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The Twistor Space of H = M 4 × CP2 Allows Lagrangian 6-Surfaces:
What Does this Mean Physically?

Matti Pitkänen 1

Abstract

This article was inspired by the article ”A note on Lagrangian submanifolds of twistor spaces
and their relation to superminimal surfaces” of Reinier Storm. For curiosity, I decided to look at
Lagrangian surfaces in the twistor space of H = M4 × CP2. The 6-D Kähler action of the twistor
space existing only for H = M4 ×CP2 gives by a dimensional reduction rise to 6-D analog of twistor
space assitable to a space-time surface. In the dimensional reduction the action reduces to 4-D Kähler
action plus a volume term characterized by a dynamically determined cosmological constant Λ. One
can identify space-time surfaces, which are Lagrangian minimal surfaces and therefore have a vanishing
Kähler action. If the Kähler structure of M4 is non-trivial as strongly suggested by the notion of
twistor space, these vacuum extremals are products X2×Y 2 of Lagrangian string world sheet X2 and
2-D Lagrangian surface Y 2 of CP2, and are deterministic so that they allow holography. As minimal
surfaces they allow a generalization of holography= holomorphy principle: now the holomorphy is
not induced from that of H but by 2-D nature of X2 and Y 2. Therefore holography=holomorphy
principle generalizes. Λ can vanish and in this case the dimensionally reduced action equals Kähler
action. In this case, vacuum extremals are in question and symplectic transformations generate a
huge number of these surfaces, which in general are not minimal surfaces. Holography= holomorphy
principle is not however lost. Λ = 0 sector contains however only classical vacua and also the modified
gamma matrices appearing in the modified Dirac action vanish so that this sector contributes nothing
to physics.

1 Introduction
I received from Tuomas Sorakivi a link to the article ”A note on Lagrangian submanifolds of twistor
spaces and their relation to superminimal surfaces” [3] (see this). The author of the article is Reinier
Storm from Belgium.

The abstract of the article tells roughly what it is about.
In this paper a bijective correspondence between superminimal surfaces of an oriented Riemannian

4-manifold and particular Lagrangian submanifolds of the twistor space over the 4-manifold is proven.
More explicitly, for every superminimal surface a submanifold of the twistor space is constructed which
is Lagrangian for all the natural almost Hermitian structures on the twistor space. The twistor fibration
restricted to the constructed Lagrangian gives a circle bundle over the superminimal surface. Conversely,
if a submanifold of the twistor space is Lagrangian for all the natural almost Hermitian structures, then
the Lagrangian projects to a superminimal surface and is contained in the Lagrangian constructed from
this surface. In particular this produces many Lagrangian submanifolds of the twistor spaces and with
respect to both the Kähler structure as well as the nearly Kähler structure. Moreover, it is shown that
these Lagrangian submanifolds are minimal submanifolds.

The article examines 2-D minimal surfaces X2 in the 4-D space X4 assumed to have twistor space.
From superminimality which looks somewhat peculiar assumption, it follows that in the twistor space
of X4 (assuming that it exists) there is a Lagrangian surface, which is also a minimal surface. Super-
minimality means that the normal spaces of the 2-surface form a 1-D curve in the space of all normal
spaces, which for the Euclidian signature is the 4-D Grassmannian SO(4)/SO(2) × SO(2) = S2 × S2
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(SO(1, 3)/SO(1, 1) × SO(2) for M4). Superminimal surface is therefore highly flattened. Of course,
already the minimal surface property favours flatness.

It is interesting to examine the generalization of the result to TGD because the interpretation for La-
grange manifolds, which are vacuum extremals for the Kähler action with a vanishing induced symplectic
form, has remained open. Certainly, they do not fulfill the holomorphy=holography assumption, i.e. they
are not surfaces for which the generalized complex structure in H induces a corresponding structure at
4-surface.

Superminimal surfaces look like the opposite of holomorphic minimal surfaces (this turned out to be
an illusion!). In TGD, they give a huge vacuum degeneracy and non-determinism for the pure Kähler
action, which has turned out to be mathematically undesirable. The cosmological constant Λ, which
follows from twistoralization, was thought to correct the situation.

I had not however notice that the Kähler action, whose existence for T (H) = T (M4) × T (CP2)
fixes the choice of H, gives a huge number of 6-D Lagrangian manifolds! Are they consistent with
dimensional reduction, so that they could be interpreted as induced twistor structures? Can a complex
structure be attached to them? Certainly not as an induced complex structure. Does the Lagrangian
problem of Kähler action make a comeback? Furthermore, should one extend the very promising looking
holography=holomorphy picture by allowing also Lagrangian 6-surfaces T (H)?

Do the Lagrangian surfaces of T (H) have a physical interpretation, most naturally as vacuums? The
volume term of the 4-D action characterized by the cosmological constant Λ does not allow vacuum
extremals unless Λ vanishes. For the twistor lift Λ is however dynamic and can vanish! Do Lagrangian
6-surfaces in T (H) correspond to 4-D minimal surfaces in H, which are vacuums and have a vanishing
Λ = 0? Would even the original formulation of TGD be an exact part of the theory and not just a
long-length-scale limit? And does one really avoid the original problem due to the huge non-determinism
spoiling holography!

The question is whether the result presented in the article could generalize to the TGD framework
even though the super-minimality assumption does not seem physically natural at first?

2 Lagrangian surfaces in the twistor space of H = M 4 × CP2

Let us consider the 12-D twistor space T (H) = T (M4)× T (CP2) and its 6-D Lagrangian surfaces having
a local decomposition X6 = X4 × S2. Assume a twistor lift with Kähler action on T (H). It exists only
for H =M4 × CP2 [4, 5].

Let us first forget the requirement that these Lagrangian surfaces correspond to minimal surfaces in
H. Consider the situation in which there is no generalized Kähler and symplectic structure in M4.

One can actually identify Lagrangian surfaces in 12-D twistor space T (H).

1. Since X6 = X4 × S2 is Lagrangian, the symplectic form for it must vanish. This is also true in S2.
Fibers S2 together with T (M4) and T (CP2) are identified by an orientation-changing isometry. The
induced Kähler form S2 in the subset X6 = X4 × S2 is zero as the sum of these two contributions
of different signs. If this sum appears in the 6-D Kähler action, its contribution to the 6-D Kähler
action vanishes. Λ vanishes because the S2 contribution to the 4-D action vanishes.

2. The 6-D Kähler action reduces in X4 to the 4-D Kähler action plus, which was the original guess
for the 4-D action. The problem is that in its original form, involving only CP2 Kähler form, it
involves a huge vacuum degeneracy. The CP2 projection is a Lagrangian surface or its subset but the
dynamics of M4 projection is essentially arbitrary, in particular with respect to time. One obtains
a huge number of different vacuum extremals. Since the time evolution is non-deterministic, the
holography, and of course holography=holomorphy principle, is lost. This option is not physically
acceptable.

How the situation changes when also M4 has a generalized Kähler form that the twistor space picture
strongly suggests, and actually requires.
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1. Now the Lagrangian surfaces would be products X2 × Y 2, where X2 and Y 2 are the Lagrangian
surfaces of M4 and CP2. The M4 projections of these objects look like string world sheets and in
their basic state are vacuums.
Furthermore, the situation is deterministic! The point is that X2 is Lagrangian and highly fixed
as such. In the previous case much more general surface M4 projection, even 4-D, was Lagrangian.
There is no loss of holography! Neither is the holography = holomorphy principle lost: by their 2-D
character X2 and Y 2 have a holomorphic structure.
What is important is that these Lagrangian 4-surfaces of H are obtained also when Λ is non-
vanishing. In this case they must be minimal surfaces. Physically this option means that one has
Lagrangian strings.

2. For Λ = 0, the symplectic transformations of H produce new vacuum surfaces. If they are allowed,
one might talk of symplectic phase. J = 0 phase gives rise to both classical and fermionic vacuum
since the modified gamma matries vanish since they are propertional to vanishing canonical mo-
mentum currents. So that Lagrangian phase does not contribute to physics for Λ = 0. There are
however non-vacuum extremals for which the induced Kähler field is non-vanishing (having induced
complex structure).
For Λ ̸= 0 Lagrangian surfaces which are non-vacuum extermals and only isometries are allowed
as symmetries. One can say that symplectic symmetr breaks down to isometries. Irrespective of
the value of Λ, the second phase with a induced complex structure would be present and give rise
to color interactions and hadrons and probably also elementary particles. The interpretation of
Lagrangian surfaces, which are string like entities, remains open.

3. In the Lagrangian phase induced Kähler form J and the induced color gauge fields vanish and it
does not involve monopole fluxes. This phase might be called Maxwell phase. For Λ ̸= 0 one would
have two kinds of non-vacuum string like objects with string tension to which Λ contributes.
Could the Lagrangian phase for Λ ̸= 0 correspond to the Coulomb phase as the perturbative phase
of the gauge theories, while the monopole flux tubes (large heff and dark matter) would correspond
to the non-perturbative phase in which magnetic monopole fluxes are present? If so, there would be
an analogy with the electric-magnetic duality of gauge theories although the two phases does not
look like two equivalent descriptions of one and the same thing unless one restricts the consideration
to fermions.

2.1 Can Lagrangian 4-surfaces be minimal surfaces?
I have not yet considered the question whether the Lagrangian surfaces can be minimal surfaces. For
non-vanishing Λ they must be such but for Λ = 0 this need not be the case. One can of course ask
whether this does matter at all for Λ = 0. In this case, one has only vacuum extremals and the modified
gamma matrices are proportional to the canonical momentum currents, which vanish. Both bosonic and
fermionic dynamics are trivial for Λ = 0. Therefore Λ = 0 does not give any physics.

In the theorem the minimal Lagrangian surfaces were superminimal surfaces. For super-minimal
surfaces, a unit vector in the normal direction defines a very specific curve in normal space.

For a non-vanishing cosmological constant, the field equations for the Kähler action do not force the
Lagrangian surfaces to be minimal surfaces. For Λ ̸= 0 there exists a lot of minimal Lagrangian surfaces.

2.1.1 Lagrangian minimal surfaces in CP2

Consider first the Lagrangian minimal surfaces in CP2

1. In CP2, a homologically trivial geodesic sphere is a minimal surface. Note that the geodesic spheres
obtained by isometries are regarded here as equivalent. Also a g = 1 minimal Lagrangian surface
(Clifford torus) in CP2 is known.
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2. There are many other minimal Lagrangian surfaces and second order partial differential equations for
both Lagrangian and minimal Lagrangian surfaces are known (see this). In the article ”A new look
at equivariant minimal Lagrangian surfaces in CP2 by Dorfmeister and Ma [1] Lagrangian minimal
surfaces in CP2 are discussed and general partial differential equations for them are deduced.

(a) An essential role is played by the used of complex coordinates in which the induced metric of
X2 is of form ds2 = eudzdz and X2 corresponds to immersion f .

(b) The Lagrangian property makes it possible the lift of f and to an immersion defined to unit
sphere S5 ⊂ C3 and therefore of X2 to a surface in S5 ⊂ C3 defined by a complex triplet F .
This allows to combine F , Fz and Fz to an orthgonal Hermitian tripet which can be can be
replaced with a orthonormalized triplet F =(F, e−u/2Fz, e

−u/2Fz).
(c) At the next step minimal surface property is introduced. It translation to statement that

Fz = FU Fz̄ = FN .

Here one has

U =

 uz/2 0 eu

e−uψ −uz/2 0
0 −eu/2 0


N = U†

Here ψdz3 is so called Hopf differential with ψ given by

ψ = FzzFz .

Clearly, U is the negative of the hermitian conjugate of N . One can say that complex differ-
entiation corresponds to the action of SU(3) Lie algera generator so that F defines an element
of SU(3) loop group at X2.

(d) The condition of integrability (Fz)z = (Fz)z gives

Uz = −Nz .

and the final equations

uzz̄ = e−2u|ψ|2 − eu , ψz = 0 .

The Hopf differential is therefore a holomorphic function.

Since any stable stable minimal submanifold in CPn is a complex submanifold, the Lagrangian minimal
surfaces cannot be stable under general variations.

2.1.2 Lagrangian minimal surfaces in M4

Consider next the situation in M4.

1. In M4, the plane M2 is an example of a minimal surface, which is a Lagrangian surface. Are there
others? Could Hamilton-Jacobi structures [6] that also involve the symplectic form and generalized
Kähler structure (more precisely, their generalizations) define Lagrangian surfaces in M4?
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2. The Lagrangian surfaces, and as a special case Lagrangian minimal surfaces in R4 are discussed in
[2]. The result of the article can be phrased as follows.
Let L be a simply connected domain in C. Then for any smooth conformal Lagrangian immersion
f : L→ R4, there exist smooth functions β : L→ R/2πZ, which is the Lagrangian angle, and s1, s2
: L→ C, not simultaneously vanishing, that satisfy the Dirac-type equation(

0 ∂z
−∂z 0

)(
s1
s2

)
=

(
U 0
0 −U

)(
s1
s2

)
.

with complex potential U = ∂zβ/2. Conversely, given β and any solution (s1, s2) to the Dirac
equation satisfying (|s1|2 + |s2|2 ≥ 0) gives rise to a conformal Lagrangian immersion given by

f(z) = Re

∫ z
exp(βJ/2)


s1
s2
−is1
is2


 , J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

Here the 4× 4 matrix J defines the standard symplectic structure.

3. When the Lagrange angle is constant, one obtains minimal Lagrangian immersion. Note that this
in this case one has free massless Dirac equation.This suggests quantum classical correspondence in
which the solutions of massless Dirac equation in M4 correspond to Lagrangian minimal surfaces.

4. This solution is defined for Euclidian E4 rather than M4 but the analytic continuation to M4

case should be straightforward. This requires an appropriate modification of J . In TGD one
must consider the possibility, that Hamilton-Jacobi structures defines large number of non-quivalent
Kähler- and symplectic structures for M4. The naive guess is that J in the exponential is replaced
with the matrix Jklσkl in order to obtain a more general solution.

In the case considered now, the Lagrangian surfaces in H would be products X2×Y 2. Interestingly, in
the 2-D case the induced metric always defines a holomorphic structure. Now, however, this holomorphic
structure would not be the same as the one related to the holomorphic ansatz: it is induced from H.

2.2 So What?
These findings raise several questions related to the detailed understanding of TGD. Should one allow
only non-vanishing values of Λ? This would allow minimal Langrangian surfaces X2 × Y 2 besides the
holomorphic ansatz. The holomorphic structure due to the 2-dimensionality of X2 and Y 2 means that
holography=holomorphy principle generalizes.

If one allows Λ = 0, all Lagrangian surfaces X2 × Y 2 are allowed but also would have a holomorphic
structure due to the 2-dimensionality of X2 and Y 2 so that holography=holomorphy principle would
generalize also now! Minimal surface property is obtained as a special case. Classically the extremals
correspond to a vacuum sector and also in the fermionic sector modified Dirac equation is trivial. Therefore
there is no physics involved.

Minimal Lagrangian surfaces are favored by the physical interpretation in terms of a geometric analog
of the field particle duality. The orbit of a particle as a geodesic line (minimal 1-surface) generalizes to a
minimal 4-surface and the field equations inside this surface generalizes massless field equations.
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