Article

Some Results on the Klein Quadric Representation for a General Quantum Spacetime

Ziya Akça \& Abdilkadir Altıntaș
Eskişehir Osmangazi University, Faculty of Science and Letters, Department of Mathematics and Computer Science, 26480 Eskişehir, Turkey. ${ }^{1}$

Abstract

The Klein representation is a general quantum space-time. The aggregate consisting of all $(n-1)$ planes in the complex projective space $P^{2 n-1}$ forms a manifold of dimension n^{2}. This space is complexified, compactified version of the quantum space-time.

The quadric of $P G(5, q)$, over its prime field $G F(p)$ (the integers modulo p). defined by equation, $$
X_{0} X_{3}+X_{1} X_{4}+X_{2} X_{5}=0
$$

is called the Klein Quadric.
In this paper, we give an embedding of Alpha and Beta Planes of the Klein Quadric.
Key Words: Klein mapping, embedding, Alpha and Beta Planes
Ams Subject classification : 51E20, 51E30

1 Introduction and Preliminaries

The space $P^{2 n-1}$ of projective hypertwistors is a good starting point for the analysis of the conformal geometry of complex quantum space-time, which can be regarded as the Grassmannian variety of projective $(n-1)$-planes in $P^{2 n-1}$. More precisely, the aggregate of all projective $(n-1)$-planes in $P^{2 n-1}$ constitutes a compact manifold of dimension n^{2}, which we identify as the complexified, compactified quantum space-time. The finite points of compactified quantum space-time correspond to those $(n-1)$-planes of $P^{2 n-1}$ that are determined by a linear relation of the form

$$
w^{A}=i x^{A A^{\prime}} \pi_{A^{\prime}}
$$

for some fixed $x^{A A^{\prime}}$, see [6].
We now give the n-dimensional projective space $P G(n, K)$ for $n>0$ and K, any (skew) field. Let V be any vector space of dimension $(n+1)$ over K. Then $P G(n, K)$, the n-dimensional projective space over K, is the set of all subspaces of V distinct from the trivial subspaces $\{0\}$ and V. The $1-$ dimensional subspaces are called the points of $P G(n, K)$, the 2 -dimensional subspaces are called the (projective) lines and the 3 -dimensional ones are called (projective) planes. We remark that by going from a vector space to the associated projective space, the dimension drops by one unit. Hence an $(n+1)$-dimensional vector space gives rise to an n-dimensional projective space $[3-9]$.

Let $P G(3, q)$ be a 3 -dimensional projective space over a field $G F(q)$ where q is prime, such that the points and planes are represented by homogeneous coordinates. The method is due to Julius Plücker (1801-1868). The homogeneity of Plücker coordinates suggest to view the the coordinates of a line as homogenous coordinates of points in five dimensional space $P G(5, q)$, [8]. This is a particular case of construction of the Grassmannian of lines. Homogenous coordinates in $P G(5, q)$ are written as in the form ($l_{01}, l_{02}, l_{03}, l_{23}, l_{31}, l_{12}$) where

$$
l_{i j}=x_{i} y_{j}-x_{j} y_{i}
$$

[^0]We denote $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=\left(l_{01}, l_{02}, l_{03}, l_{23}, l_{31}, l_{12}\right)$.
(See 10)The Klein mapping,

$$
\gamma: \mathcal{L} \rightarrow P G(5, q)
$$

assigns to a line of L of $P(3, q)$ the point $\left(l_{01}, l_{02}, l_{03}, l_{23}, l_{31}, l_{12}\right)$ of $P G(5, q)$ where $\left(l_{01}, l_{02}, l_{03}, l_{23}, l_{31}, l_{12}\right)$ are the line's Plücker coordinates (F.Klein, 1868).
(See 6) The lines of projective three-space are, via the Klein mapping, in one-to-one correspondence with points of a hyperbolic quadric of the projective 5 -space.

The quadric of $P G(5, q)$ defined by equation,

$$
X_{0} X_{3}+X_{1} X_{4}+X_{2} X_{5}=0
$$

is called the Klein Quadric and is denoted by the symbol \mathcal{H}^{5}.
The Klein Quadric contains two families of 2-planes. α-planes are lines through a point in $P G(3, q)$ and β-planes are lines in a 2-plane in $\operatorname{PG}(3, q)[8]$.Two different α-planes meet in a single point. This point represents the line joining the two points in $P G(3, q)$. Similarly two different β-planes meet in a point, while this time the point represents the line in $P G(3, q)$ that is the intersection of the 2-planes determined by the β-planes. In general an α-plane and β-plane do not meet. If an α-plane and β-plane meet then they meet in a line. In $P G(3, q)$ this line in the \mathcal{H}^{5} corresponds to the set of lines in a plane passing through a point. The Klein quadric, being a hyperbolic quadric in five dimensions, contains points, lines and planes (but no 3-spaces). The planes can be partitioned into two classes (called Greek and Latin) using the relation:

$$
\pi_{1} \sim \pi_{2} \Leftrightarrow \pi_{1}=\pi_{2} \text { or } \pi_{1} \cap \pi_{2} \text { is a point }
$$

The set of lines through a given a point p in $P G(3, q)$ defines a Latin plane. The set of lines contained in a given plane \mathcal{P} in $P G(3, q)$ defines a Greek plane [5-6]. Let \mathcal{P}_{1} and \mathcal{P}_{2} be the two equivalence classes of planes of \mathcal{H}^{5}. We define a geometry S as follows.

The points of S are the planes of \mathcal{P}_{1};
The lines of S are the points of \mathcal{H}^{5};
The planes of S are the planes of \mathcal{P}_{2},
The incidence between a line of S and a point or a plane of S is induced by the incidence of $P G(5, q)$; a point π_{1} of S and a plane π_{2} of S are incident if the planes π_{1} and π_{2} of $P G(5, q)$ are not disjoint. (They intersect each other in a line of $P G(5, q)$.) The geometry S is a 3-dimensional projective space; more precisely, S is isomorphic to a 3-dimensional subspace of the projective space $P G(5, q)[10]$.

The space of lines in $F P^{3}$ is represented as a projective quadric, known as the Klein quadric \mathcal{K} in $F P^{5}$, with projective coordinates $\left(P_{01}: P_{02}: P_{03}: P_{23}: P_{31}: P_{12}\right)$, known as Plücker coordinates.

The line through two points $\left(q_{0}: q_{1}: q_{2}: q_{3}\right)$ and $\left(u_{0}: u_{1}: u_{2}: u_{3}\right)$ in $F P^{3}$ has Plücker coordinates, defined as follows [5]:

$$
P_{i j}=q_{i} u_{j}-q_{j} u_{i}
$$

Hence, for a line in F^{3}, obtained by setting $q_{0}=u_{0}=1$, the Plücker coordinates acquire the meaning of a projective pair of three-vectors $(w: v)$, where w is a vector in the direction of the line and for any point $q=\left(q_{1}, q_{2}, q_{3}\right)$ on the line, $v=q \times w$ is the line's moment vector, with respect to some fixed origin. We use the boldface notation for three-vectors throughout. Conversely, one can denote $w=\left(P_{01}, P_{02}, P_{03}\right)$, $v=\left(P_{23}, P_{31}, P_{12}\right)$, the Plücker coordinates then become $(w: v)$, and treat w and v as vectors in F^{3}, bearing in mind that, in fact, as a pair they are projective quantities. The lines in the plane at infinity in $F P^{3}$ are represented by Plücker vectors $(0: v)$. The equation of the Klein quadric \mathcal{K} in $F P^{5}$ is

$$
P_{01} P_{23}+P_{02} P_{31}+P_{03} P_{12}=0
$$

The Klein quadric contains a three-dimensional family of projective two-planes, called α-planes. Elements of a single -plane are lines, concurrent at some point $\left(q_{0}: q_{1}: q_{2}: q_{3}\right) \in F P^{3}$. If the concurrency point is
$(1: q)$, which is identified with $q \in F^{3}$, the plane is a graph $v=q \times w$. Otherwise, an ideal concurrency point $(0: w)$ gets identified with some fixed w, viewed as a projective vector. The corresponding α-plane is the union of the set of parallel lines in F^{3} in the direction of w, with Plücker coordinates $(w: v)$, so $v \cdot w=0$, and the set of lines in the plane at infinity incident to the ideal point $(0: w)$. The latter lines have Plücker coordinates $(0: v)$, with once again $v \cdot w=0$. Similarly, the Klein quadric contains another three-dimensional family of two-planes, called β - planes, which represent co-planar lines in $F P^{3}$. A "generic" β-plane is a graph $w=u \times v$, for some $u \in F^{3}$. The case $u=0$ corresponds to the plane at infinity, otherwise the equation of the co-planarity plane in F^{3} becomes $u \cdot q=-1$, [4].

We use maps $\theta: P G(3,2) \rightarrow P G(5,2)$, and $\theta: P G(5,2) \rightarrow P G(19,2)$, such that θ maps the set of points and planes of $P G(3,2)$ to the set of planes of $P G(5,2)$ and the set of lines of $P G(3,2)$ to the set of points of $P G(5, F)$. These embeddings give Klein embedding $P G(3,2)$ into $P G(19,2)$.

2 Klein Mapping of PG(3,2)

Let $P G(3,2)$ be a 3 -dimensional projective space over a field $G F(2)$ such that the points and planes are represented by homogeneous coordinates. $P G(3,2)$ has 15 points, 35 lines and 15 planes. We will give the full list as supplementary material.

3 Embedding of α and β Planes of Kelin Quadric

The points of the projective space $P G(3,2)$ is as follows:

$$
\begin{aligned}
& N_{1}=(0,0,0,1), N_{6}=(0,1,1,0), N_{11}=(1,0,1,1) \\
& N_{2}=(0,1,0,0), N_{7}=(0,1,1,1), N_{12}=(1,1,0,0) \\
& N_{3}=(0,1,0,1), N_{8}=(1,1,1,0), N_{13}=(1,1,0,1) \\
& N_{4}=(0,0,1,0), N_{9}=(1,1,1,1), N_{14}=(1,0,0,0) \\
& N_{5}=(0,0,1,1), N_{10}=(1,0,1,0), N_{15}=(1,0,0,1)
\end{aligned}
$$

Consider the points $P=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right), Q=\left(y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right), R=\left(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)$ spanning the planes of Kelin Quadric. For the points P, Q, R, matrix \mathcal{M} is defined as follows:

$$
\mathcal{M}=\left[\begin{array}{llllll}
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
y_{0} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5} \\
z_{0} & z_{1} & z_{2} & z_{3} & z_{4} & z_{5}
\end{array}\right]
$$

We define determinant P_{0} :

$$
P_{0}=p_{012}\left|\begin{array}{lll}
x_{0} & y_{0} & z_{0} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y 2 & z 2
\end{array}\right|
$$

and $P_{1}=p_{013}, P_{2}=p_{014}, P_{3}=p_{015}, P_{4}=p_{023}, P_{5}=p_{024}, P_{6}=p_{025}, P_{7}=p_{034}, P_{8}=p_{035}, P_{9}=p_{045}$, $P_{10}=p_{123}, P_{11}=p_{124}, P_{12}=p_{125}, P_{13}=p_{134}, P_{14}=p_{135}, P_{15}=p_{145}, P_{1_{234}, P 6}=p_{17}=p_{235}, P_{18}=p_{245}$, $P_{19}=p_{345}$ cyclically.
$\left(P_{0}, P_{1}, P_{2}, \ldots ., P_{19}\right)$ is Grasmanian coordinate the plane of a projective space of $P G(5,2)$. It is a point of the projective space $P G(19,2)$.

Grassmanian coordinates of α-planes of Klein Quadric are 15 -cap in the projective space $P G(19,2)$.
Let the α-plane be the image of the point $N_{1}(0,0,0,1)$ in the projective space $P G(3,2)$. This plane is spanned by points $(0,0,0,1,0,0),(0,0,0,0,1,0)$ and $(0,0,1,0,0,0)$. It has Grassmann coordinate:

$$
N_{1}(0,0,0,1) \rightarrow P_{\alpha 1}=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0)
$$

Similarly other planes have following Grassman coordinates:

$$
\left.\left.\left.\begin{array}{ll}
N_{2}(0,1,0,0) & \rightarrow \\
N_{3}(0,1,0,1) & \rightarrow \\
P_{\alpha 2}=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0) \\
N_{4}(0,0,1,0) & \rightarrow
\end{array} P_{\alpha 4}=(0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0)\right), 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0\right)\right)
$$

Any three of these points in $P G(19,2)$ are non-collinear, hence they are 15-cap in $P G(19,2)$.
Grassmanian coordinates of β-planes of Klein Quadric is 15 -cap in projective space $P G(19,2)$.
Let the β-plane be the image of the projective plane $D_{1}[0,0,0,1]$). This plane is spanned by points $(1,1,0,0,0,0),(0,0,0,0,0,1)$ and $(0,1,0,0,0,0)$. It has Grassmann coordinates:

$$
D_{1}[0,0,0,1] \rightarrow P_{\beta 1}=(0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
$$

Similarly other planes have following Grassman coordinates:

$$
\begin{aligned}
& D_{2}[0,0,1,0] \quad \rightarrow \quad P_{\beta 2}=(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) \\
& D_{3}[0,0,1,1] \quad \rightarrow \quad P_{\beta 3}=(0,0,1,1,0,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0) \\
& D_{4}[0,1,0,0] \quad \rightarrow \quad P_{\beta 4}=(0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0) \\
& D_{5}[0,1,0,1] \quad \rightarrow \quad P_{\beta 5}=(0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0) \\
& D_{6}[0,1,1,0] \quad \rightarrow \quad P_{\beta 6}=(0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0) \\
& D_{7}[0,1,1,1] \quad \rightarrow \quad P_{\beta 7}=(0,1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0) \\
& D_{8}[1,0,0,0] \quad \rightarrow \quad P_{\beta 8}=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1) \\
& D_{9}[1,0,0,1] \quad \rightarrow \quad P_{\beta 9}=(0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0) \\
& D_{10}[1,0,1,0] \quad \rightarrow \quad P_{\beta 10}=(0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,1) \\
& D 1_{1}[1,0,1,1] \quad \rightarrow \quad P_{\beta 11}=(0,0,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0) \\
& D_{12}[1,1,0,0] \quad \rightarrow \quad P_{\beta 12}=(0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,1) \\
& D_{13}[1,1,0,1] \quad \rightarrow \quad P_{\beta 13}=(0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,1,0,1,1,1) \\
& D_{14}[1,1,1,0] \quad \rightarrow \quad P_{\beta 14}=(0,0,0,0,1,1,0,1,0,0,1,1,0,1,0,0,0,1,1,1) \\
& D_{15}[1,1,1,1] \quad \rightarrow \quad P_{\beta 15}=(0,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,0,1,0,1)
\end{aligned}
$$

Any three of these points in $P G(19,2)$ are non-collinear, hence they are 15-cap in $\mathrm{P} G(19,2)$.

Application: Each time-like geodesic in a flat four-dimensional space-time determines a quadric in projective twistor space. A quadric in P^{3} has two distinct systems of generators. In the case of a time-like
geodesic, the line L belongs to one of the two systems. The corresponding geodesic is a conic curve in the Klein quadric, and has the property that it passes through the point. The second system of generators then corresponds to a polar conic that lies on the null cone infinity and does not go through the point.

Description The line L of $P G(3,2)$ corresponds to the point of the projective space $P G(5,2)$. In this case these lines are the plane arcs in $P G(5,2)$. We use coordinates which are determined up to right multiples. Let $\left\{N_{1}, N_{2}, \ldots, N_{15}\right\}$ and $\left\{D_{1}, D_{2}, \ldots, D_{15}\right\}$ be the set of points and planes of the projective space of $P G(3,2)$. Without loss of generality, we can assign the following coordinates:

$$
\begin{aligned}
& N_{1}=(0,0,0,1), N_{6}=(0,1,1,0), N_{11}=(1,0,1,1) \\
& N_{2}=(0,1,0,0), N_{7}=(0,1,1,1), N_{12}=(1,1,0,0) \\
& N_{3}=(0,1,0,1), N_{8}=(1,1,1,0), N_{13}=(1,1,0,1) \\
& N_{4}=(0,0,1,0), N_{9}=(1,1,1,1), N_{14}=(1,0,0,0) \\
& N_{5}=(0,0,1,1), N_{10}=(1,0,1,0), N_{15}=(1,0,0,1)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{1} & =[0,0,0,1], D_{6}=[0,1,1,0], D_{11}=[1,0,1,1] \\
D_{2} & =[0,0,1,0], D_{7}=[0,1,1,1], D_{12}=[1,1,0,0] \\
D_{3} & =[0,0,1,1], D_{8}=[1,0,0,0], D_{13}=[1,1,0,1] \\
D_{4} & =[0,1,0,0], D_{9}=[1,0,0,1], D_{14}=[1,1,1,0] \\
D_{5} & =[0,1,0,1], D_{10}=[1,0,1,0], D_{15}=[1,1,1,1] .
\end{aligned}
$$

The incidence between a line of S and a point of S is induced by the incidence of $P G(5,2)$. Hence S satisfies projective plane axioms.

The quadric contains two distinct systems of projective planes, called α-planes and β-planes. Any two distinct planes of the same type in intersect at a point. Two planes of the opposite type will in general not intersect, but if they do, they intersect in a line. The points of $P G(3,2)$ correspond to α-planes and the 2 -planes of $P G(3,2)$ correspond to β-planes.

Let $P_{\alpha i}, i=1,2, \ldots, 15$ be $\alpha-$ plane of $P G(5,2)$ and $P_{\beta i}, i=1,2, \ldots, 15$ be $\beta-$ be a plane of $P G(5,2)$. We define a geometry S^{\prime} as follows.

The projective points of S^{\prime} correspond to the α-planes of $P G(5,2)$ provide Fano axiom in the projective space $\mathcal{P} G(19,2)$;

The projective points of S^{\prime} correspond to the β-planes of $P G(5,2)$ provide Fano axiom in the projective space $\mathcal{P} G(19,2)$;

Received September 17, 2021; Accepted November 9, 2021

References

[1] Adamson, I. T. (1964). Introduction to field theory. Edinburgh: Oliver and Boyd.
[2] Akça, Z., Bayar, A., Ekmekçi, S., Kaya, R., 2010, Bazı Geometrilerin Sonlu Projektif Uzaylara Gömülmeleri Üzerine, Tübitak Proje No: 108 T 340.
[3] Akça, Z., Bayar, A., Ekmekçi, S., 4. Mertebeden Projektif Düzlemin 4-boyutlu Projektif Uzaya Gömülmesi Üzerine, Ogü Bap Proje No: 201619D38, 2017.
[4] Artin, E. (1948). Galois theory. Notre Dame: University of Notre Dame Press
[5] Cullinane, H., 2007, The Klein Correspondence, Penrose Space-Time, and a Finite Model, http://finitegeometry.org/sc/64/KleinCorr.html
[6] Dorje, C., Brody, L.P., 2014, Twistor cosmology and quantum space-time, arXiv:hep-th/0502218v1.
[7] Ekmekçi, S., Bayar, A., Akça, Z., 2017, PG(4, 4) Projektif Uzayındaki Projektif Düzlemler Üzerine, Ogü Bap Proje No: 201619D37.
[8] Gokhan, S., Demirci, M., Ikikardes, N. Y., \& Cangul, I. N., 2007. Rational Points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in F_{p}, where $p \equiv 5(\bmod 6)$ is Prime. International Journal of Mathematics Sciences, 1(4), $247-250$.
[9] Hirschfeld, J. A. Thas., 2016, General Galois Geometries, Springer Monongraphs in Mathematics.
[10] Klein, F.,1868, Über die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Koordinaten auf eine kanonische Form, Math., p. 539-578
[11] Penttila, T., Siciliano A., 2015 On collineation groups of finite projective spaces containing a Singer cycle, Journal of Geometry 107(3).
[12] Plücker, J., 1865, On a New Geometry of Space, Philosophical Transactions of the Royal Society of London, Vol. 155, pp. 725-791.

[^0]: ${ }^{1}$ Correspondence: Ziya Akça. Email: zakca@ogu.edu.tr

