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Abstract 
In this paper, curves are examined by using fractional derivatives in general. Especially, by 
considering the Caputo fractional derivative, the relations between the standard Frenet curvatures 
and fractional curvatures of curves are obtained. Then, the characterizations of some special 
curves are given. 
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1. Introduction 
 
The concept of fractional derivative was first introduced in the 17th century and with an 
increasing number of studies, it has become the focus of attention for many researchers in many 
fields. Fractional analysis has recently become one of the important fields of study in differential 
geometry. While, in the classical sense, the differential and integral are calculated by integer 
order, in fractional calculus the orders of the differential and integral are not necessary integers 
but any real number. That is, fractional calculus is the generalization of ordinary differential and 
integral to arbitrary order. The difference of the fractional derivative from the integer derivative 
is that it is given by the integration of a function. Numerous studies have been conducted on this 
subject, and it can be found in detail [1-4]. We can also say that a non-local fractional derivative 
of function is related to a past history or a space-range interaction. Furthermore, fractional 
calculus has many applications to viscoelastic [5-11], analytical mechanics [12-14] and 
dynamical systems [15-19].  
 
Fractional analysis has also started to be studied from a differential geometry perspective in 
recent studies. There are many types of fractional operators, but it is recommended to study the 
geometry of curves and surfaces mostly based on the Caputo fractional derivative [20]. However, 
the Caputo fractional derivative is not yet directly used to formulate the differential geometry of 
curves. Using the Caputo fractional derivative is more appropriate than other fractional 
derivative operators for formulating a geometric theory since the fractional derivative of the 
constant function is zero [21-25]. Based on the advantages of the Caputo fractional derivative, it 
is discussed in [22,24] as a quantification of Lagrangian mechanics and in the theory of gravity 
[21,23,26]. In general, the concepts of Leibnitz rule and derivative of the composite function are 
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needed when studying fractional differential geometry. However, within the scope of fractional 
analysis, these concepts are obtained with infinite series and are used in impact situations at the 
initial moment and after a long period [3,4].   
 
Leibnitz's rule and derivative of the composite function can be given as follows for two functions 
f(x) and g(x) [27]: 

                   ���������� = ∑ ���  ���
��� �������������� − ��������

������ ��� 

and 

           ����������� = ∑ ���  ����
��������

���������
������� + ��������������

������ ���.    (1.1) 

This different form of the integer derivative presents a challenge for deriving geometric concepts 
such as the curvature of a curve and the unit tangent vector. So a certain simplification of the 
infinite series is used to construct the geometric theory of the derivative. With this simplification, 
most fundamental terms are removed from the infinite series, which retain the properties of the 
fractional derivative. Hence, with � = ����, the following equality is achieved [28]: 

 ����������� = �����
�� ���

��
�!

��
��.                    (1.2) 

This simplification formula is obtained by taking only the i=1 term of the infinite series in 
equation (1.1). This formula actually gives a partial effect of the fractional derivative and is 
expressed by the ordinary derivative. After this simplification, the construction of the fractional 
geometric theory based on the direct Caputo derivative can be expected using the simplified 
Leibnitz rule and the derivative of the composite function. In other words, using the Caputo 
derivative researchers have an advantage when studying the differential geometry of curves and 
surfaces, especially since it is ineffective on a constant function. Throughout the study, the 
derivative formula given by (1.2) will be discussed. 
 
In this study, the fractional invariants of curves in higher dimensional Euclidean spaces are 
obtained and these invariants are interpreted geometrically. In addition, the theorems obtained 
about the curvature of some special curves are given. 
 

2. Preliminaries 

In this section, we will talk about some basic concepts that we will use in the following sections. 
More detailed information on the following topics can be found in [28-32]. 
Let the scalar product and reduced norm in R# be denoted as  <. , . > and ‖ . ‖, respectively.  

Take a regular curve ): +, → R#, that is, let ‖).‖ ≠ 0 for each � ∈ +, with 2. = �3
�! .  Throughout this 

section, the derivative with respect to the t parameter will be represented by a dot. 

Unit speed parameterization 4 = ) ∘ 6��: + → R#  of the curve ) curve exists as  

6��� = 7 8�3
�98 :;, �� ∈ +,  !

!<          (2.1) 
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and 8�4
�=8 = 1. Here the parameter u is called the arc-length and remains invariant under the 

Euclidean motion of R#. We can separate the formulas to study the local properties of curves into 
two parts. 
 
Firstly, let 4: + → R  be a plane curve with unit speed. Then the curvature ? of curve 4 at 6 ∈ + is 

defined as ?�6� = 8�@4
�=@8. The curvature ? and the Frenet formulas of the curve 4 for an 

arbitrary parameter t can be given as follows 

?��� = A4B�!�,C�4. �!��D
‖4. �!�‖E   

and  :F
:6 = ?G 

:G
:6 = −?F . 

  

Now, let 4: + → RH be a space curve with unit speed. Then the curvature ? of curve 4 at 6 ∈ + is 

defined as ?�6� = 8�@4
�=@8. Frenet-Serret frame of 4 at 6 ∈ + is given by 

F�I� = J4
JIKI , G�I� = L

M�I�
JN4
JINKI, M�I� ≠ O and P�I� = F�I� × G�I�  

where × is the cross product in RS.  Thus Frenet-Serret formulas of 4 is given by 

:F
:6 = ?G 

:G
:6 = −?F + τP 

:P
:6 = −τG 

where τ is called torsion of 4 at 6 ∈ +.  Respectively, the curvature and torsion of 4 is writed by 

?��� = 4.�!�×4B�!��
‖4.�!�‖E , τ��� = A4. �!�×4B �!�,4⃛�!��

‖4. �!�×4B �!�‖@        (2.2) 

where  t is an arbitrary parameter.  
 

3. Some Characterizations of Curves with Fractional Derivatives 

Let 4: + ⊂ W → R# be a curve and  6  be arc-length of  curve 4. Consider another parameter s of 4  

is given by 

6 → X = Y �@
�� ��� 6Z

�
�
 ,         (3.1)  

where  Γ is  Euler gamma  function and 0 < \ ≤ 1.  Because of (2.1) , s can be considered as a 
function of  t. We can write it as X = ℎ���. From (3.1), ℎ��� can be written as 
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ℎ��� = _ �@
�� ��� 7 8�4

�98 :;!
!< `

�
�.       

 (3.2) 
Considering the last equality, we get  

ℎ. = �a
�! = �a���

�� ��� ‖4.‖,         (3.3) 

where ℎ.  is positive for each  t and  � = ℎ���X� is inverse function of  ℎ. .  
 
In this article, for the α-order Caputo fractional derivative we will use the notation  

� �b ��� ����� = ����!�
�!�          

 

We will also denote the derivative with respect to the  parameter X as “ c ”. 
 
For a simpler version of the Caputo fractional derivative the following equality can be used [28]: 

��4a�!�
�d� = �a���

�� ��� �ℎ���e4.  .        (3.4) 

Considering (3.2) and (3.3) into (3.4), we obtain 8��4
�d�Kd8 = 1 for each s i.e. s is the arc-

length parameter of x. Hence x is a unit speed curve.  

In order to get the Frenet-Serret formulas with fractional order \ we firstly point out that the 
Frenet-Serret frame {F, G, g�, … , g#� } is independent of choice of parametrization, i.e.  

jklm n:�4
:X� , :

:X o:�4
:X� p , … , :#��

:X#�� o:�4
:X� pq = jklm n:4

:6 , : 4
:6 , … , :#4

:6#q 

which means that r�X� = ��4
�d�Kdis the unit tangent vector of x at s.  

 
Now, using the arc-length parameter s, the Frenet-Serret formulas of fractional order α can be 
obtained. 
 

Let 4: + ⊂ W → R# be a parametrized curve by (3.1) with (3.4). Then we have  

re = κ�G te = −κ�F + κ g� …          (3.5) 
 g#�He = −κ#� g#�u + κ#��g#�  g#� e = −κ#��g#�H 

 
where {κ�, … , κ#��} and {F, G, g�, … , g#� }  are curvatures and  Frenet- Serret frame of x, 

respectively.  Also “ c ” is the derivative with respect to the parameter u.  Here for    v =3, … , m − 1, we can write κ� =< re, G >, κ =< te, g� >, … , κ� =< g�� e, g��� >.  
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Definition 3.1. Let 4: + ⊂ W → R#  be parametrized by the arc-length u. Also, let the frenet frame 
of  x  be  {F, G, g�, … , g#� }  and its curvatures be {κ�, … , κ#��}.  In this case κ���� is given as  

 κ���� =< �r
�d , G >  

and called the first α-fractional curvature of  x.  Since  

κ� =< �r
�d

�d
�= , G >= �d

�= < �r
�d , G >,  

we get   

κ���� = �� ���
� X���κ�.        (3.6) 

 

Definition 3.2. Let 4: + ⊂ W → R#  be parametrized by the arc-length u. Also, let the frenet frame 
of  x  be  {F, G, g�, … , g#� }  and its curvatures be {κ�, … , κ#��}.  In this case κ ��� is given as  

κ ��� =< :t
:X , g� > 

and called the second α-fractional curvature of  x.  
 

Then we get   

κ ��� = �� ���
� X���κ .        (3.7) 

 

Definition 3.3. Let 4: + ⊂ W → R#  be parametrized by the arc-length u. Also, let the frenet frame 
of  x  be  {F, G, g�, … , g#� }  and its curvatures be {κ�, … , κ#��}.  In this case κ� ��� is given as  
  κ� ��� =< �g��@

�d , g��� >, v = 3, … , m − 1 

and called the i-th α-fractional curvature of  x. Here we get   

κ���� = �� ���
� X���κ� , v = 3, … , m − 1 .       (3.8) 

 
Then we can give the following lemma.  
 

Lemma 3.1.  Let 4: + ⊂ W → R#  be a regular curve parameterized by the arc-length. The 
following relation exists between the curvatures fractional order α of  x. 

κx��� = �� ���
�d��� κx , y = 1, … , m − 1         (3.9) 

           
We can give a result of this Lemma as follows. 
 

Corollary  3.1.  Let  4: + ⊂ W → R# be a regular parametric curve with constant curvature κ���� = z. Then we have 

κ� = {�d���
�� ��� . 

 

Proof. Putting z into equation (3.9) we prove the result.  
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Theorem 3.1. Let  4 be a regular parametric curve in R#. Then the arc-length parameter and the 
fractional α curvature κ���� remain invariant under the Euclidean motions of R#.  
 

Proof. Considering (3.1) and (3.9), the proof of the theorem is obvious. 
 
After the definitions and explanations above, theorems containing geometric interpretations for 
curves with fractional curvature can be given below. 
 

Theorem 3.2. For a regular parametric curve in R# to be a straight line  a necessary and 
sufficient condition is that the first curvature of the α fractional order of this curve is identically 
zero. 
 

Proof. Considering an curve 4: + ⊂ W → R#  parameterized with the arc-length parameter, the 
first α-fractional curvature of this curve x will be as follows: 

κ���� = Γ�2 − \�
\ X���κ� 

This last equality proves the theorem.  
 
For a curve 4: + ⊂ W → R#, considering the α-fractional order curvatures of this curve, we can 
give the following lemma.  
 

Lemma 3.2. For a regular curve 4: + ⊂ W → R#  parameterized with the α-fractional order arc-
length parameter, we have the following equation: κ����

κ������ = κ�κ��� , v = 1,2, … , m − 2, m ≥ 3 . 
 

Proof. From Definition 3.1 and 3.2, it can be written by 

κ���� = �� ���
� X���κ�  

and 

 κ ��� = �� ���
� X���κ . 

If these last two equations are proportional to each other, then κ����
κ ��� = κ�κ  . 

From Definition 3.3. we have 

κ���� = Γ�2 − \�
\ X���κ� , v = 3, … , m − 1 . 

Hence κ����
κ������ = κ�κ��� , 

v = 3, … , m − 1. This completes the proof. 
 

Theorem 3.2. For a regular parametric curve to have a constant curvature ratio in R#, a 
necessary and sufficient condition is that  
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~����
~@���=const., 

~@���
~E���= const., …, 

~��@���
~������= const. 

 

Proof. The proof is obvious if the given definitions of curvatures are taken into account. 
 

Remark 3.1. If 4�6�  and 4∗�6∗�  are the pair of involute curves in RH, then  :�4�6�, 4�6∗� = |� − 6|, ∀6 ∈ +, � = ��mX�.   
holds [33], where : is the distance between the points 4�6� and 4�6∗�. Also κ�, κ  and κ�∗, κ ∗, 
being the standard curvatures of the curves 4�6� and 4∗�6∗�, respectively, the following equality 
can be used [33]: 

κ�∗ �6∗� = ~�@�=��~@@�=�
~�@�=����=�@                   (3.10) 

and 

κ ∗�6∗� =
�

��o��@���
������p~��=�

�~�@�=��~@@�=����=�.                    (3.11) 

We can now give the following theorems about pairs of involute curves. 
 

Theorem 3.3. Let 4∗ be the involute of a parametric curve x in RH. Then between the first               
curvatures of these curves hold 

�κ����∗ = �Γ�2 − \�
\�X∗����

��κ����� + �κ ���� 
�κ����� �� − Γ�2 − \�X�

\ � , � ∈ W, 
where s, κ���� ≠ 0, �κ ��� and X∗, κ����∗

 are parameters and curvatures with fractional order α 
of 4 ve 4∗, respectively. 
 

Proof.  If (3.6)  and (3.7) are substituted in (3.10) , the proof can be done by direct calculation.  
 

Theorem 3.4. Let 4∗ be the involute of a parametric curve x in RH. Then between the second 
curvatures of these curves hold 

�κ ���∗ = �Γ�2 − \�
\�X∗����

::X �κ ���
κ����� �κ����

o� − Γ�2 − \�X�
\ p �κ����� + �κ ���� 

, � ∈ W, 
where s, κ���� ≠ 0, �κ ��� and X∗, κ ���∗

 are parameters and curvatures with fractional order α 
of 4 ve 4∗, respectively. 
 

Proof. If (3.6)  and (3.7) are substituted in (3.11) , the proof can be done by simple calculations. 
 

Remark 3.2. If 4�6� and 4∗�6∗�  are a Bertrand pair in RH, then the following relations hold:  

κ�∗ = �~��d�#@�
�����~�� ,  � ∈ W                  (3.12) 

and  

κ ∗ = �
�@~@ Xvm �, � ∈ W                  (3.13) 
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where κ�, κ  and κ�∗, κ ∗ being the standard curvatures of the 4�6� and 4∗�6∗�  curves, 
respectively, and � are the angle between the tangent vectors of the curves, [34]. 
 
Thus, we can give the following theorem. 
 

Theorem 3.5. If 4�6� and 4∗�6∗�  are a Bertrand pair in RH, then the following relations hold:  

κ����∗ = Γ�2 − \�
\�X∗����

� \X���
Γ�2 − \� κ���� − Xvm �

��1 − � \X���
Γ�2 − \� κ����� , � ∈ W 

and 

κ ���∗ = �Γ�2 − \� 
� \ �XX∗����κ ��� Xvm � 

where s, κ����, κ ��� and X∗, κ����∗
,  κ ���∗

  are parameter and curvatures with fractional              
α-order of 4 and 4∗ curves, respectively, θ is the angle between the tangent vectors of the curves. 
 

Proof. If (3.6)  and (3.7) are substituted in (3.12) and (3.13) , the proof can be done by direct 
calculations. 
 
 

4. Conclusion 

In the article, the Caputo fractional derivative is considered and the relations between the 
standard curvature and fractional curvature of the curves are obtained. It has been observed that 
these relations geometrically overlap with the results obtained using the derivative in the 
classical sense, and it has been obtained that there are some differences with the effect of the 
fractional derivative. 
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