Report

Bifurcations of the Higgs Potential & the Top Quark Mass

Ervin Goldfain*

Ronin Institute, Montclair, NJ

Abstract

We have recently conjectured that the Standard Model gauge group unfolds under successive bifurcations of the Higgs potential. This brief report points out that the maximal fixed-point solution of the bifurcation process corresponds to a top-antitop quark condensate.

Keywords: Bifurcations, Feigenbaum route to chaos, gauge symmetries, Higgs potential, top quark.

It can be shown that the flow of the classical Higgs potential with the Renormalization scale takes the form [1]

$$\dot{y} = my(1 - y^2) \tag{1}$$

in which y is given by

$$y = \frac{\sqrt{2}}{V} \varphi \tag{2}$$

Here, φ denotes the amplitude of the complex-scalar field whose vacuum expectation value is v = 246 GeV. Eq. (1) follows from the theory of bi-stable systems embedded in a *double-well* potential [8]. The control parameter of (1) contains the self-interaction coupling λ and a reference scale m_0 as in

$$m = \frac{2\lambda v^2}{m_0^2} \tag{3}$$

^{*}Correspondence: Ervin Goldfain, Ph.D., Research Scholar, Ronin Institute, Montclair, NJ 07043 E-mail: ervin.goldfain@ronininstitute.org

The differential equation (1) may be cast as the iterated map shown below

$$y_{n+1} = f(m, y_n) = my_n (1 - y_n^2)$$
(4)

There are two trivial fixed points of (1) and (4), given by: a) $y^* = 0$, m = 0, $\lambda = 0$ - which resembles massless photons in an "effective" approximation, and b) a pair of maximal solutions arisen in the limit of large number of map iterations ($n \to \infty$), namely,

$$y_{\infty}^* = \pm 1 \tag{5}$$

whose separation along the y - axis is

$$\Delta y_{\infty}^* = +1 - (-1) = 2 \tag{6}$$

As suggested in [2-5], the fermionic sector of the Standard Model unfolds as the last segment of the bifurcation diagram. By (6) and (2), this conjecture leads to a separation in field space closely approximating a *top-antitop condensate*, that is,

$$\Delta \varphi_{\infty}^* = \sqrt{2} \,\mathbf{v} = 347.9 \,\,\mathrm{GeV} \tag{7a}$$

$$\Delta \varphi_{\infty}^* \approx 2 m_t \tag{7b}$$

where $m_t \approx 173$ GeV is the experimental value of the top quark mass [6]. As the top quark is the heaviest known fermion, relation (7) brings additional support for the self-contained flavor composition of the Standard Model near the electroweak scale [7].

Received April 1, 2022; Accepted June 9, 2022

References

ISSN: 2153-8301

- 1. https://www.researchgate.net/publication/357093456 Bifurcations and the Gauge Structure of the Standard Model
- 2. https://www.sciencedirect.com/science/article/abs/pii/037843719090008G
- 3. https://www.researchgate.net/publication/343863324
- 4. https://www.researchgate.net/publication/343686626
- 5. https://www.researchgate.net/publication/344036923
- 6. http://www.scholarpedia.org/article/Properties of the top quark
- 7. https://www.researchgate.net/publication/278849474
- 8. Strogatz, S.H., Nonlinear Dynamics and Chaos, Westview Press, 2000, pp. 30 33.