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Dedicated to Marie-Louise Nykamp

Abstract

One is reminded in this paper of the often overlooked fact that the geometric
straight line, or GSL, of Euclidean geometry is not necessarily identical with its usual
Cartesian coordinatisation given by the real numbers in R. Indeed, the GSL is an ab-
stract idea, while the Cartesian, or for that matter, any other specific coordinatisation
of it is but one of the possible mathematical models chosen upon certain reasons.
And as is known, there are a a variety of mathematical models of GSL, among them
given by nonstandard analysis, reduced power algebras, the topological long line, or
the surreal numbers, among others. As shown in this paper, the GSL can allow co-
ordinatisations which are arbitrarily more rich locally and also more large globally,
being given by corresponding linearly ordered sets of no matter how large cardinal.
Thus one can obtain in relatively simple ways structures which are more rich locally
and large globally than in nonstandard analysis, or in various reduced power alge-
bras. Furthermore, vector space structures can be defined in such coordinatisations.
Consequently, one can define an extension of the usual Differential Calculus. This
fact can have a major importance in physics, since such locally more rich and glob-
ally more large coordinatisations of the GSL do allow new physical insights, just as
the introduction of various microscopes and telescopes have done. Among others,
it and general can reassess special relativity with respect to its independence of the
mathematical models used for the GSL. Also, it can allow the more appropriate mod-
elling of certain physical phenomena. One of the long vexing issue of so called “in-
finities in physics" can obtain a clarifying reconsideration. It indeed all comes down
to looking at the GSL with suitably constructed microscopes and telescopes, and ap-
ply the resulted new modelling possibilities in theoretical physics. One may as well
consider that in string theory, for instance, where several dimensions are supposed to
be compact to the extent of not being observable on classical scales, their mathemat-
ical modelling may benefit from the presence of infinitesimals in the mathematical
models of the GSL presented here.
However, beyond all such particular considerations, and not unlikely also above them,
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is the following one : theories of physics should be not only background indepen-
dent, but quite likely, should also be independent of the specific mathematical mod-
els used when representing geometry, numbers, and in particular, the GSL.
One of the consequences of considering the essential difference between the GSL and
its various mathematical models is that what appears to be the definitive answer is
given to the intriguing question raised by Penrose : “Why is it that physics never uses
spaces with a cardinal larger than that of the continuum ?".
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“History is written with the feet ..."

Ex-Chairman Mao, of the Long March fame ...

“Science is nowadays not done scientifically, since
it is mostly done by non-scientists ..."

Anonymous

A “mathematical problem" ?
For sometime by now, American mathematicians
have decided to hide their date of birth
and not to mention it in their academic CV-s.
Why ?
Amusingly, Hollywood actors and actresses have their
birth date easily available on Wikipedia.
Can one, therefore, trust American
mathematicians ?
Why are they so blatantly against transparency ?
By the way, Hollywood movies have also for long
been hiding the date of their production ...

A bemused non-American mathematician
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0. Preliminaries

Let us start with three statements which may elicit strong - and quite likely wrong
- reactions :

(0.1) We do not - and can never ever - know what geometry is !

(0.2) We do not - and can never ever - know what numbers are !

(0.3) We do not - and can never ever - know what the geometric
straight line, or in short, the GSL is !

It often happens among those who use mathematics that they fail to recognize
the fundamental difference between abstract ideas, and on the other hand, one or
another of their mathematical model which happens to be chosen upon specific rea-
sons, or rather, upon mere historical circumstance.

Recently, [17-25], a good illustration of that fundamental difference between an
abstract idea and its various mathematical models was given with respect to the ab-
stract idea of numbers, and on the other hand, what is suggested to be called as one
or another specific numeral system which is but one of the many particular ways to
model mathematically numbers.

As far as the GSL is concerned a variety of rather different mathematical models
are known for it, among them those given by nonstandard analysis, [3,5], reduced
power algebras, [6-14], the topological long line, [26], or the surreal numbers, [2], the
latter giving in fact a GSL which is no longer a set but much larger still, being a proper
class. And obviously, the abstract idea of the GSL is a particular instance of a mixture
between the abstract ideas of geometry and numbers. Since, however, it plays such a
fundamental role in the construction of a large number of theories of physics, it may
indeed be useful to focus on the issue of the GSL all on its own, as done in the sequel.

Amusingly, that fundamental difference between an abstract idea and its possible
various mathematical models is on occasion known and accepted by various users
of mathematics, among them physicists, for instance. Such is the case, among oth-
ers, with the abstract idea of geometry which is by now well understood - and not
only in general relativity - not to refer to, and not to be identical with any one single
mathematical model, but to have a rather large number of quite different such math-
ematical models.

However, it should be recalled that less than two centuries ago, following a phi-
losophy of the calibre of that of Kant, the abstract idea of geometry was seen as being
reduced to, and perfectly identical with, one single mathematical model, namely, that
of Euclidean geometry. And as if to aggravate the error in such a view, Kant consid-
ered Euclidean geometry as an a priori concept.
As it happened nevertheless in the 1820s, non-Euclidean geometry was introduced by
Lobachevski and Bolyai, followed not much later by Riemannian geometry, and more
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near to our times, by the more or less explicit recognition of the immense difference
between the abstract idea of geometry, and on the other hand, any of its mathemati-
cal models.
And still, the errors in approaching the concept of geometry were to continue for a
while longer. The “Erlangen Program", for instance, published by Felix Klein in 1872,
saw geometry as reduced to the rather narrow framework of the study of properties
invariant under certain group transformations ...

In this regard, one may simply say that one does not - and in fact, can never ever -
know what geometry, or for that matter, numbers are. And all one can know instead
are merely various mathematical models of geometry, or of numbers.

Here, in the above spirit, we highlight the fundamental difference between the ab-
stract idea of the GSL, and on the other hand, its various mathematical models.
In other words, we can never ever really know what the GSL may be. Instead, we may
only try to represent it with one or another mathematical model ...

The importance of stressing this fundamental difference is to make theoretical
physicists aware of the most simple and elementary - yet so widely missed - fact that
confining all mathematical models used in physics to those based on the usual Carte-
sian coordinatisation of the GSL, a coordonatisation given by the customary field R
of real numbers, is a highly dubious and detrimental approach.
Indeed, as seen in the sequel, the GSL can admit other mathematical models which
are far more rich locally, as well as far more large globally. Thus they allow the mod-
elling of realms of physics which have so far escaped attention, or have been mod-
elled inappropriately due to the relative poverty of the usual Cartesian coordinatisa-
tion given by R.

The coordinatisations constructed in the sequel are not only linear orders, but
can also have useful commutative group, and in fact, vector space structures. Con-
sequently, they allow the extension of the usual Differential Calculus. Thus one can
obtain in relatively simple ways commutative group and vector space structures, to-
gether with a Differential Calculus, which may be arbitrarily more rich locally, and
also arbitrarily more large globally than those constructed earlier in the literature,
[2,3,5,26].

1. The View of the GSL through Microscopes and
Telescopes ...

The GSL, that is, the straight line in Euclidean geometry, has since Descartes been
coordinatised by the usual field R of real numbers. This association - so critically
useful in modern physics, starting with Newtonian mechanics - has ended up with
a tacit and rather universal identification between the GSL and the field R of usual
real numbers. And as it happens, that situation is further entrenched by the rather
simple mathematical fact that R is the only field which is linearly ordered, complete
and Archimedean. As for the Archimedean Axiom, it again happens to be another
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quite universally and tacitly entrenched assumption, ever since the time of Euclid in
ancient Egypt, more than two millennia ago, an assumption which, however, does
not seem to have any known motivation in modern physics, [6-14].

Amusingly however, since the 1960s, the Nonstandard Analysis of Abraham Robin-
son, [3,5], has convincingly shown that the GSL can be endowed with a coordinati-
sation by a far larger field than R, namely, that given by the field ∗R of nonstandard
real numbers. And such a coordinatisation is considerably more sophisticated than
the usual one, both locally and globally, [2,3,5,26]. Also, it does no longer satisfy the
Archimedean Axiom. And in fact, it simply cannot satisfy that axiom in view of the
above remark on the unique position of R.
Yet with very few exceptions, the fact of the existence of such a considerably more
sophisticated coordinatisation of the GSL seems not to have registered in the least
either with mathematicians, or with physicists, in spite of its manifest advantages,
among others in the study of continuous time stochastic processes which have im-
portance also in physics.

The crucial issue - so far quite widely missed - is that in physics one operates, as
with a basic theoretical instrument, not so much with the GSL itself, but rather with
its specific coordinatisation which, as mentioned, is nearly universally and also quite
stubbornly stuck to the field R of usual real numbers.
And to the extent that such a coordinatisation is not sophisticated enough, one can
expect two major negative outcomes which, so far, have passed rather unnoticed :

• fundamental physical phenomena may escape the general awareness, just like
it happened before the introduction of instruments such as microscopes and
telescopes,

• fundamental physical phenomena which do not escape notice may neverthe-
less be thoroughly misinterpreted and misrepresented due to the coarseness of
the instrument given by the usual coordinatisation employed, namely, by the
field R of usual real numbers.

As far as mathematics is concerned, there is comparatively with physics a con-
siderable freedom, since major criteria for relevance are not so much and so directly
related to physical relevance. Consequently, the mathematics which obtains based
on the usual Cartesian coordinatisation of the GSL need not lead to errors, and only
risks to leave aside a vast realm of possibly relevant mathematics.

And then, above all for physics and physicists the following long disregarded crit-
ically important question arises :

• How far can one - and in fact, should one - go in more sophisticated coordinati-
sations of the Geometric Straight Line ?

One can recall related to this question the rather intriguing and highly relevant
question of Penrose, [4] :

“Why is it that physics never uses spaces with a cardinal larger than that
of the continuum ?"
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As it happens, however, there is no trace in the recent, or for that matter, earlier
physics literature that this question would be considered, let alone debated ...

Now, as also illustrated by nonstandard analysis or by the reduced power alge-
bras, the concept of “more sophisticated coordinatisations" of the GSL has at least
the following two aspects, [6-14] :

• a local one corresponding to the richness around each coordinate point, like
for instance corresponding to the nonstandard monad of infinitesimally near
points to each given coordinate point, and as such, seen by Keisler’s micro-
scope, [3],

• a global one corresponding to the largeness of the set of all coordinate points,
like for instance given by the nonstandard infinitely large coordinate points,
and as such, seen by Keisler’s telescope, [3].

2. Background Independence : How Far Should the
Principle of Relativity Go ?

As mentioned in [6-14], beyond, and quite likely above, the previous considera-
tions, the study of the essential difference between the abstract idea of the GSL, and
on the other hand, its various specific mathematical models may have a foundational
importance in theories of physics regarding the issue of how far should the Principle
of Relativity go ?, [6,8].

A remarkable fact in this regard is that the GSL can be modelled by algebras from a
very large class of reduced power algebras, and in doing so, basic results from relativ-
ity, quantum mechanics and quantum computation remain valid, [10-12]. And here
one should point out that such reduced power algebras are not fields, since they have
zero divisors. Also, these algebras are not one dimensional, as the GSL is supposed to
be, and instead, they may be infinite dimensional. Furthermore, such algebras are in
general not linearly ordered or Archimedean, as the GSL is assumed to be.

Consequently, one can note that such basic physical properties as presented in
[10-12], are indeed independent of a very large class of mathematical models, this
fact thus being an illustration to a significant extension of the Principle of Relativity.
Indeed, this time one can show that certain basic physical properties do not depend
not only on reference frames, but also on a very large class of mathematical models
which replace the usual model of the GSL.

3. A General Construction for Local Richness

We shall start with a general construction which brings about local richness, a
construction which will mostly be used in some of its particular cases, such as for
instance in Example 3.1. below. However, the interest in such a generality is, among
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others, in the fact that it clarifies what is actually involved in the issue of local rich-
ness.

Let (A,≤) be a linearly ordered set. This set will have each of its elements a ∈ A
endowed as if with a microscope which will open up, both to the left and to the right,
the view from each such point a ∈ A, and do so with corresponding linearly ordered
sets that are the local realms not accessible within A itself.

Such a local realm at each a ∈ A, a realm which does not exist in A itself, is given
by two linearly ordered sets (Ba,≤a) and (Ca,≤a), with the first to the left of a ∈ A,
and the second to the right of a ∈ A, as illustrated below
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Ba Ca
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Fig. 3.1.

“m i c r o s c o p e”

For convenience of notation, we suppose that the sets A,Ba, Ca are pair-wise dis-
joint.

Then we define the linearly ordered set

(3.1) (D,≤)

which is the enrichment of A with the respective local views, where

(3.2) D =
⋃
a∈ADa

with, see Fig. 3.1. above

(3.3) Da = Ba ∪ {a} ∪ Ca

The linear order≤ onD in (3.2) is defined as follows. For d, d ′ ∈ D, we have d ≤ d ′,
if and only if one of the next seven conditions holds
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(3.4)

i) d ∈ Da, d
′ ∈ Da ′ , a ≤ a ′, a 6= a ′

ii) d, d ′ ∈ Ba, d ≤a d ′

iii) d ∈ Ba, d
′ = a

iv) d ∈ Ba, d
′ ∈ Ca

v) d = a, d ′ ∈ Ca

vi) d, d ′ ∈ Ca, d ≤a d ′

vii) d = d ′

Clearly, we have the strictly increasing mapping

(3.5) i : A 3 a 7−→ a ∈ D

based on which, whenever there exists a ∈ A, such that Ba ∪Ca 6= φ, we shall con-
sider having the strict inclusion

(3.6) A $ D

which in fact can be seen as having the linearly ordered set (A,≤) as a strict subset
in (D,≤), and endowed with the induced linear order from (D,≤).

Example 3.1.

Let (A,≤) = R and (Ba,≤a) = {a} × (−∞, 0), (Ca,≤a) = {a} × (0,∞), with
a ∈ A = R. Then (3.3) gives

(3.7) Da = ({a} × (−∞, 0)) ∪ {a} ∪ ({a} × (0,∞)), a ∈ A

hence from (3.2) we obtain

(3.8) D = (A× (−∞, 0)) ∪ A ∪ (A× (0,∞))

therefore, the mapping

(3.9) j : D −→ R2

given by

(3.10)
j(a, x) = (a, x) a, x ∈ R, x 6= 0

j(a) = (a, 0) a ∈ R
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is an order isomorphism between (D,≤) and R2, when the latter is considered with
the lexicographic order, see Appendix

(3.11) (a, x) � (b, y) ⇐⇒

 a < b
or
a = b, x ≤ y


which obviously is a linear order on R2.

We can, therefore, identify (D,≤) with (R2,�), modulo the above mapping j.

4. A Specific Method to Construct Local Richness

This method is suggested by Example 3.1. in section 3 above.

As in section 3, let (A,≤) be a linearly ordered set which will be locally enriched.

Let (B,≤) be any linearly ordered set which will produce the local enrichment at
each a ∈ A. Namely, for each a ∈ A, we shall construct the linearly ordered set

(4.1) (Ba,≤a)

where

(4.2) Ba = {a−} ×B

and for β = (a−, b), β ′ = (a−, b ′) ∈ Ba, we have β ≤a β ′, if and only if

(4.3) b ′ ≤ b

Similarly, we define the linearly ordered set

(4.4) (Ca,≤a)

where

(4.5) Ca = {a+} ×B

and for γ = (a+, b), γ ′ = (a+, b ′) ∈ Ca, we have γ ≤a γ ′, if and only if

(4.6) b ≤ b ′

Now we can perform the construction in section 3, and obtain the corresponding
linearly ordered set in (3.1), which we shall denote by
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(4.7) (A,≤) � (B,≤)

Clearly, we have the injective strictly increasing mapping, see (3.5)

(4.8) (A,≤) 3 a 7−→ a ∈ (A,≤) � (B,≤)

based on which one can see the linearly ordered set (A,≤) as a strict subset in
(A,≤) � (B,≤), whenever we have A,B 6= φ. Furthermore, (A,≤) is endowed with
the induced linear order from (A,≤) � (B,≤).

It is easy to see that, if the cardinals of (A,≤) and (B,≤) are infinite, then

(4.9) car((A,≤) � (B,≤)) = car(A,≤) . car(B,≤)

Example 4.1.

For the linearly ordered set (D,≤) in Example 3.1., we obviously have

(4.10) (D,≤) = R� (0,∞)

5. Commutative Group Structures on the Locally Enriched
Linearly Ordered Sets

Let (A,+,≤), (B,+,≤) be linearly ordered commutative groups, and letB+ = {b ∈
B | b ≥ 0, b 6= 0}. Then (4.7) gives the locally enriched linearly ordered set

(5.1) (Ā,≤) = (A,≤)� (B+,≤)

Now let us recall that A×B is a commutative group with the binary operation

(5.2) (a, b) + (a ′, b ′) = (a+ a ′, b+ b ′)

while with the lexicographic order, denoted by�, A×B is linearly ordered.

Furthermore, see Appendix, Proposition A1.1., (A × B,+,�) is a linearly ordered
commutative group.

Now, similar with (3.9), (3.10), the mapping

(5.3) j : Ā −→ A×B

given by

(5.4)
j(a, b) = (a, b) a ∈ A, b ∈ B, b 6= 0

j(a) = (a, 0) a ∈ A
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where 0 is the neutral element in A, respectively B, is a strictly increasing group
isomorphism.

Also, the mapping

(5.5) i : A 3 a 7−→ (a, 0) ∈ Ā

is a strictly increasing group homomorphism.

In this way we obtain

Theorem 5.1.

Let (A,+,≤), (B,+,≤) be linearly ordered commutative groups, and letB+ = {b ∈
B | b ≥ 0, b 6= 0}. Then, see (4.7)

(5.6) (Ā,≤) = (A,≤)� (B+,≤)

is a linearly ordered commutative group, with the strictly increasing group homo-
morphism

(5.7) i : A 3 a 7−→ (a, 0) ∈ Ā

6. Vector Space Structures on Locally Enriched Linearly
Ordered Sets

Let us consider the commutative group of the locally enriched linearly ordered set
(Ā,≤) = (A,≤)� (B+,≤) in (5.6), and let us suppose that the respective commutative
groupsA andB are vector spaces over a linearly ordered filed F . Then one can define
the scalar multiplication

(6.1) F × Ā 3 (c, ā) 7−→ cā ∈ Ā

by

(6.2)

c(a, b) = 0 ∈ A, c = 0 ∈ F, a ∈ A, b ∈ B, b 6= 0

c(a, b) = (ca, cb), c ∈ F, c 6= 0, a ∈ A, b ∈ B, b 6= 0

ca = ca, a ∈ A

Theorem 6.1.

Let (A,+,≤), (B,+,≤) be linearly ordered commutative groups which are vec-
tor spaces over a linearly ordered field F . Then the action (6.1), (6.2) defines on
(Ā,≤) = (A,≤)� (B+,≤) a linearly ordered vector space over the linearly ordered
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field F .

Proof.

In view of (5.3), (5.4) and Theorem 5.1., we have the strictly increasing group iso-
morphism

(6.3) j : Ā −→ A×B

However, in view of Proposition A1.2., (A × B,+, .,�) is a linearly ordered vector
space over F . Therefore, it only remains to show that the strictly increasing group
isomorphism (5.3), (5.4) makes compatible the scalar multiplications in Ā andA×B.

Let therefore c = 0 ∈ F and a ∈ A, b ∈ B, b 6= 0. Then (6.2) gives in Ā the relation
c(a, b) = 0 ∈ A, while in A × B we have cj(a, b) = c(a, b) = (0, 0). On the other hand,
j(0) = (0, 0).

Let now c ∈ F, c 6= 0, a ∈ A, b ∈ B, b 6= 0. Then similarly c(a, b) = (ca, cb), while
cj(a, b) = c(a, b) = (ca, cb). On the other hand, j(ca, cb) = (ca, cb).

Finally, cj(a) = c(a, 0) = (ca, 0), and j(ca) = (ca, 0).
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7. Iterations of the Operation �

Let (A,≤), (B,≤) and (C,≤) be three linearly ordered sets.

Let (φ,≤) denote the void linearly ordered set, then

(7.1) (A,≤) � (φ,≤) = (A,≤), (φ,≤) � (A,≤) = (φ,≤)

Further, the linearly ordered sets

(7.2) (A,≤) � (B,≤), (B,≤) � (A,≤)

are in general not order isomorphic.

Similarly, the linearly ordered sets

(7.3) (A,≤) � ( (B,≤) � (C,≤) ), ( (A,≤) � (B,≤) ) � (C,≤)

are in general not order isomorphic.

We note however that

(7.4) (A,≤) � ( (B,≤) � (C,≤) ) = (E,≤)

where

(7.5) E =
⋃
a∈A{ [ (

⋃
b∈B( (C × {−b}) ∪ {b} ∪ (C × {+b} ) ) )× {−a}] ∪

∪ {a} ∪

∪ [ (
⋃
b∈B( (C × {−b}) ∪ {b} ∪ (C × {+b} ) ) )× {+a} ] }

Similarly

(7.6) ( (A,≤) � (B,≤) ) � (C,≤) = (F,≤)

where

(7.7) F =
⋃
a ′∈

⋃
a∈A( (B×{−a})∪{a}∪(B×{+a} ) )( (C × {−a ′}) ∪

∪ {a ′} ∪

∪ (C × {+a ′} ) )

By using the above defined iterations of the operation �, the results in sections
5 and 6 regarding the endowment of the locally enriched linearly ordered sets with
commutative group, respectively, vector space structures, obviously allow the con-
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struction of arbitrarily large linearly ordered sets which are commutative groups or
vector spaces.
Indeed, let (A,+,≤), (B,+,≤) be linearly ordered commutative groups which are vec-
tor spaces over a linearly ordered field F . Then in view of Theorem 6.1., we obtain the
following linearly ordered vector spaces over the linearly ordered field F , namely

(7.8)

(A,+,≤) � (B,+,≤)

( (A,+,≤) � (B,+,≤) ) � (B,+,≤)

( ( (A,+,≤) � (B,+,≤) ) � (B,+,≤) ) � (B,+,≤)

...

And in view of (4.9), it follows that in this way one can construct linearly ordered
vector spaces of arbitrarily large cardinal over the linearly ordered field F .

8. Infinite Iterations of �

Let (A,≤) be a nonvoid linearly ordered set, and n ≥ 1. We define

(8.1) (A,≤)�n =
(A,≤) if n = 1

((A,≤)�n−1)�(A,≤) if n ≥ 2

Clearly, that definition can be extended to all ordinal numbers α. Indeed, if α is
not a limit ordinal, then we define

(8.2) (A,≤)�α = ((A,≤)�α−1)�(A,≤)

while for α a limit ordinal, we define

(8.3) (A,≤)�α =
⋃
β<α(A,≤)�β

We note that, in view of (4.8), we have strict inclusions

(8.4) (A,≤)�1 $ (A,≤)�2 $ (A,≤)�3 $ . . . $ (A,≤)�n $ . . .

. . . $ (A,≤)�ω $ (A,≤)�ω+1 $ . . .

and this justifies the definition in (8.3).

In view of (4.9), given any nonvoid linearly ordered set (A,≤), the cardinal of the
linearly ordered set in (A,≤)�α can be arbitrary large, for sufficiently large ordinal α.

Obviously, the above construction in (8.1) - (8.4) can be extended to the case when
for each ordinal α, one has given a linearly ordered set (Aα,≤).
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In fact, one can let the respective iterations run over all ordinals, and thus obtain
linearly ordered proper classes which are no longer sets.

Furthermore, iterations such as in (7.8) can be performed for arbitrary cardinals,
thus obtaining arbitrarily large linearly ordered commutative groups or vector spaces
over linearly ordered fields.

9. Looking through Microscopes ...

It is easy to see that the constructions in sections 3 - 7 above do the following.
One takes a given nonvoid linearly ordered set (A,≤) and constructs with the help
of the same, or of any other nonvoid linearly ordered set (B,≤) the corresponding
extension (Ā,≤) =
(A,≤)� (B,≤) of (A,≤), such that

• A is a strict subset of Ā,

• the linear order on Ā induces the initial linear order on A,

• each point a ∈ A obtains booth to the left and right a linearly ordered extension
in Ā.

Thus the local structure of A is enriched by Ā. And this enrichment happens as
follows

• at each point a ∈ A, a “microscope" given by (B,≤) is installed with the effect
that instead of the single point a ∈ A, now we can see the set ({a−}×B)∪{a}∪
({a + ×B}) which contains a ∈ A, and in addition, it extends to the left and to
the right of a ∈ A with a realm twice the size of B,

• for two different points a, a ′ ∈ A, their respective added realms do not intersect.

10. A General Construction for Global Largeness

Here, we present a construction similar with the above one for local enrichment
which, this time, enlarges the global structure of any given linearly ordered set (A,≤).

Let us note first that the above general construction of local enrichment in sec-
tion 3 does itself give a certain kind of global enlargement since the initial linearly
ordered set (A,≤) is replaced with the larger linearly ordered set (D,≤) and one has
the strictly increasing mapping (3.5), (3.6).
However, as seen next, there is also an alternative way for global enlargement of a
linearly ordered set.

For that purpose, let (B,≤), (C,≤) be two linearly ordered sets which for conve-
nience are supposed to be disjoint. Then we define the linearly ordered set
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(10.1) (E,≤)

as the global enlargement of A, by taking

(10.2)
E = (

⋃
b∈B ({b} × A) ) ∪ A ∪ (

⋃
c∈C ({c} × A) ) =

= (B × A )
⋃
A

⋃
(C × A )

while the linear order e ≤ e ′ is defined for e, e ′ ∈ E according to the appropriate
condition among the following seven

(10.3)

i) e ∈ {b} × A, e ′ ∈ {b ′} × A, b ≤ b ′, b 6= b ′

ii) e = (b, a), e ′ = (b, a ′) ∈ {b} × A, a ≤ a ′

iii) e ∈ {b} × A, e ′ ∈ ∪A ∪ (
⋃
c∈C ({c} × A) )

iv) e = a, e ′ = a ′ ∈ A, a ≤ a ′

v) e ∈ A, e ′ ∈
⋃
c∈C ({c} × A)

vi) e ∈ {c} × A, e ′ ∈ {c ′} × A, c ≤ c ′, c 6= c ′

vii) e = (c, a), e ′ = (c, a ′) ∈ {c} × A, a ≤ a ′

We note a certain connection between the two constructions, namely, of local
richness and global largeness. Indeed, in the particular case of section 4, we con-
structed the linearly ordered set

(10.4) (Ā,≤) = (A,≤)� (B,≤)

in (4.7), (4.8), for any two linearly ordered sets (A,≤) and (B,≤). Here, Ā is the
local enrichment of A. And it follows easily that

(10.5) Ā = ( (A−)×B )
⋃
A

⋃
( (A+)×B )

where A− = {a− | a ∈ A} and A+ = {a+ | a ∈ A}.

On the other hand, the global enlargement of A in (10.1) - (10.3) is given by the
linearly ordered set (E,≤), where

(10.6) E = (B × A )
⋃
A

⋃
(C × A )

Now, similar with section 4, we can particularize that construction as follows. Let
(F,≤) be a linearly ordered set, and let us take (B,≤) = (F−,≤) and (C,≤) = (F+,≤),
where the linear orders on F− and F+ are the same with that on F . Then (10.6) gives
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E = ( (F−)× A )
⋃
A

⋃
( (F+)× A )

For convenience of notation, let us replace F with B, and thus we have

(10.7) E = ( (B−)× A )
⋃
A

⋃
( (B+)× A )

Let us now define the bijective mapping

(10.8) k : E −→ Ā

as follows

(10.9)

(b−, a) 7−→ (a−, b)

a 7−→ a

(b+, a) 7−→ (a+, b)

Remark 10.1.

It is easy to see that the above mapping k is in general not an order isomorphism
between (E,≤) and (Ā,≤).

11. Looking through Telescopes ...

A simple interpretation of the construction of global largeness in section 10 is the
following one. Both at the left and right ends of the linearly ordered set (A,≤) one
respective telescope is placed. And each of these telescopes can see as many copies
of (A,≤) stretching to the left and right of (A,≤), as many elements are in the linearly
ordered sets (B,≤) and (C,≤), respectively.

12. Differential Calculus on the GSL

The developments in Appendix 2 below do obviously allow a Differential Calculus
on any of the extensions in sections 3 and 10 above, as long as such extensions are
vector spaces over a field.

Appendix 1 : Lexicographic Order and Commutative
Group Structures

A1.1. Lexicographic Order
Let (A,≤) and (B,≤) be two linearly ordered sets. We recall that the lexicographic or-
der� is defined on A×B by
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(A1.1) (a, b) � (c, d) ⇐⇒

 a ≤ c, a 6= c
or
a = c, b ≤ d


and it gives again a linear order on A×B. Furthermore, for every given b ∈ B, the

mapping

(A1.2) i : A 3 a 7−→ (a, b) ∈ A×B

is an order isomorphic embedding, that is, it is an order isomorphism between A
and the image i(A) of A in A×B.

A1.2. Lexicographic Order and Commutative Group
Structure

Let now (A,+,≤) and (B,+,≤) be two linearly ordered commutative groups. Namely,
we assume that, for a, a ′, a ′′ ∈ A, the relations hold

(A1.3) a ≤ a ′ =⇒ a+ a ′′ ≤ a ′ + a ′′

(A1.4) a ≥ 0, a ′ ≥ 0 =⇒ a+ a ′ ≥ 0

where 0 ∈ A is the neutral element in A, as well as

(A1.5) a, − a ≥ 0 =⇒ a = 0

We note that (A1.3) implies (A1.4), (A1.5).
Indeed, if a ≥ 0, a ′ ≥ 0, then 0 ≤ a, 0 ≤ a ′, thus 0 ≤ a ′ = 0 + a ′ ≤ a+ a ′.
Also, if a,−a ≥ 0, then 0 ≤ a, hence−a = 0 + (−a) ≤ a+ (−a) = 0, thus−a ≤ 0, which
with the assumption−a ≥ 0, gives−a = 0, and finally a = 0.

Further, assumptions similar to (A1.3) - (A1.5) are made about (B,≤).

Recalling that A×B has the commutative group structure given by

(A1.6) (a, b) + (c, d) = (a+ b, c+ d)

we obtain

Proposition A1.1.

Let (A,+,≤) and (B,+,≤) be two linearly ordered commutative groups. Then
their product considered with the lexicographic order (A×B,+,�) is again a linearly
ordered commutative group, and the mapping

(A1.7) A 3 a 7−→ (a, 0) ∈ A×B
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is a strictly increasing group homomorphism.

Proof.

As noted above, we only have to show that (A1.3) holds. Let therefore (x, y), (u, v), (w, z) ∈
A×B. If (x, y) � (u, v), then

(A1.8) (x, y) + (w, z) � (u, v) + (w, z)

Here we have to consider the following situations.

Case 1. x ≤ u, x 6= u. Then x+w ≤ u+w, x+w 6= u+w, thus (A1.8) indeed holds.

Case 2. x = u, y ≤ v. Then x+ w = u+ w, y + z ≤ v + z, hence (A1.8) again holds.

A1.3 Lexicographic Order and Vector Space Structure

Let (A,+,≤) and (B,+,≤) be two linearly ordered commutative groups which are
vector spaces over a field F . Then their group product (A× B,+) is naturally a vector
space over F , according to the action

(A1.9) F × (A×B) 3 (c, (x, y)) 7−→ (cx, cy) ∈ A×B

Proposition A1.2.

Let (A,+,≤) and (B,+,≤) be two linearly ordered commutative groups which are
vector spaces over a linearly ordered field (F,+, .,≤). Then the lexicographically or-
dered group (A×B,+, .,�) is a linearly ordered vector space over (F,+, .,≤).

Proof.

We only have to prove that, for c ∈ F, (x, y) ∈ A×B, we have

(A1.10) c ≥ 0, (x, y) � (0, 0) =⇒ (cx, cy) � (0, 0)

Case 1. c = 0. Then (cx, cy) = (0, 0) � (0, 0).

Case 2. c ≥ 0, c 6= 0. Then x ≥ 0, x 6= 0 gives cx ≥ 0, cx 6= 0, thus indeed
(cx, cy) � (0, 0).

If now x = 0, then (x, y) � (0, 0) yields y ≥ 0, thus cy ≥ 0. But cx = 0, hence again
(cx, cy) = (0, cy) � (0, 0).

Appendix 2 : Differential Calculus on Vector Spaces
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Let G,H be commutative groups which are also vector spaces over a field F .

We consider a set of sequences in F

(A2.1) CF ⊆ FN

which are called convergent to 0 ∈ F , and which have the property to be a vector
space over F .

Now we can define an operation of limit on certain sequences in F , as follows.
Given (cn)n∈N ∈ FN and c ∈ F , then we have

(A2.2) limn→∞ cn = c

if and only if

(A2.3) (c− cn)n∈N ∈ CF

Similarly, we consider a set of sequences in G

(A2.4) CG ⊆ GN

which are called convergent to 0 ∈ G, and which have the property to be a vector
subspace over F .

Again, we can define an operation of limit on certain sequences in G, as follows.
Given (xn)n∈N ∈ GN and x ∈ G, then we have

(A2.5) limn→∞ xn = x

if and only if

(A2.6) (x− xn)n∈N ∈ CG

Finally, we do the same in H with a respective set of sequences

(A2.7) CH ⊆ GN

which also, are a vector subspace over F .

Now, for every given v ∈ G, v 6= 0, we can define a derivation Dv on certain func-
tions f : G −→ H as follows. Let

(A2.7) Dv ⊆ HG

be the set of all f : G −→ H, such that the limit
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(A2.8) (Dvf)(g) = limn→∞ (cn)−1(f(g + cnv)− f(g)) ∈ H

exists for all g ∈ G and (cn)n∈N ∈ CF , for which cn 6= 0, with n ∈ N, and for each
g ∈ G this limit is unique, being independent of the respective sequences (cn)n∈N.

Proposition A2.1.

Given v ∈ G, v 6= 0, then Dv is a vector subspace in HG and Dv : Dv −→ HG is a
linear mapping.

Proof.

Let f, k ∈ Dv and (cn)n∈N ∈ CF , with cn 6= 0, for n ∈ N. Then for g ∈ G,wehave

(Dvf)(g) = limn→∞ (cn)−1(f(g + cnv)− f(g))

(Dvk)(g) = limn→∞ (cn)−1(k(g + cnv)− k(g))

hence

(Dvf)(g) + (Dvk)(g) =

= limn→∞ (cn)−1(f(g + cnv)− f(g)) +

+ limn→∞ (cn)−1(k(g + cnv)− k(g)) =

= limn→∞ (cn)−1( (f(g + cnv)− f(g)) + (k(g + cnv)− k(g)) ) =

= limn→∞ (cn)−1( (f(g + cnv)− k(g + cnv)) + (f(g)− k(g)) ) =

= (Dv(f + k))(g)

Thus f + k ∈ Dv and Dvf +Dvk = Dv(f + k).

Similarly, for c ∈ F , we have cf ∈ Dv and Dv(cf) = cDvf .

Remark A2.1.

1) Typical further conditions required on the sequences in CF are as follows, [1,16] :

(A2.9) (c, c, c, . . .) ∈ CF , c ∈ F

(A2.10) ∃ (cn)n∈N ∈ CF : ∀ n ∈ N : cn 6= 0

Similar conditions may be required on the sequences in CG or CH .

2) In case of certain groups G,H or fields F , it may be appropriate to replace the
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convergent sequences with filters. This is a well known procedure, [1,16].

3) When the groups G,H or the fields F are linearly ordered, the respective con-
cepts of convergence may be required to satisfy appropriate compatibility condi-
tions.

4) When the groups G,H are not only vector spaces over the fields F but also al-
gebras, then one can require the derivations Dv to satisfy the classical Leibniz rule of
product derivative.

5) The above adaptations are to be treated elsewhere.
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