonian for the free 

electromagnetic field (particle): 

  22

8

1
HEL





,   (12.2.1) 

  22

8

1
HE





,   (12.2.2) 

 

Let us show that within the framework of NTEP the Lagrangian (12.2.1) and Hamiltonian (12.2.2) 

allow to obtain the description not only of free fields, but also interactions.  

 

For this purpose we prove the theorem, called by us  the theorem of the interaction structure: 

 

Due to the principle of superposition of fields the Lagrangian (Hamiltonian) of the system of 

interacting fields is automatically divided into two parts: the part, which corresponds to free 

fields, and the part, which corresponds to their interaction; in this case : 
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1.The Lagrangian (Hamiltonian) of the system of free particles is defined by the sum of the 

Lagrangians (Hamiltonians) of the free particles, each of which is determined by the squares of 

its own fields; 

 

2. Lagrangian (Hamiltonian) of interaction of particles is the sum of the Lagrangians 

(Hamiltonians), each of which describes interaction only of one pair of the particles, does not 

depend on the presence of other particles and is determined by cross product of their fields.  

 

Let us first prove the general formula of theorem. 

 

Let the system consists of two parts (particles) 1 and 2, which have both the electric and magnetic 

fields: 11, HE


 and 22 , HE


. According to the superposition principle a total field of system of 

particles is equal to the sum of the fields, created by each particle separately: 21 EEE


 , 

21 HHH


 . 

 

Thus, for Lagrangian and Hamiltonian of two interacting particles we obtain: 

       2121

2

2

2

2

2

1

2

1

22

8

1

8

1

8

1

8

1
HHEEHEHEHEL





,  (12.2.3) 

       2121

2

2

2

2

2

1

2

1

22

8

1

8

1

8

1

8

1
HHEEHEHEHE





, (12.2.4) 

 

As we see, because of the principle of superposition of fields, Lagrangian (Hamiltonian) of the 

particles’ system is actually divided into two parts, one of which is determined only by own fields 

of particles, and the second is determined by the fields of the pairs of particles. 

 

It is not difficult to see that the cross terms are determined by the fields, which belong always to 

two different particles. 

 

Now we need prove that these terms determine the interaction of particles. 

 

2.1 The description of interaction of two charge particles  

 

Taking into account the known results (Landau and Lifshitz, 1977; Jackson, 1999; Brillouin, 

1970) we will prove first the above theorem for the case of two charged particles.  

 

2.1.1. The description of interaction in case of rest particles  

 

Let us consider first a case when only  electrostatic fields are present. 

 

Let we have two charges 1q  and 2q , situated on distance ar  from each other. The values of field 

in any point of space P from charges, which distances from P are determined with radius-vectors 

1r


 and 2r


, are: 
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0

12

1

1
1 r

r

q
E


 ,   

0

22

2

2
2 r

r

q
E


 ,   (12.2.5) 

where 
0

1r


 and  
0

2r


 are the unit vectors of corresponding radius-vectors, and 1r  and 2r  are their 

absolute values. The energy density of an electric field in point P is equal to: 

 

   






cos
8

2
88

2
8

1

8

1

8

1

2

2

2

1
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2

2

2
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1

2

1

2

221

2

1

2

21

2

rr

qq

r

q

r

q

EEEEEEE






,  (12.2.6) 

where   is a angle between vectors 1r


 and  2r


. Thus the Lagrangian of  total field can be written 

down as: 

 1221 LLLL  ,   (12.2.7) 

where  
4

1

2

12

11
88

1

r

q
EL





,  

4

2

2

22

22
88

1

r

q
EL





,  


cos

8
2

4

1
2

2

2

1

21
2112

rr

qq
EEL 


. 

 

Here the first and second terms obviously represent the Lagrangian of free particles (fields). To 

find out the meaning of third term, we will calculate the Lagrange function, corresponding to this 

term, using (12.1.7). Since 222  


gradE , where 
2

2
2

r

q
  is static potential for the 

second charge, we will obtain: 

   


dEL 12
4

1 
,   (12.2.8) 

 

Integrating by parts, we obtain: 

  












dEEEEdEL zyx


2212

4

1
)(

4

1

4

1
,  (12.2.9) 

 

Here the first term is equal to zero, and in the second term, according to Maxwell we have: 

 eE 4


,   (12.2.10) 

where e  is the density of electric charge 1q . Then, accepting, that ao rr  , we obtain: 

 eL 12 ,   (12.2.11) 

This means that the Lagrangian, which is  adequated to the third term, is Lagrangian of interaction 

of two charges and has the form of a current - current interaction for the case of a static field. 

 

2.1.2 The description of interaction in case of moving particles 

 

Now we will consider the Lagrangian of two interacting charges, which are in motion. Here 

together with electric field the magnetic field will also appear. Thus, we should analyze a general 

view of the Lagrangian in case of any motion of electric charges 
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First of all, a question arises of whether the electric field varies in case that charges move. This 

question can be formulated in more general sense: will the Gauss theorem be true in case when 

the charges move? The experiment answers positively (Purcell, 1975). Hence, the above-stated 

analysis, concerning static electric field, is true in case of moving charges. Thus, it is enough to 

analyze further only the term of the general Lagrangian, which contains a magnetic field.  

 

In point P, the magnetic fields from each particle have the form: 

  0

12

1

1
1 r

r

q
H


  ,  0

22

2

2
2 r

r

q
H


  ,   (12.2.12) 

where 


 is the particle velocity. Then the energy density will be 
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















,  (12.2.13) 

 

The result  (12.2.13) can be rewritten as: 

 1221 LLLL  ,   (12.2.14) 

where 2

11
8

1
HL



 , 2

22
8

1
HL



  are Lagrangian of free particles, and according to our 

supposition the term 2112
4

1
HHL





 is the Lagrangian of interaction. This fact follows from 

direct calculating of the Lagrangian: 

  dLL 1212 ,   (12.2.15) 

 

Since 22 AH


 , where 2

2

2
2

2

2
2

11
d

r

j

c
r

r

i

c
A o






 is the vector potential of current of the second 

charge, we will obtain:  

   


dHAL 1212
4

1 
,   (12.2.16) 

 

Integrating by parts in scalar form, we obtain: 

     






dHAHAL

nl

ml


2

,

212
4

1

4

1
,   (12.2.17) 

where     mlzyxmzyxl  ,,,,,,  and under the sum the signs are alternated. Here the first 

term is equal to zero, and in the second term according to Maxwell we have: 

 j
c

H
 4

 ,   (12.2.18) 

Then we obtain: 

 int12

1
LAj

c
L 


,   (12.2.19) 
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This means that the Lagrangian, relatively to magnetic fields of two moving charges, has the form 

of current-on- current interaction. 

 

So, generally we obtain that the interaction Lagrangian of two moving charge particles is defined 

by the commutator of the electric and magnetic fields of two particles, and can be written down in 

the form of a current-on-current interaction: 

  AjL int ,   (12.2.20) 

 

Obviously, in this case the general Hamilton function of interactions will be written down as 

follows: 

   A
c

q
qdAj


  

2

1
int ,   (12.2.21) 

 

2.3 Consequences of the theorem 

 

We have shown that the cross product of fields in Lagrangian (Hamiltonian) corresponds to a 

current-on-current interaction form. From this the next important consequences follow:  

 

1. The full energy of two interacting objects is bigger than the sum of energies of free objects, 

and the energy difference corresponds to the energy of cross product of  fields. 

 

An important question arises: how the interaction energy of two objects is divided between them?  

 

Let’s consider one concrete case of electric field. The full of energy density of two interacting 

particles looks like: 

   oo uuuEEu 2int1

2

21
8

1





,  (12.2.22) 

where  2

11
8

1
Eu o




  and  2

22
8

1
Eu o




  are the energy densities of first and second particles in a 

free state respectively, and  1221int
8

1
EEEEu





  is the density of interaction energy of these 

particles.  

 

2. Since both components 211int
8

1
EEu



  and  122int

8

1
EEu



  in the above formula are 

equal: 

 2int1int uu  ,   (12.2.23) 

we can accept that the interaction energy is divided fifty-fifty between two interacting particles. 

Then the full energy density of each interacting particles is equal to  21

2

11
8

1
EEEu





  for first 

particle, and  to  21

2

22
8

1
EEEu





   for second particle. 
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Since the energy is defined  as 



0

2

1
 ud

c
, the same conclusion refers also to the energies of 

rest and interacting particles.  

 

3. From above, in conformity with the known expression 
2c

m


 , it follows also that the mass 

of each interacting particle increases in comparison with the mass of  free particle on half value 

of the term of the field cross product. 

 

In other words, the mass of interaction of two particles divides fifty-fifty between them so that 

2int1int mm  , and for the masses of interacting particles we have 

  2int0221int011 , mmmmmm  ,   (12.2.24) 

where 01m  and 02m  the rest masses of particles without interaction. 

 

3. Vector electromagnetic interaction as the basis of the 
interactions in macro-word 

3.1 Interaction description of systems of many charge particles  

 

In case when the system consists of a number of charged particles of both (+) and (-)  signs and 

different sizes, we receive the object, possessing various new electromagnetic properties. 

 

As it is known, the system of moving charges possesses in general the electromagnetic moments. 

In some cases the total charge of such system (which in this case are also named zero moments of 

a system) can be equal to zero, while other moments are not. This means that these systems are 

capable to interact due to other moments. The interaction energy of such systems is much lower 

than the energy of interaction of the charged systems, but is not equal to zero. For example, the 

atoms, being the neutral objects, nevertheless are capable to interact between themselves by 

various forces, which frequently are named Van der Waals forces. In QM these forces depend 

additionally on spin orientation and other quantum parameters. 

 

Since in framework of NTEP the neutral particles are an electromagnetic fields, their interactions 

must also described by the formula of a current-on-current interaction. 

 

For description of the charge system the potentials are usually used.  As it is known, the use of 

potentials facilitates the mathematical analysis of electrodynamics problems. Since in the NTEP 

instead of potentials the strengths of electromagnetic field is considered as wave function, we 

remember that in electrodynamics the interaction can be written through field strengths. In general 

case (Bredov, Ruma’ntsev et al, 1985) the electromagnetic fields of a moving charge can be 

described as following: 
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Each of these expressions consists of two components. The first components of (12.3.1)and 

(12.3.2) forms quasi-stationary fields, which change in space as 2R  and does not contain the 

acceleration of a charge. Hence, the quasi-stationary field remains all time connected with a 

particle and does not create energy flax on infinity.  

 

The second components describe a wave field of radiation: it is proportional to acceleration   and 

decreases as 1R . It is easy to show, that in this case the energy flax  decreases as 2R . Thus on 

large distances from a particle in expressions (12.3.1)-(12.3.2) only the second terms remains, 

named wave field. This means that the electromagnetic perturbations can propagate from charge 

particle to the infinity. Due to these fields, i.e. electromagnetic waves, the particle systems interact 

with each other on a long distance.  

 

The description of charged particles’ system by means of potentials is more often, although it  have 

mathematical advantages only. In general case of arbitrarily moving charges we obtain the so-

called  Lienar - Wiechert  potentials: 

 '

)/1(
),(

tcncR

e
trA










 ,   (12.3.3) 
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tcncR

e
tr


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


 ,   (12.3.4) 

where )( 'ts


  are the coordinates of the particle, r


 are the coordinates of the observation point, 

)()( tst 
  is its velocity, e  is the charge, )()( '' tsrtR


  and 't  is the retarded moment of 

time, which is defined by the relation: 

 )()( '' tsrttc


 ,   (12.3.5) 

so that difference ctsrtt /)( '' 
  represents the time of distribution of the electromagnetic 

perturbation from the particle up to an observation point of field. 

 

3.2 The case of stationary system of electric charges 

 

In particular, for the scalar potential in large distances from the system of charges, we have the 

expansion: 

 ...
2

)(
53


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
r

xxQ

r

rp

r

q
r






,   (12.3.6) 

where in case of continuous distribution of charges we have:  ')'( dVrq   is the full charge of 

the system,  ')'(' dVrrp 


 is the dipole moment of the system, 

  ')'''3)('( dVrxxrQ      is the tensor of the quadrupole moment of the system of 

charges, etc.  (in case of a discrete system of point charges we have sums instead of integrals). 

 

If  0q  then the system is neutral and is described by other electrical moments, which are not 

zero.   
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The interactions that occur between the neutral systems of charges play an important role in the 

existence of real forms of matter: elementary particles, atoms and molecules. 

 

In the case of interactions between two or more molecules are called intermolecular interactions 

(the interactions between the atoms within a molecule are called intramolecular interactions).  

Intermolecular interactions occur between all types of molecules or ions in all states of matter.  

They have range from the strong, long-distance electrical attractions and repulsions between ions 

to the relatively weak dispersion forces.  The various types of interactions are classified as (in 

order of decreasing strength of the interactions): ion - ion, ion - dipole, dipole - dipole, ion - 

induced dipole, dipole - induced dipole, dispersion forces, etc. They can be often explained using 

a simple classical electrodynamics approach, but for more accuracy a quantum mechanical 

approach needs. 

 

 

4. About the Newton dynamics laws 

 

Let’s show that in framework of NTEP the consequences of the above-stated theorem are the 

equations of classical mechanics (Leech, 1958).  

 

4.1 First Newton's law (inertia law) 

 

First Newton’s law can be formulated as follows: “An object at rest or moving at constant 

velocity will continue to do so unless acted upon by an external force”. In this form this law can 

be considered as the consequence of the second Newton’s law (although here there are some 

difficulties, which there is no sense to examine in this case). 

 

Obviously, an inertial motion is accomplished only when there is no energy loss. Motion without 

energy loss is characteristic of “linear” photon motion. Then, a neutral particle, formed by the 

rotation of photon fields, must also move without energy loss. It is possible to assume that this 

motion must be described by the theory, related to the theory of superfluidity. Since nonlinear 

equations of NTEP reveal relationship with the equations of superconductivity and superfluidity, 

our assumption has a base. 

 

4.2. The second law of Newton  

 

According to the second Newton’s law we have 

  iF
dt

pd 
,   (12.5.1) 

where p


 is a linear momentum of the particle motion,  iF


 are all forces acted on the particle.  

 

For particles in electromagnetic field the equation (12.3.1) follows from relativistic Lagrangian of 

the charge particle in the electromagnetic fields (see e.g. (Bo Thide, 2002; Jackson, 1999)). If the 

question is only about the electromagnetic field without particles, in this case  “The momentum 

theorem” exists, which shows the validity of the Newton law concerning the electromagnetic field 
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as a material carrier. It is understood that in framework of NTEP “The momentum theorem” can 

be easy to prove. 

 

We should also remind that according to Ehrenfest theorem (Schiff, 1955) it is possible from 

Dirac equation to obtain the Newton equation (12.3.1) (Leech, 1958; Landau and Lifshitz, 1977; 

Schiff, 1955). Since the Dirac equation coincides precisely with the electron equation of NTEP, it 

is possible to assert that Ehrenfest theorem proves that the equation of Newton also follows from 

NTEP. 

 

4.3 Third Newton’s law 

 

Recall Newton's Third Law: “For every action there is an equal and opposite reaction”. Let us 

show that third Newton’s law follows from the features of electromagnetic theory. Actually, 

taking into account the expression (12.1.29), we can write:  

 M
2

1
2int1int   ,    (12.5.2) 

 

On the base (12.1.25) from (12.3.5) it follows that action and counteraction forces are equal and 

have opposite directions 21 FF


  in accordance with  Newton's Third Law . 

 

5. Connection of de Broglie’s waves refraction index with 
Hamiltonian 

In frameworks of NTEP the equations of interaction of the electron with other charged particles 

(or, in other words, the equations of the electron motion in the field of other particle) can be 

presented in form of the equations of the classical electrodynamics of medium: 

  e

ex

e jj
c

Hrot
t

E

c









 41
,        (12.5.1) 

  m

ex

m jj
c

Erot
t

H

c









 41
,          (12.5.2) 

where me jj


,  are the electric and magnetic current densities of the particle, m

ex

e

ex jj


,  are the 

external current densities, which caused by the interaction of the given particle with other 

particles. In case if other particles (including also the virtual particles of the physical vacuum) 

form a medium, this equations can be presented as the electromagnetic theory of polarized 

medium (Jackson, 1999; Purcell, 1975; Bo Thide, 2002). In this case the external currents can be 

represented in the following way: 

 Eij e

ex

e

ex


    (12.5.3) 

  Hij m

ex

m

ex


    (12.5.4) 

where e

ex  and m

ex  can be conditionally named  electroconductivity and magnetoconductivity in 

the external medium. 

 

The Hamiltonian of Dirac’s electron theory  is following: 
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    exexo pcmcpc

 ˆˆˆˆˆˆ 2 ,    (12.5.5) 

 

Using (12.5.2) we can obtain the NTEP representation of (12.5.5), which we will conditionally 

write in the form:  

    me

ex

me jj
c

HErot ,,4
,ˆ








,   (12.5.5’) 

 

The expression (12.5.5’) show that the connection of Hamiltonian with above currents (12.5.3) and 

(12.5.4) and correspondingly with the features of external medium ex  and ex  exists. 

 

Due to above result in non-relativistic case the Schroedinger equation with an external field can be 

written down through a "quantum" refraction index of medium. Conformity between 

electrodynamics of optical waves and electrodynamics of de Broglie waves is the most evident 

look for the stationary Schroedinger equation. Actually, the stationary Schroedinger equation:  

   0
2

int2

2  


m
,   (12.5.6) 

(where the energy   are Hamiltonian eigenvalues,  )(int re   is an interaction energy) is 

similar (Ebert, 1957)  to the optical wave equation, which determinates the light propagation in 

the medium, whose  refraction index changes in space from point to point: 

 0
2

2

0

2 







 






n
,   (12.5.7) 

where  exexrnn  )(  is a refraction index,   0   is the light wavelength  in vacuum; and the 

optical wavelength 
n

0   corresponds to the length of the de Broglie wave 

 int2 





m

h

p

h
. 

 

Since the elementary particles of NTEP are the nonlinear electromagnetic waves, from the above 

follows that when particles propagate through the medium, the refraction, diffraction, interference 

of these waves takes place like as for usual light waves. In this case of particles’ interaction the 

interconversion of particles can be considered as a dispersion of the curvilinear waves. Therefore 

we can suppose also that the dispersion matrix of the field theory performs here the same role as a 

dispersion matrix in optics. 

 

To obtain the corresponding relativistic equation is very difficult, since in this case the 

permittivity and permeability compose a tensor and it is not possible to introduce refractive index 

as above. 

 

It is more complicated to perform the introduction of the refractive index in the Dirac equation, 

and in general, probably, impossible (Bredov, Ruma’ntsev et al, 1985). As is known in 

electromagnetic theory the properties of the medium are characterized by complex magnetic and 

electrical permeabilities, through which the refractive index can be expressed only in the 
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particular case. In this case the equations (12.5.1) - (12.5.4) will contain in place of the electric 

and magnetic fields, the induction vectors of electric  EfD


1  and magnetic  HfB


2  fields. 

 

Thus, the introduction of complex permittivity in the equation of NTEP (or in the corresponding 

quantum equations) should be associated with the introduction of additional complex functions, 

reflecting the effect of external or internal fields. 

 

6. The axial-vector interaction 

 

In classical electrodynamics there is only the vector interaction (a vector in this case means a 4-

vector-potential, consisting of a scalar and vector parts). In quantum field theory was observed the 

existence of some different interactions: the axial-vector or the weak interaction, which plays an 

important role in the interactions of elementary particles. In quantum field theory, this interaction, 

as well as a vector is in fact postulated. In the nonlinear theory (Kiryakos. 2010a) an axial-vector 

interaction occurs on the basis of the initial axioms and does not require any additional 

assumptions. We briefly recall this conclusion here. 

 

6.1 The Lagrangian of the nonlinear lepton equation 

 

The Lagrangian of nonlinear theory (see in details (Kyriakos. 2010a)) can be obtained from the 

Lagrangian of Dirac’s linear equation. Using the linear equivalent of the energy-momentum 

conservation law  for the internal (in)  field of particle: 

 inininine Aeepccm


 ˆˆˆ 2  ,   (A) 

where the inner (self) energy in and momentum inp  of lepton can be expressed using the inner 

energy density u  and the inner momentum density g


(or Poynting vector S


) of an EM wave: 

   







0

22

0
8

1
dHEudin


,   (12.6.1)    

   







00

2

0
4

11
dHEdS

c
dgpin


,  (12.6.2)       

Substituting relationship (A) into this equation, we obtain: 

        ininN pcpcL


  ˆˆˆˆ ,       (12.6.3)  

 

We will assume that (12.6.3), taking into account (12.6.1) and (12.6.2), represents the general form 

of the Lagrangian of nonlinear electron theory.  

 

Therefore this Lagrangian, together with the vector interaction must also takes into account the 

weak interaction. In this sense, this Lagrangian is a Lagrangian of electro-weak theory. The 

correctness of this assumption proves the effective Lagrangian form, derived from it below. 
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6.2 The effective Lagrangian of the nonlinear lepton equation (the Heisenberg 
equation) 

 

We can rewrite the equations (12.6.1) and (12.6.2) in the following form: 

                         




0

0

0 



 ududin ,  (12.6.4)       

 




0

0

0 



 dgdgpin


,  (12.6.5)       

where the first terms of equations (12.6.4) and (12.6.5) contain the bulk of own energy and 

momentum of the particle and the second terms are the residual parts of these quantities. 

Obviously, these residual pieces give a small contribution to the total value of the energy and 

momentum. 

 

Taking into account that the solution of Dirac’s equation for a free electron is the plane wave 

   kyti   exp0 ,   (12.6.6)  

we can approximately write (12.6.1) and (12.6.2) as follows: 

 







0
0

0

0

ˆ
8

0

  uudp ,   (12.6.7)       

 







ˆ
8

1 0

020

0

0    c
S

c
gdgp p ,   (12.6.8)      

where 0  is the volume that contains the main part of the semi-photon’s energy. 

 

Using (12.6.7) and (12.6.8), we can represent (12.6.3) in the following quantum form: 

 

       




 

















 

220 ˆ
8

ˆ
2

1

 









 
 cdiv

t
iLN ,  (12.6.9) 

or in the electromagnetic forme: 

  222

2

0

2
 

 

 1

2
gcu

cm
gdiv

t

u

cm
iL

ee

N


















,   (12.6.10) 

 

We can transform here the second term using the known  electrodynamics identity (Lightman Alan 

R. et al.,1975): 

           222222222222
448 HEHEHEHEgcu


 ,  (12.6.11)  

 

What is the physical meaning of this transformation? In (12.6.11), the expression 

   2222 4 HEHE


  is scalar, i.e., is an EM invariant, but the expressions  222 HE


  and 

 24 HE


   are separately not invariants. At the same time the expressions  222 HE


  and 

 2HE


  are individually the invariants of the EM theory. 
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Taking into account electromagnetic representation of the wave function (Kyriakos, 2010b) we can 

represent  the nonlinear part of (12.6.10) in the following form: 

 
 

    2222

22

0 4
8

' HEHE
mc

L N







,  (12.6.12)   

As we can see, it contains only the Maxwell theory invariants. 

 

According to the equation (12.6.9) the quantum form of the Lagrangian density (12.6.12) is: 

    




  

22

0

0 ˆˆ
8

' 


 
NL ,   (12.6.13) 

We can see that in quantum form, the electrodynamics correlation (12.6.11) takes the form of the 

known Fierz identity (Cheng and Li, 1984; 2000):   

        25

2

4

22

0
ˆˆˆˆ   


,   (12.6.14)   

Using (12.6.14), we obtain from (12.6.9): 

     2

5

2

4
ˆˆ

8
ˆ 




 

 


QL ,  (12.6.15) 

As we see the Lagrangian (12.6.15) coincides with the Lagrangian of Nambu – Jona-Lazinio 

(Nambu and Jona-Lazinio, 1961; 1961a). The second term of this Lagrangian describes a vector-

axial-vector (VA) interaction. 

 

What is the physical meaning of expression   5
ˆ ? 

 

 

6.3.  Helicity in fluid mechanics and electrodynamics 

 

The physical meaning of the term    22

5 4ˆ HE


   has been studied in both classical and 

quantum physics. In connection with the geometric (topological) properties, this term is called 

chirality. 

 

In classical physics, the analysis of the physical meaning of this term is based on the mathematical 

similarity between electromagnetic vectors with hydrodynamic vectors. 

 

Kelvin’s vision (Moffatt, 2008) of the role of knotted or linked vortex tubes in a hypothetical ether 

was largely qualitative in character. He correctly perceived that knots and linkages would be 

conserved by virtue of the frozen-in property of vortex lines, but he had no quantitative measure 

of such knottedness or linkage. The simplest such quantitative measure for any localised vorticity 

distribution is in fact provided by its helicity, the integrated scalar product of the vorticity field 


 

and the velocity 


 to which it gives rise:    dh  


. 

 

A similar analysis shown that in the case of free electromagnetic fields, the value  HE


  

corresponds to the above definition (Trueba, Jose L. and Ranada, Antonio F. (2000). In this 

regard, it is called an electromagnetic helicity. 
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In quantum physics (Ternov, 2000) the study of electromagnetic properties of massive neutrinos 

have shown that the electric dipole moment of Dirac neutrinos, as well as the magnetic, has a 

dynamic nature: it depends by complex nonlinear way on the strength of field and particle energy. 

In weak electric and magnetic fields λBH,E 0


   is equal to  

 
2

0λB

HE

9

2



vd  .  

The results of the analysis of neutrino equation in the NTEP showed that the helicity emerges 

as one of the distinguishing characteristics of the neutrino (see in details (Kyriakos, 2011)). 

 

7. The general case of the interaction Lagrangian and Hamiltonian 
of  NTEP  

The Hamiltonian and Lagrangian of the NTEP as the non-linear theory must contain all possible 

invariants of non-linear electromagnetic field theory. Thus we can suppose thate Lagrangian must 

be some function of the field invariants: 

 ),( 21 IIfL L ,       (12.7.1) 

where    HEIHEI


 2

22

1 , . 

 

Hamiltonian is fully defined through the Lagrangian. Thus, if the function (12.7.1) is known, 

using the formulas (12.1.13), it is easy to calculate the Hamiltonian, which will be now the 

function of the various powers of electromagnetic field vectors:  

 ),( HEf


 ,   (12.7.2) 

 

Apparently, for each problem the functions Lf  and f  must have its special form, which is 

unknown before the problem solution. As is known the approximate form of the function f  can 

be found on the basis of Schroedinger’s or Dirac’s wave equation, using the so-called perturbation 

method. It is supposed  here that there is an expansion of the function f  in Taylor–MacLaurent 

power series with unknown expansion coefficient. Then the problem is reduced to the calculation 

of these coefficients. The solution is searched for each term of expansion separately, starting from 

first. Usually this is the problem for a free particle, whose solution is already known. Then using 

the equation with the two first terms, we find the coefficient of the second term. Further using the 

equation for the three first terms, we find the coefficient for the third term of expansion, etc. In 

many cases by this method it is possible to obtain the solution with any desirable accuracy. 

 

In case of function of two variables ),( yxf  the Taylor – MacLaurent  power series nearly to a 

point ),( 00 yx  is: 

 n

k
n

k

Oyxf
y

yy
x

xx
k

yxfyxf 
















 



),()()(
!

1
),(),( 00

1

0000 ,  (12.7.3) 

where 
2

0

2

0 )()( yyxx  , 

y

yxf
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xxyxf

y
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x
xx




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


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
















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)(),()()( 00
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00000 ,  (12.7.4) 
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
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
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
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

, (12.7.5) 

 Etc. (In case when 0,0 00  yx  we obtain the MacLaurent series). 

 

Obviously, for the most types of the functions ),( 21 IIfL  the expansion contains approximately 

the same set of the terms, which distinguish only by the constant coefficients, any of which can be 

equal to zero (as examples  see the expansions of the quantum electrodynamics Lagrangian for 

particle at the present of physical vacuum (Akhiezer and  Berestetskii,. 1965; Schwinger, 1951; 

Weisskopf, 1936). Generally the expansion will look like: 

   '
8

1 22 LBELM 



,    (12.7.6) 

where 

 
      

     ...

'

222322

222222





BEBEBE

BEBEBEBEL







,  (12.7.7) 

is the part, which is responsible for the non-linear interaction (here ,...,,,,   are constants) 

 

Corresponding Hamiltonian will be defined as follows: 

   '
8

1 22 HBEL
E

L
EH

i i

i 








,   (12.7.8) 

where the Hamiltonian part responsible for non-linear interaction is: 

  
    

      ...35

3'ˆ

2222222

22222





BEBEBEBE

BEBEBEH







,   (12.7.9) 

 

It is not difficult to obtain the quantum representation of Hamiltonian (12.7.9) of non-linear theory. 

Replacing the electromagnetic wave field vectors by quantum wave function, we will obtain a 

series of type:  

         ...ˆˆˆˆˆˆˆ
210     kjiijii cc ,(12.7.10) 

where i̂ , j̂ , k̂  are Dirac matrixes, ic  are the coefficients of expansion.  

 

As we see, the terms of Lagrangian and Hamiltonian series contain the same elements, such  as 

     22222 ,, BEBEBE


  and some others. It is possible to assume that each element of 

series has some particular physical sense. In this case it is possible to see the analogy with 

expansion of fields on the electromagnetic moments, and also with decomposition of a S-matrix 

on the elements (Akhiezer and  Berestetskii,, 1965), each of which corresponds to the 

particularities of interaction of separate particles.  
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Conclusions 

The above results show that in framework of NTEP the descriptions of the interactions, used in 

different areas of physics (mechanics, classical electrodynamics, quantum electrodynamics, etc.), 

are electromagnetic. This allows us to speak about NTEP as about the unified field theory of 

elementary particles. We have not considered the gravitational interaction. There are serious 

grounds for believing that it is also a consequence of electromagnetic interaction, but the proof of 

this assertion requires a separate study. 
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