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Abstract

There are two mysterious looking correspondences involving ADE groups. McKay correspondence
between McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin
diagrams of affine ADE groups is the first one. The correspondence between principal diagrams char-
acterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin diagrams for a subset of
ADE groups and Dynkin diagrams for affine ADE groups is the second one. These correspondences are
discussed from number theoretic point of view suggested by TGD and based on the interpretation of
discrete subgroups of SU(2) as subgroups of the covering group of quaternionic automorphisms SO(3)
(analog of Galois group) and generalization of these groups to semi-direct products Gal(K) /SU(2)K
of Galois group for extension K of rationals with the discrete subgroup SU(2)K of SU(2) with rep-
resentation matrix elements in K. The identification of the inclusion hierarchy of HFFs with the
hierarchy of extensions of rationals and their Galois groups is proposed. A further mystery whether
Gal(K)/SU(2)K could give rise to quantum groups or affine algebras. In TGD framework the infinite-
D group of isometries of ”world of classical worlds” (WCW) is identified as an infinite-D symplectic
group for which the discrete subgroups characterized by K have infinite-D representations so that
hyper-finite factors are natural for their representations. Symplectic algebra SSA allows hierarchy of
isomorphic sub-algebras SSAn. The gauge conditions for SSAn and [SSAn, SSA] would define mea-
surement resolution giving rise to hierarchies of inclusions and ADE type Kac-Moody type algebras
or quantum algebras representing symmetries modulo measurement resolution. A concrete realization
of ADE type Kac-Moody algebras is proposed. It relies on the group algebra of Gal(K) / SU(2)K
and free field representation of ADE type Kac-Moody algebra identifying the free scalar fields in
Kac-Moody Cartan algebra as group algebra elements defined by the traces of representation ma-
trices (characters). A possible alternative interpretation of quantum spinors is in terms of quantum
measurement theory with finite measurement resolution in which precise eigenstates as measurement
outcomes are replaced with universal probability distributions defined by quantum group. This has
also application in TGD inspired theory of consciousness.
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1 Introduction

There are two mysterious looking correspondences involving ADE groups. McKay correspondence between
McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin diagrams of affine
ADE groups is the first one. The correspondence between principal diagrams characterizing inclusions of
hyper-finite factors of type II1 (HFFs) with Dynkin diagrams for a subset of ADE groups and Dynkin
diagrams for affine ADE groups is the second one.

I have considered the interpretation of McKay correspondence in TGD framework already earlier [4, 3]
but the decision to look it again led to a discovery of a bundle of new ideas allowing to answer several
key questions of TGD.

1. Asking questions about M8−H duality at the level of 8-D momentum space [6] led to a realization
that the notion of mass is relative as already the existence of alternative QFT descriptions in terms
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of massless and massive fields suggests (electric-magnetic duality). Depending on choice M4 ⊂M8,
one can describe particles as massless states in M4 × CP2 picture (the choice is M4

L depending on
state) and as massive states (the choice is fixed M4

T ) in M8 picture. p-Adic thermal massivation of
massless states in M4

L picture can be seen as a universal dynamics independent mechanism implied
by ZEO. Also a revised view about zero energy ontology (ZEO) based quantum measurement theory
as theory of consciousness suggests itself.

2. Hyperfinite factors of type II1 (HFFs) [4, 3] and number theoretic discretization in terms of what I
call cognitive representations [8] provide two alternative approaches to the notion of finite measure-
ment resolution in TGD framework. One obtains rather concrete view about how these descriptions
relate to each other at the level of 8-D space of light-like momenta. Also ADE hierarchy can be
understood concretely.

3. The description of 8-D twistors at momentum space-level is also a challenge of TGD. 8-D twisto-
rializations in terms of octo-twistors (M4

T description) and M4 × CP2 twistors (M4
L description)

emerge at imbedding space level. Quantum twistors could serve as a twistor description at the level
of space-time surfaces.

1.1 McKay correspondence in TGD framework

Consider first McKay correspondence in more detail.

1. McKay correspondence states that the McKay graphs characterizing the tensor product decomposi-
tion rules for representations of discrete and finite sub-groups of SU(2) are Dynkin diagrams for the
affine ADE groups obtained by adding one node to the Dynkin diagram of ADE group. Could this
correspondence make sense for any finite group G rather than only discrete subgroups of SU(2)?
In TGD Galois group of extensions K of rationals can be any finite group G. Could Galois group
take the role of G?

2. Why the subgroups of SU(2) should be in so special role? In TGD framework quaternions and
octonions play a fundamental role at M8 side of M8 −H duality [6]. Complexified M8 represents
complexified octonions and space-time surfaces X4 have quaternionic tangent or normal spaces.
SO(3) is the automorphism group of quaternions and for number theoretical discretizations induced
by extension K of rationals it reduces to its discrete subgroup SO(3)K having SU(2)K as a covering.
In certain special cases corresponding to McKay correspondence this group is finite discrete group
acting as symmetries of Platonic solids. Could this make the Platonic groups so special? Could the
semi-direct products Gal(K) / SU(2)K take the role of discrete subgroups of SU(2)?

1.2 HFFs and TGD

The notion of measurement resolution is definable in terms of inclusions of HFFs and using number
theoretic discretization of X4. These definitions should be closely related.

1. The inclusions N ⊂M of HFFs with indexM : N < 4 are characterized by Dynkin diagrams for a
subset of ADE groups. The TGD inspired conjecture is that the inclusion hierarchies of extensions
of rationals and of corresponding Galois groups could correspond to the hierarchies for the inclusions
of HFFs. The natural realization would be in terms of HFFs with coefficient field of Hilbert space
in extension K of rationals involved.

Could the physical triviality of the action of unitary operators N define measurement resolution?
If so, quantum groups assignable to the inclusion would act in quantum spaces associated with the
coset spaces M/N of operators with quantum dimension d = M : N . The degrees of freedom
below measurement resolution would correspond to gauge symmetries assignable to N .
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2. Adelic approach [7] provides an alternative approach to the notion of finite measurement resolution.
The cognitive representation identified as a discretization of X4 defined by the set of points with
points having H (or at least M8 coordinates) in K would be common to all number fields (reals
and extensions of various p-adic number fields induced by K). This approach should be equivalent
with that based on inclusions. Therefore the Galois groups of extensions should play a key role in
the understanding of the inclusions.

How HFFs could emerge from TGD?

1. The huge symmetries of ”world of classical words” (WCW) could explain why the ADE diagrams
appearing as McKay graphs and principal diagrams of inclusions correspond to affine ADE algebras
or quantum groups. WCW consists of space-time surfaces X4, which are preferred extremals of
the action principle of the theory defining classical TGD connecting the 3-surfaces at the opposite
light-like boundaries of causal diamond CD = cd× CP2, where cd is the intersection of future and
past directed light-cones of M4 and contain part of δM4

± × CP2. The symplectic transformations
of δM4

+ × CP2 are assumed to act as isometries of WCW. A natural guess is that physical states
correspond to the representations of the super-symplectic algebra SSA.

2. The sub-algebras SSAn of SSA isomorphic to SSA form a fractal hierarchy with conformal weights
in sub-algebra being n-multiples of those in SSA. SSAn and the commutator [SSAn, SSA] would
act as gauge transformations. Therefore the classical Noether charges for these sub-algebras would
vanish. Also the action of these two sub-algebras would annihilate the quantum states. Could the
inclusion hierarchies labelled by integers .. < n1 < n2 < n3.... with ni+1 divisible by ni would
correspond hierarchies of HFFs and to the hierarchies of extensions of rationals and corresponding
Galois groups? Could n correspond to the dimension of Galois group of K.

3. Finite measurement resolution defined in terms of cognitive representations suggests a reduction
of the symplectic group SG to a discrete subgroup SGK , whose linear action is characterized by
matrix elements in the extension K of rationals defining the extension. The representations of
discrete subgroup are infinite-D and the infinite value of the trace of unit operator is problematic
concerning the definition of characters in terms of traces. One can however replace normal trace
with quantum trace equal to one for unit operator. This implies HFFs and the hierarchies of
inclusions of HFFs [4, 3]. Could inclusion hierarchies for extensions of rationals correspond to
inclusion hierarchies of HFFs and of isomorphic sub-algebras of SSA?

Quantum spinors are central for HFFs.

1. A possible interpretation of quantum spinors is in terms of quantum measurement theory with finite
measurement resolution in which precise eigenstates as measurement outcomes are replaced with
universal probability distributions defined by quantum group.

2. Quantum spinors have also a possible application in TGD inspired theory of consciousness [3]: the
idea is that the truth value of Boolean statement is fuzzy. At the level of quantum measurement
theory this would mean that the outcome of quantum measurement is not anymore precise eigenstate
but that one obtains only probabilities for the appearance of different eigenstates. One might say
that probability of eigenstates becomes a fundamental observable and measures the strength of
belief.

3. In TGD particles are massless in 8-D sense and in general massive in 4-D sense but 4-D twistors
are needed also now so that a modification of twistor approach is needed. The incidence relation
for twistors suggests the replacement of the usual twistors with either non-commutative quantum
twistors or with octo-twistors [11]. Quantum twistors could be associated with the space-time level
description of massive particles.
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2 McKay correspondence

Consider first McKay correspondence from TGD point of view.

2.1 McKay graphs

McKay graps are defined in the following manner. Consider group G which is discrete but not necessarily
finite. If the group is finite there is a finite number of irreducible representations χI . Select preferred
representation V - usually V is taken to be the fundamental representation of G and form tensor products
χI ⊗V . Suppose irrep χJ appears nij times in the tensor product χI ⊗χ0. Assign to each representation
χI dot and connect the dots of χI and χJ by nij arrows. This gives rise to MacKay graph.

Consider now the situation for finite-D groups of SU(2). 2-D SU(2) spinor representation as a funda-
mental representation is essential for obtaining the identification of McKay graphs as Dynkin diagrams
of simply laced affine algebras having only single line connecting the roots (the angle between positive
roots is 120 degrees) (see http://tinyurl.com/z48d92t).

1. For SU(2) representations one has the basic rule j1 − 1/2 ≤ j ≤ j1 + 1/2 for the tensor product
j1⊗1/2. This rule must be broken for finite subgroups of SU(2) since the number of representations
if finite so that branching point appears in McKay graph. In branching point the decomposition of
j1 ⊗ 1/2 decomposes to 3 lower-dimensional representations of the finite subgroup takes place.

2. Simply lacedness means that given representation appears only once in chiI ⊗ V , when V is 2-D
representation as it can be for a subgroup of SU(2). Additional exceptional properties is the absence
of loops (nii = 0) and connectedness of McKay graph.

3. One can consider binary icosahedral group (double covering of icosahedral group A5 with order 60)
as an example (for the McKay graph see http://tinyurl.com/y2h55jwp). The representations of
A5 are 1A, 3A, 3

′
B , 4A, 5A, where integer tells the dimension. Note that SO(3) does not allow 4-D

representation. For binary icosahedral group one obtains also the representations 2A, 2
′
B , 4B , 6A.

The McKay graph of E8 contains one branching point in which one has the tensor product of 6-D
and 2-D representations 6A and 2A giving rise to 5A ⊕ 3C ⊕ 4B .

McKay graphs can be defined for any finite group and they are not even unions of simply laced
diagrams unless one has subgroups of SU(2). Still one can wonder whether McKay correspondence
generalizes from subgroups of SU(2) to all finite groups. At first glance this does not seem possible but
there might be some clever manner to bring in all finite groups.

The proposal has been that this McKay correspondence has a deeper meaning. Could simply laced
affine ADE algebras, ADE type quantum algebras, and/or corresponding finite groups act as symmetry
algebras in TGD framework?

2.2 Number theoretic view about McKay correspondence

Could the physical picture provided by TGD help to answer the above posed questions?

1. Could one identify discrete subgroups of SU(2) with those of the covering group SU(2) of SO(3)
of quaternionic automorphisms defining the continuous analog of Galois group and reducing to
a discrete subgroup for a finite resolution characterized by extension K of rationals. The tensor
products of 2-D spinor representation of these discrete subgroups SU(2)K would give rise to irreps
appearing in the McKay graph.

2. In adelic physics [7] extensions K of rationals define an evolutionary hierarchy with effective Planck
constant heff/h0 = n identified as the dimension of K. The action of discrete and finite subgroups
of various symmetry groups can be represented as Galois group action making sense at the level of
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X4 [6] for what I have called cognitive representations. By M8 −H duality also the Galois group
of quaternions and its discrete subgroups appear naturally.

This suggests a possible generalization of McKay correspondence so that it would apply to all finite
groups G. Any finite group G can appear as Galois group. The Galois group Gal(K) characterizing
the extension of rationals induces in turn extensions of p-adic number fields appearing in the adele.
Could the representation of G as Galois group of extension of rationals allow to generalize McKay
correspondence?

Could the following argument inspired by these observations make sense?

1. SU(2) is identified as spin covering of the quaternionic automorphism group. One can define the
subgroups in matrix representation of SU(2) based on complex numbers. One can replace complex
numbers with the extension of rationals and speak of group SU(2)K identified as a discrete subgroup
of SU(2) having in general infinite order.

The discrete finite subgroups G ⊂ SU(2) appearing in the standard McKay correspondence corre-
spond to extensions K of rationals for which one has G = SU(2)K . These special extensions can
be identified by studying the matrix elements of the representation of G and include the discrete
groups Zn acting as rotation symmetries of the Platonic solids. For instance, for icosahedral group
Z2,Z3 and Z5 are involved and correspond to roots of unity.

2. The semi-direct product Gal / SU(2)K with group action

(gal1, g1)(gal2, g2) = (gal1 ◦ gal2, g1(gal1g2))

makes sense. The action of Gal / SU(2)K in the representation is therefore well-defined. Since all
finite groups G can appear as Galois groups, it seems that one obtains extension of the McKay
correspondence to semi-direct products involving all finite groups G representable as Galois groups.

3. A good guess is that the number of representations of SU(2)K involved is infinite if SU(2)K has
infinite order. For Ãn and D̃n the branching occurs only at the ends of the McKay graph. For Ek,
k = 6, 7, 8 the branching occurs in middle of the graph (see http://tinyurl.com/y2h55jwp). What
happens for arbitrary G. Does the branching occur at all? One could argue that if the discrete
subgroup has infinite order, the representation can be completed to a representation of SU(2) in
terms of real numbers so that the McKay graphs must be identical.

4. A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group algebra
of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra identifying the
free scalar fields in Kac-Moody Cartan algebra as group algebra elements defined by the traces of
representation matrices (characters).

5. A possible interpretation of quantum spinors is in terms of quantum measurement theory with
finite measurement resolution in which precise eigenstates as measurement outcomes are replaced
with universal probability distributions defined by quantum group [3]. TGD inspired theory of
consciousness is a possible application.

Also the notion of quantum twistor [11] can be considered. In TGD particles are massless in 8-D
sense and in general massive in 4-D sense but 4-D twistors are needed also now so that a modification
of twistor approach is needed. The incidence relation for twistors suggests the replacement of the
usual twistors with non-commutative quantum twistors.
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3 ADE diagrams and principal graphs of inclusions of hyperfi-
nite factors of type II1

Dynkin diagrams for ADE groups and corresponding affine groups characterize also the inclusions of
hyperfinite factors of type II1 (HFFs) [3].

3.1 Principal graphs and Dynkin diagrams for ADE groups

1. If the index β =M : N of the Jones inclusion satisfies β < 4, the affine Dynkin diagrams of SU(n)
(discrete symmetry groups of n-polygons) and E7 (symmetry group of octahedron and cube) and
D(2n+ 1) (symmetries of double 2n+1-polygons) are not allowed.

2. Vaughan Jones [2] (see http://tinyurl.com/y8jzvogn) has speculated that these finite subgroups
could correspond to quantum groups as kind of degenerations of Kac-Moody groups. Modulo
arithmetics defined by the integer n defining the quantum phase suggests itself strongly. For β = 4
one can construct inclusions characterized by extended Dynkin diagram and any finite sub-group of
SU(2). In this case affine ADE hierarchy appear as principal graphs characterizing the inclusions.
For β < 4 the finite measurement resolution could reduce affine algebra to quantum algebra.

3. The rule is that for odd values of n defining the quantum phase the Dynkin diagram does not
appear. If Dynkin diagrams correspond to quantum groups, one can ask whether they allow only
quantum group representations with quantum phase q = exp(iπ/n) equal to even root of unity.

3.2 Number theoretic view about inclusions of HFFs and preferred role of
SU(2)

Consider next the TGD inspired interpretation.

1. TGD suggests the interpretation in terms of representations of Gal(K(G)) / G for finite subgroups
G of SU(2), where K(G) would be an extension associated with G. This would generalize to
subgroups of SU(2) with infinite order in the case of arbitrary Galois group. Quantum groups have
finite number of representations in 1-1-correspondence with terms of finite-D representations of G.
Could the representations of Gal(K(G)) / G correspond to the representations of quantum group
defined by G?

This would conform with the vision that there are two manners to realize finite measurement
resolution. The first one would be in terms of inclusions of hyper-finite factors. Second would be
in terms cognitive representations defining a number theoretic discretization of X4 with imbedding
space coordinates in the extension of rationals in which Galois group acts.

In fact, also the discrete subgroup of infinite-D group of symplectic transformations of ∆M4
+×CP2

would act in the cognitive representations and this suggests a far reaching implications concerning
the understanding of the cognitive representations, which pose a formidable looking challenge of
finding the set of points of X4 in given extension of rationals [10].

2. This brings in mind also the model for bio-harmony in which genetic code is defined in terms of
Hamiltonian cycles associated with icosahedral and tetrahedral geometries [5, 9]. One can wonder
why the Hamiltonian cycles for cubic/octahedral geometry do not appear. On the other hand,
according to Vaughan the Dynkin diagram for E7 is missing from the hierarchy of so principal
graphs characterizing the inclusions of HFFs for β < 4 (a fact that I failed to understand). Could
the genetic code directly reflect the properties of the inclusion hierarchy?

How would the hierarchies of inclusions of HFFs and extensions of rationals relate to each other?
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1. I have proposed that the inclusion hierarchies of extensions K of rationals accompanied by similar
hierarchies of Galois groups Gal(K) could correspond to a fractal hierarchy of sub-algebras of
hyperfinite factor of type II1. Quantum group representations in ADE hierarchy would somehow
correspond to these inclusions. The analogs of coset spaces for two algebras in the hierarchy define
would quantum group representations with quantum dimension characterizing the inclusion.

2. The quantum group in question would correspond to a quantum analog of finite-D group of SU(2)
which would be in completely unique role mathematically and physically. The infinite-D group in
question could be the symplectic group of δM4

+ × CP2 assumed to act as isometries of WCW. In
the hierarchy of Galois groups the quantum group of finite group G ⊂ SU(2) would correspond to
Galois group of an extension K.

3. The trace of unit matrix defining the character associated with unit element is infinite for these
representations for factors of type I. Therefore it is natural to assume that hyper-finite factor of
type II1 for which the trace of unit matrix can be normalized to 1. Sub-factors would have trace of
projector with trace smaller than 1.

4. Do the ADE diagrams for groups Gal(K(G)) / G indeed correspond to quantum groups and affine
algebras? Why the finite groups should give rise to affine/Kac-Moody algebras? In number theoretic
vision a possible answer would be that depending on the value of the index β of inclusion the
symplectic algebra reduces in the number theoretic discretization by gauge conditions specifying
the inclusion either to Kac-Moody group (β = 4) or to quantum group (β < 4).

What about subgroups of groups other than SU(2)? According to Vaughan there has been work
about inclusion hierarchies of SU(3) and other groups and it seems that the results generalize and finite
subgroups of say SU(3) appear. In this case the tensor products of finite sub-groups McKay graphs do
not however correspond to the principal graphs for inclusions. Could the number theoretic vision come
in rescue with the replacement of discrete subgroup with Galois group and the identification of SU(2) as
the covering for the Galois group of quaternions?

3.3 How could ADE type quantum groups and affine algebras be concretely
realized?

The questions discussed are following. How to understand the correspondence between the McKay graph
for finite group G ⊂ SU(2) and ADE (affine) group Dynkin diagram for β < 4 (β = 4)? How the nodes
of McKay grap representing the irreps of finite group can correspond to the positive roots of a Dynkin
diagram, which are essentially vectors defined by eigenvalues of Cartan algebra generators for complexified
Lie-algebra basis.

The first thing that comes in mind is the construction of representation of Kac-Moody algebra using
scalar fields labelled by Cartan algebra generators (see http://tinyurl.com/y9lkeelk): these repre-
sentations are discussed by Edward Frenkel [1]. The charged generators of Kac-Moody algebra in the
complement of Cartan algebra are obtained by exponentiating the contractions of the vector formed by
these scalar fields with roots to get α · Φ = αiΦ

i. The charged field is represented as a normal ordered
product : exp(iα · Φ) :. If one can assign to each irrep of G a scalar field in a natural manner one could
achieve this.

Neglect first the presence of the group algebra of Gal(K(G))/G. The standard rule for the dimensions
of the representations of finite groups reads as

∑
i d

2
I = n(G). For double covering of G one obtains this

rule separately for integer spin representations and half-odd integers spin representations. An interesting
possibility is that this could be interpreted in terms of supersymmetry at the level of group algebra in
which representation of dimension dI appears dI times.

The group algebra of G and its covering provide a universal manner to realize these representations
in terms of a basis for complex valued functions in group (for extensions of rationals also the values of
the functions must belong to the extension).
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1. Representation with dimension dI occurs dI times and corresponds to dI×dI representation matrices
DI

mn of representation χI , whose columns and rows provide representations for left- and right-sided
action of G. The tensor product rules for the representations χI can be formulated as double tensor
products. For basis states |J, n〉 in χI and |J, n〉 in χJ one has

|I,m〉⊗|J, n〉 = cK,p
I,m|J,n|K, p〉 ,

where cK,p
J,n|J,n are Glebch-Gordan coefficients.

2. For the tensor product of matrices DI
mn and DJ

mn one must apply this rule to both indices. The
orthogonality properties of Glebsch-Gordan coefficients guarantee that the tensor product contains
only terms in which one has same representation at left- and right-hand side. The orthogonality
rule is ∑

m,n

cK,p
I,m|J,nc

K,q
I,r|J,s ∝ δK,L .

3. The number of states is n(G) whereas the number I(G) of irreps corresponds to the dimension of
Cartan algebra of Kac-Moody algebra or of quantum group is smaller. One should be able to pick
only one state from each representation DI .

The condition that the stateX of group algebra is invariant under automorphism gXg−1 implies that
the allowed states as function in group algebra are traces Tr(DI)(g) of the representation matrices.
The traces of representation matrices indeed play fundamental role as automorphism invariants.
This suggests that the scalar fields ΦI in Kac-Moody algebra correspond to Hilbert space coefficients
of Tr(DI)(g) as elements of group algebra labelled by the representation. The exponentiation of
α · Φ would give the charged Kac-Moody algebra generators as free field representation.

4. For infinite sub-groups G ⊂ SU(2) d(G) is infinite. The traces are finite also in this case if the
dimensions of the representations involved are finite. If one interprets the unit matrix as a function
having value 1 in entire group Tr(Id) diverges. Unit dimension for HFFs provide a more natural
notion of dimension d = n(G) of group algebra n(G) as d = n(G) = 1. Therefore HFFs would
emerge naturally.

It is easy to take into account Gal(K(G)). One can represent the elements of semi-direct product
Gal(K(G)) / G as functions in Gal(K(G)) × G and the proposed construction brings in also the tensor
products in the group algebra of Gal(K(G)). It is however essential that group algebra elements have
values in K. This brings in tensor products of representations Gal and G and the number of represen-
tations is n(Gal) × n(G). The number of fields ΦI as also the number of Cartan algebra generators of
ADE Lie algebra increases from I(G) to I(Gal)× I(G). The reduction of the extension of coefficient field
for the Kac-Moody algebra from complex numbers to K splits the Hilbert space to sectors with smaller
number of states.
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