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Abstract

Holography=holomorphy principle allows to solve the extremely nonlinear partial differential equa-
tions for the space-time surfaces exactly by reducing them to algebraic equations involving an iden-
tically vanishing contraction of two holomorphic tensors of different types. In this article, space-time
counterparts for elliptic curves and doubly periodic elliptic functions, in particular Weierstrass func-
tion, are considered as an application of the method.

1 Introduction

Holography = holography principle [5, 2, 3, 4] leads to an explicit construction of the solutions of field
equations by reducing the field equations from extremely nonlinear partial differential equations to alge-
braic equations. In this article, elliptic curves and functions are considered as an application.

1.1 Holography=holomorphy as the basic principle

Holography=holomorphy principle allows to solve the field equations for the space-time surfaces exactly
by reducing them to algebraic equations.

1. Two functions f1 and f2 that depend on the generalized complex coordinates of H = M4×CP2 are
needed to solve the field equations. These functions depend on the two complex coordinates ξ1 and
ξ2 of CP2 and the complex coordinate w of M4 and the hypercomplex coordinate u for which the
coordinate curves are light-like. If the functions are polynomials, denote them f1 ≡ P1 and f2 ≡ P2.

Assume that the Taylor coefficients of these functions are rational or in the expansion of rational
numbers, although this is not necessary either.

2. The condition f1 = 0 defines a 6-D surface in H and so does f2 = 0. This is because the condition
gives two conditions (both real and imaginary parts for fi vanish). These 6-D surfaces are interpreted
as analogs of the twistor bundles corresponding to M4 and CP2. They have fiber which is 2-sphere.
This is the physically motivated assumption, which might require an additional condition stating
that ξ1 and ξ2 are functions of w as analogs of the twistor bundles corresponding to M4 and CP2.
This would define the map mapping the twistor sphere of the twistor space of M4 to the twistor
sphere of the twistor space of CP2 or vice versa. The map need not be a bijection but would be
single valued.

The conditions f1 = 0 and f2 = 0 give a 4-D spacetime surface as the intersection of these surfaces,
identifiable as the base space of both twistor bundle analogies.

3. The equations obtained in this way are algebraic equations rather than partial differential equations.
Solving them numerically is child’s play because they are completely local. TGD is solvable both
analytically and numerically. The importance of this property cannot be overstated.
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4. However, a discretization is needed, which can be number-theoretic and defined by the expansion
of rationals. This is however not necessary if one is interested only in geometry and forgets the
aspects related to algebraic geometry and number theory.

5. Once these algebraic equations have been solved at the discretization points, a discretization for the
spacetime surface has been obtained.

The task is to assign a spacetime surface to this discretization as a differentiable surface. Stan-
dard methods can be found here. A method that produces a surface for which the second partial
derivatives exist because they appear in the curvature tensor.

An analogy is the graph of a function for which the (y, x) pairs are known in a discrete set. One
can connect these points, for example, with straight line segments to obtain a continuous curve.
Polynomial fit gives rise to a smooth curve.

6. It is good to start with, for example, second-degree polynomials P1 and P2 of the generalized
complex coordinates of H.

1.2 How could the solution be constructed in practice?

For simplicity, let’s assume that f1 ≡ P1 and f2 ≡ P2 are polynomials.

1. First, one can solve for instance the equation P2(u,w, ξ1, ξ2) = 0 giving for example ξ2(u,w, ξ1) as
its root. Any complex coordinates w, ξ1 or ξ2 is a possible choice and these choices can correspond to
different roots as space-time regions and all must be considered to get the full picture. A completely
local ordinary algebraic equation is in question so that the situation is infinitely simpler than for
second order partial differential equations. This miracle is a consequence of holomorphy.

2. Substitute ξ2(u,w, ξ1) in P1 to obtain the algebraic function P1(u,w, ξ1, ξ2(u,w, ξ1)) = Q1(u,w, ξ1).

3. Solve ξ1 from the condition Q1 = 0. Now we are dealing with the root of the algebraic function,
but the standard numerical solution is still infinitely easier than for partial differential equations.

After this, the discretization must be completed to get a space-time surface using some method that
produces a surface for which the second partial derivatives are continuous.

Very interesting special cases are polynomials with order not larger than 4 since for these the roots can
be solved explicitly. I have proposed that P2 characterizes the cosmological constant as a correspondence
between the twistor spheres of M4 and CP2 and is characterized by the winding number. In standard
cosmology Λ is a constant of Nature but in TGD it is predicted to have a hierarchy of values. The simplest
relationship would be P2 = ξ2 − wn, n integer. In this case, one can solve ξ2(w) and substitute it to P1

to obtain the condition

P1(ξ1, ξ2(w), w, u) = 0 . (1.1)

If P1 as a polynomial of ξ1 has order lower than 5, the roots of ξ1 can be solved explicitly. Elliptic
curves satisfy the condition

ξ21 − w3 + aw + b = 0 . (1.2)

The projections of the w-plane are doubly periodic curves and therefore of special interest. For P2 =
ξ2 − w2 and P1 = ξ21 − wξ2 + aw + b, the space-time surface would be a 4-D analog of an elliptic curve.
If a and b depend on u, the 3-surface becomes dynamical.

ratpoints3
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2 Elliptic curves as an application

One can test whether the numerical method works when the equation giving ξ1 in terms of w can be
solved analytically. For elliptic curves ξ1 = ξ1(w) , which I have discussed already earlier [1, 2], this is
the case.

2.1 Elliptic curves

The third order polynomial characterizing the elliptic curve (see this) can be be expressed in terms of the
root of a third order polynomial P3(w) as

E : ξ21 = 4(w − e1)(w − e2)(w − e3) , (2.1)

One can choose the complex w in such a manner that the equation contains no term proportional to w2.
This is guaranteed if the condition e1 + e2 + e3 = 0 holds true. In this case one obtains the form

E : ξ21 = 4w3 − g2w − g3 , ,

g2 = −4(e1e2 + e2e3 + e3e1) , g3 = 4e1e2e3 , e1 + e2 + e3 = 0 .
(2.2)

2.2 Connection with Weierstrass elliptic functions

There is a connection with Weierstrass elliptic functions, which satisfy the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 . (2.3)

Clearly, By using z as a complex coordinate instead of w, ξ1(w) and w for the elliptic curve can be
expressed in terms of Weierstrass elliptic function, which is a solution of this differential equation

ξ1(w) = ℘′(z) , w(z) = ℘(z) . (2.4)

Elliptic functions are doubly periodic and using z = ℘−1(w) as a complex coordinate instead of w,
this periodicity becomes manifest. The solution possesses a discrete conformal symmetry consisting of a
discrete subgroup of 2-D translations and this gives rise to a lattice structure. This conforms with the
fact that the elliptic curve, as a compact 2-D surface in the space spanned by coordinates (ξ1, w) has the
topology of a torus and therefore can allow translations as conformal symmetries. This is the case for the
elliptic curves considered.

One can represent torus in a complex plane with coordinate z in terms of Weierstrass elliptic function ℘
having a double periodicity in z-plane as conformal symmetries. The torus corresponds to the fundamental
domain (2-D lattice cell) obtained by identifying the opposite boundaries of the lattice cell. The periods
ω1 and ω2 define non-orthogonal directions and their ratio τ = ω1/ω2 is conformal invariant.

One can solve the fundamental periods ω1 and ω2 in the following way. Define the auxiliary quantities

a0 =
√
e1 − e3, b0 =

√
e1 − e2, c0 =

√
e2 − e3, . (2.5)

The condition e1 + e2 + e3 = 0 allows to eliminate e3 so that one has

a0 =
√
−e2, b0 =

√
e1 − e2, c0 =

√
−e1, . (2.6)
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The fundamental periods ω1 and ω2 for the elliptic curve can be calculated very rapidly by

ω1 =
π

M(a0, b0)
, ω2 =

π

M(c0, ib0)
(2.7)

Or more explicitly

ω1 =
π

M(
√
−e2,

√
e1 − e2)

, ω2 =
π

M(
√
−e1, i

√
e1 − e2)

. (2.8)

Here M(x, y) is defined as arithmo-geometric mean of x and y by a geometric iteration (see this). Assuming
x ≥ y ≥ 0 one has

a0 = x, g0 = y , an+1 = (an + gn)/2, gn+1 =
√

(angn) . (2.9)

At the limit n→∞ one has an+1

simeqan → a and gn+1 ' gn → g and one has a = (a + g)/2 and g =
√
ag implying a = g so that

arithmetic and geometric means are identical. Care is required to take the correct sign of square root at
each step of iteration (positive in the case considered). The iteration generalizes to the complex case and
there probably exist tested programs performing the iteration.

2.3 Elliptic functions and planetary orbits

Weierstrass elliptic functions ℘ are periodic in complex plane and this inspires the question of how
they rate to the formulas for the elliptic planetary orbits in the gravitational potential V (r) = k/r.
Choose the mass unit so that the mass is m = 1. By spherical symmetry, orbits are planar and angular
momentum conservation gives L = r2dφ/dt as a constant of motion. In the radial degree of freedom,
energy conservation E = (dr/dt)2/2− k/r+L2/2r2 gives (dr/dt)2 = E + k/r−L2/r2. By using u = 1/r
as variable, one obtains (du/dt)2 = Eu4 + ku3−L2u2 giving du/dt =

√
Eu4 + ku3 − L2u2, which in turn

gives t =
∫
du/
√
Eu4 + ku3 − L2u2. This gives the planetary orbit as an elliptic integral. The elliptic

integral continued to complex values z of the time coordinate t defines explicitly the inverse of a doubly
periodic elliptic function.

This integrand gives an elliptic function (see this), which is more general than ℘. The integrand
1/

√
(1− c2t2)(1 + E2t2) gives Abelian elliptic functions whereas the integrand 1/

√
(1− t2)(1− k2t2)

gives Jacobi elliptic functions.
The elliptic integral defines the inverse of the Weierstrass elliptic function ℘ only for E = 0 so that

the polynomial under the square root reduces to a third order polynomial. The integrand reduces to
1/u
√
ku− L2. The square root factor vanishes at u0 = L2/k which corresponds to the minimal distance

r between the two masses and u = 0, which corresponds to r =∞. This corresponds to a critical situation
in which elliptic orbit transforms to a parabolic orbit. The absence of periodicity at real axis is consistent
with the double periodicity of ℘ in the complex plane.

One can transform the integrand to a form appearing in ℘ by assuming k = 4 and by making a linear
coordinate change u → v, u = v − v0, and choosing v0 in such a way that the v2 term under the square
root vanishes. The required value of v0 is v0 = −L2/6k. The parameters g2 and g3 in 4v3 − g2v − g3 are
given by g2 = L4/24 and g3 = −L62−53−3.

One can calculate the inverse of z = ℘−1(w) (complex analog of time coordinate) for a complex
argument w (complex analog of the radial coordinate of a planet at the elliptic orbit) by calculating the
complex integral

℘−1(w) =

∫
γ(w0→w)

1√
4w3 − g2w − g3

dw .
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The integration path γ can be chosen in infinitely many ways and a small deformation does not affect
the result. The argument of the square root as a polynomial has three roots and the deformation of the
integration path in such a way that the deformed curve passes over a root of 4w3− g2w− g3, the integral
changes. This gives rise to the infinitely many-valued nature of ℘−1(w). For a root with multiplicity 1, the
integrand has 1/

√
w − w0 type singularity as the end point of a cut and since the cut means discontinuity,

the integral depends on which side of the cut the integration path goes. For a double root there is a pole.
The connection between planetary dynamics and generalized complex surfaces is intriguing and leads

to ask whether the connection is more general so that space-time surfaces defined by the conditions
f1 = 0, f2 = 0 represent some dynamical systems, say periodic systems in spherically symmetric potential.
These surfaces should allow interpretation as closed surfaces of CP2 with coordinates ξ1 and w. These
surfaces are characterized some genus and should correspond to a conformal equivalence class characterized
by Teichmueller parameters (in the case of torus assignable to the elliptic functions there is only one
modular invariant τ defined by the ratio of complex periods). The condition of being closed might require
additional constraints. Could closed surfaces as solutions to the conditions (f1, f2) = (0, 0) correspond to
nonlinear first order differential equations with ξ1 = dE/dz and w = E(z) defining higher genus analogs
of elliptic curves and elliptic functions?
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