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Abstract 

The power spectrum of the cosmic microwave background (CMB) quantifies the distribution of 

relic radiation left over from the early Universe. As of today, CMB data acquired by Planck and 

WMAP satellites exhibit certain anomalies that challenge the standard model of cosmology 

(ΛCDM). The goal of this brief report is to sketch up an intriguing connection between CMB 

anomalies and self-organized criticality (SOC). Our proposal bypasses the interpretation of CMB 

anomalies based on Loop Quantum Cosmology (LQC). 
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1. Introduction  

ΛCDM predicts that the primordial power spectrum is nearly scale-invariant and described by 

the power law [1] 
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in which k  is the wavenumber measured in 1Mpc , sA  denotes the amplitude of the scalar mode 

of spectral index sn  and k  represents the so-called pivot mode. According to the LQC model, 

(1) acquires a suppression factor ( )f k  whose effect is negligible for large wavenumbers, that is 

0k k ,  

 0( ) (1),f k O k k    (2) 
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with 0k  being a reference value. By contrast, suppression of the nearly scale-invariant spectrum 

(1) occurs if the wavenumber drops down near 010k k . The modified primordial spectrum 

predicted by LQC is given by [1]  
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There is more than one way to display and simulate the power spectrum (1). For example, [2] 

brings up the following set of scaling relations inspired by LQC and inflation 
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  (3) 

where k  and Ik  are the characteristic scales at primordial cosmological times and q  is an 

exponent dissimilar in magnitude to the spectral index sn .  

The goal of this short report is to explore a scenario where (2) and (3) derive from a radically 

different approach to the CMB formation. Demanding self-similarity in the complex dynamics of 

large structures implies that CMB is the outcome of a global SOC process. Our preliminary 

analysis is consistent with earlier proposals where SOC is conjectured to assume a critical role in 

astrophysics and cosmology [3-7].    

    

2. Mathematics of SOC: a short overview  

Consider a large-scale ensemble of observables undergoing a second-order phase transition. The 

transition is driven by the control parameter   as it approaches the critical value c . Near the 

critical point and for systems of infinite extent ( L  ), the correlation length   diverges as  

   ~ ( )
c

    ;  ,
c

L      (4) 

In the transition region, a relevant variable of the system is also a diverging quantity which 

scales as  

 ( )A   ~ c

  
 ; , cL       (5) 
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where   is a critical exponent. In what follows, we introduce the notation  

 ( )s

     (6) 

There are two distinct cases associated with the power-law (4). If the size of the system greatly 

exceeds the correlation length, L  , by (4) and (5) we write   

 ( )LA   ~ s 
 ;  ( , cL     )  (6) 

In the opposite case, L  , the system size takes over the scaling behavior and (6) turns into    

 ( )LA   ~ sL


 ;   ( , cL     )  (7) 

Taken together, (6) and (7) define the finite-size scaling (FSS) ansatz  

 ( ) ( )s

L
LA

  
   ;   ( , cL    )  (8) 

where the scaling function controls the finite-size effects of critical behavior and is defined as  
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To transition from the framework of critical phenomena to SOC, one simply identifies the 

correlation length with the concept of avalanche-size, i.e.,  

 s   ;    cs L   (10) 

The probability distribution defining the FSS ansatz in SOC is a natural extrapolation of (8) and 

takes the form of a probability distribution [8]  

 ( , )P s L  ~ ( )s

c

ss
s

   for 1, 1s L    (11a) 

 ( )cs L  ~ 0D
L  for 1L     (11b) 

in which s  and 0D  are called the avalanche-size exponent and the avalanche dimension, 

respectively. Quite generally, (11) shows that, for a system of finite extent and large size 

avalanches, the avalanche-size probability behaves as a fractal function times a generic scaling 

function. To enable all moments of (11) to exist, the scaling function must decay sufficiently 
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fast. One obtains the following representation of the scaling function upon power expanding it 

around zero,      

 ( )x  ~ 

21
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  (12) 

The avalanche-size probability must be normalized to unity and its average be diverging along 

with L  , which leads to the following constraints     
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Under the assumption that (0) 0  , the behavior of (11) for an infinite system size may be 

approximated as  

 lim ( ; )
L

P s L


 ~ (0)ss
    (15) 

Furthermore, to comply with (13) and (14), the avalanche-size exponent must fall in the range 

 1 2s    (16) 

It is important to note that, while SOC has a clear statistical underpinning as described by (11), 

the power spectra (1)-(3) are based on deterministic measurements unrelated to probabilistic 

assumptions. A helpful analogy between (1)-(3) and (11) is nevertheless possible, with the caveat 

that (16) is not necessarily relevant insofar as the CMB spectrum is concerned.  

With these considerations in mind, we set up next a parallel between (1)-(3) and the slowly 

driven evolution of SOC towards a non-equilibrium steady state.   

 

3. CMB as non-equilibrium steady state  

Since it is always convenient to work with dimensionless entities, we normalize the 

wavenumbers entering (1)-(3) according to 
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in which K  stands for a suitably chosen reference value. Comparative inspection of (1)-(3) and 

(11) suggests the term-by-term identification 
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Following [8], the critical avalanche size (19) scales with the maximal extension of the 

wavenumber space (or ultraviolet cutoff) UV as in   

 0

cs  ~ 0( )D

UV      (20) 

Labeling the scaling function and avalanche-size exponent by, respectively,  

 
0

0

0
( ) ( ) ,s

c

s
A f k

s
   1s sn     (21) 

enables one to cast (2)-(3) in the same form as (11), namely, 
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 0

cs  ~ 0( )D
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Note that the scaling function (...)  is nearly constant for 0 0

cs s  in the limit of unbounded 

wavenumbers UV   [8]. By default, this condition corresponds to the regime of infinitesimal 

spatial separations in the CMB map, where the spectra (1) and (2) are nearly scale-invariant. 

 

We close with few remarks that (in our view) are important for future extensions of this work: 

 

1) among the most straightforward scaling functions (...)  that may be considered in 

simulations are the Heaviside step-function and the exponential function, where the latter 

characterizes so-called “branching SOC processes” [8].  

2)  the CMB angular power spectrum displayed in [9] falls off at large multipole moments in a 

strikingly similar manner with the data collapse of [8, page 284]. Does this analogy further 

supports our approach or does it arise from a different rationale altogether?  
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3) To gain credibility, follow-up extensions of these ideas must successfully recover the large-

scale power anomaly described by the parameter 
1 2

S , as well as the lensing amplitude LA  

derived in [1].   
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