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Article

p-Adic Square Root Function and p-Adic Light-cone

Matti Pitkänen1

Abstract

The argument of the article demonstrates that the extension allowing square roots of ordinary p-adic numbers

is 4-dimensional for p < 2 and 8-dimensional for p = 2. The region of convergence of the p-adic square root

function can be regarded as the counterpart of light-cone.
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1 Introduction

This little article appears as an appendix to one of the chapters [2] of an online book trying to formulate the
ideas related to the question what p-adic physics describes, what it means, and how one could fuse real and p-adic
physics to a larger coherent whole [1]. I take the article as a clumsy and innocent mathematical exercise of a
theoretical physicist trying to gain an ntuitive understanding about what p-adic numbers are but for some reason
it has generated more interest than the work that I take myself much more seriously. Perhaps the reason is that it
contains formulas instead of philosophizing with a lot of 'maybe's and 'on the other hand's.

The basic argument of the article is that the extension allowing square roots of ordinary p-adic numbers is
4-dimensional for p < 2 and 8-dimensional for p = 2. The region of convergence of the p-adic square root function
can be regarded as the counterpart of light-cone. The obvious question was whether the dimensions of space-time
and the 8-D imbedding space in which space-time surfaces reside in TGD Universe could relate to these algebraic
dimensions. It turned out that in TGD Universe classical number �elds (reals,complex numbers, quaternions, and
octonions) provide the manner to understand these dimensions and that algebraic dimensions assignable to the
extensions of p-adic numbers are not identi�able as real physical dimensions. Apart from these after-thoughts the
article is in the original form.

2 p-Adic square root function and square root allowing extension of

p-adic numbers

The following arguments demonstrate that the extension allowing square roots of ordinary p-adic numbers is 4-
dimensional for p < 2 and 8-dimensional for p = 2.

2.1 p > 2 resp. p = 2 corresponds to D = 4 resp. D = 8 dimensional extension

What is important is that only the square root of ordinary p-adic numbers is needed: the square root need not
exist outside the real axis. It is indeed impossible to �nd a �nite-dimensional extension allowing square root for all
ordinary p-adic numbers numbers. For p > 2 the minimal dimension for algebraic extension allowing square roots
near real axis is D = 4. For p = 2 the dimension of the extension is D = 8.

For p > 2 the form of the extension can be derived by the following arguments.

1. For p > 2 a p-adic number y in the range (0, p − 1) allows square root only provided there exists a p-adic
number x ∈ {0, p− 1} satisfying the condition y = x2 mod p. Let x0 be the smallest integer, which does not
possess a p-adic square root and add the square root θ of x0 to the number �eld. The numbers in the extension
are of the form x + θy. The extension allows square root for every x ∈ {0, p − 1} as is easy to see. p-adic
numbers mod p form a �nite �eld G(p, 1) [3] so that any p-adic number y, which does not possess square root
can be written in the form y = x0u, where u possesses square root. Since θ is by de�nition the square root of
x0 then also y possesses square root. The extension does not depend on the choice of x0.
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The square root of −1 does not exist for p mod 4 = 3 [4] and p = 2 but the addition of θ gurantees its
existence automatically. The existence of

√
−1 follows from the existence of

√
p− 1 implied by the extension

by θ.
√
(−1 + p)− p can be developed in power in powers of p and series converges since the p-adic norm of

coe�cients in Taylor series is not larger than 1. If p− 1 does not possess a square root, one can take θ to be
equal to

√
−1.

2. The next step is to add the square root of p so that the extension becomes 4-dimensional and an arbitrary
number in the extension can be written as

Z = (x+ θy) +
√
p(u+ θv) . (2.1)

In p = 2 case 8-dimensional extension is needed to de�ne square roots. The addition of
√
2 implies that one can

restrict the consideration to the square roots of odd 2-adic numbers. One must be careful in de�ning square roots
by the Taylor expansion of square root

√
x0 + x1 since n:th Taylor coe�cient is proportional to 2−n and possesses

2-adic norm 2n. If x0 possesses norm 1 then x1 must possess norm smaller than 1/8 for the series to converge. By
adding square roots θ1 =

√
−1, θ2 =

√
2 and θ3 =

√
3 and their products one obtains 8-dimensional extension.

The emergence of the dimensions D = 4 and D = 8 for the algebraic extensions allowing the square root of an
ordinary p-adic number stimulates an obvious question: could one regard space-time as this kind of an algebraic
extension for p > 2 and the imbedding space H = M4

+ × CP2 as a similar 8-dimensional extension of the 2-adic
numbers? Contrary to the �rst expectations, it seems that algebraic dimension cannot be regarded as a physical
dimension, and that quaternions and octonions provide the correct framework for understanding space-time and
imbedding space dimensions. One could perhaps say that algebraic dimensions are additional dimensions of the
world of cognitive physics rather than those of the real physics and there presence could perhaps explain why we
can imagine all possible dimensions mathematically.

By construction, any ordinary p-adic number in the extension allows square root. The square root for an
arbitrary number su�ciently near to p-adic axis can be de�ned through Taylor series expansion of the square root
function

√
Z at a point of p-adic axis. The subsequent considerations show that the p-adic square root function

does not allow analytic continuation to R4 and the points of the extension allowing a square root consist of disjoint
converge cubes forming a structure resembling future light cone in certain respects.

2.2 p-Adic square root function for p > 2

The study of the properties of the series representation of a square root function shows that the de�nition of the
square root function is possible in certain region around the real p-adic axis. What is nice that this region can be
regarded as the p-adic analog (not the only one) of the future light cone de�ned by the condition

Np(Im(Z)) < Np(t = Re(Z)) = pk , (2.2)

where the real p-adic coordinate t = Re(Z) is identi�ed as a time coordinate and the imaginary part of the p-adic
coordinate is identi�ed as a spatial coordinate. The p-adic norm for the four-dimensional extension is analogous to
ordinary Euclidian distance. p-Adic light cone consists of cylinders parallel to time axis having radius Np(t) = pk

and length pk−1(p − 1). As a real space (recall the canonical correspondence) the cross section of the cylinder
corresponds to a parallelpiped rather than ball.

The result can be understood heuristically as follows.

1. For the four-dimensional extension allowing square root (p > 2) one can construct square root at each point
x(k, s) = spk represented by ordinary p-adic number, s = 1, ..., p−1, k ∈ Z. The task is to show that by using
Taylor expansion one can de�ne square root also in some neighbourhood of each of these points and �nd the
form of this neighbourhood.

2. Using the general series expansion of the square root function one �nds that the convergence region is p-adic
ball de�ned by the condition

Np(Z − spk) ≤ R(k) , (2.3)

and having radius R(k) = pd, d ∈ Z around the expansion point.

3. A purely p-adic feature is that the convergence spheres associated with two points are either disjoint or
identical! In particular, the convergence sphere B(y) associated with any point inside convergence sphere
B(x) is identical with B(x): B(y) = B(x). The result follows directly from the ultra-metricity of the p-adic
norm. The result means that stepwise analytic continuation is not possible and one can construct square
root function only in the union of p-adic convergence spheres associated with the points x(k, s) = spk which
correspond to ordinary p-adic numbers.

4. By the scaling properties of the square root function the convergence radius R(x(k, s)) ≡ R(k) is related to
R(x(0, s)) ≡ R(0) by the scaling factor p−k:
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R(k) = p−kR(0) , (2.4)

so that the convergence sphere expands as a function of the p-adic time coordinate. The study of the conver-
gence reduces to the study of the series at points x = s = 1, ..., k − 1 with a unit p-adic norm.

5. Two neighboring points x = s and x = s + 1 cannot belong to the same convergence sphere: this would
lead to a contradiction with the basic results of about square root function at integer points. Therefore the
convergence radius satis�es the condition

R(0) < 1 . (2.5)

The requirement that the convergence is achieved at all points of the real axis implies

R(0) =
1

p
,

R(pks) =
1

pk+1
. (2.6)

If the convergence radius is indeed this, then the region, where the square root is de�ned, corresponds to a
connected light cone like region de�ned by the condition Np(Im(Z)) = Np(Re(Z)) and p > 2-adic space time
is the p-adic analog of the M4 lightcone. If the convergence radius is smaller, the convergence region reduces
to a union of disjoint p-adic spheres with increasing radii.

How the p-adic light cone di�ers from the ordinary light cone can be seen by studying the explicit form of the
p-adic norm for p > 2 square root allowing extension Z = x+ iy +

√
p(u+ iv)

Np(Z) = (Np(det(Z)))
1
4 ,

= (Np((x
2 + y2)2 + 2p2((xv − yu)2 + (xu− yv)2) + p4(u2 + v2)2))

1
4 ,

(2.7)

where det(Z) is the determinant of the linear map de�ned by a multiplication with Z. The de�nition of the
convergence sphere for x = s reduces to

Np(det(Z3)) = Np(y
4 + 2p2y2(u2 + v2) + p4(u2 + v2)2)) < 1 . (2.8)

For physically interesting case p mod 4 = 3 the points (y, u, v) satisfying the conditions

Np(y) ≤
1

p
,

Np(u) ≤ 1 ,

Np(v) ≤ 1 , (2.9)

belong to the sphere of convergence: it is essential that for all u and v satisfying the conditions one has also
Np(u

2 + v2) ≤ 1. By the canonical correspondence between p-adic and real numbers, the real counterpart of the
sphere r = t is now the parallelpiped 0 ≤ y < 1, 0 ≤ u < p, 0 ≤ v < p, which expands with an average velocity of
light in discrete steps at times t = pk.

2.3 Convergence radius for square root function

In the following it will be shown that the convergence radius of
√
t+ Z is indeed non-vanishing for p > 2. The

expression for the Taylor series of
√
t+ Z reads as

√
t+ Z = =

√
x
∑
n

an ,

an = (−1)n (2n− 3)!!

2nn!
xn ,

x =
Z

t
. (2.10)

The necessary criterion for the convergence is that the terms of the power series approach to zero at the limit
n→∞. The p-adic norm of the n:th term is for p > 2 given by

Np(an) = Np(
(2n− 3)!!

n!
)Np(x

n) < Np(x
n)Np(

1

n!
) . (2.11)
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The dangerous term is clearly the n! in the denominator. In the following it will be shown that the condition

U ≡ Np(x
n)

Np(n!)
< 1 for Np(x) < 1 , (2.12)

holds true. The strategy is as follows:
a) The norm of xn can be calculated trivially: Np(x

n) = p−Kn, K ≥ 1.
b) Np(n!) is calculated and an upper bound for U is derived at the limit of large n.

2.3.1 p-Adic norm of n! for p > 2

Lemma 1: Let n =
∑k

i=0 n(i)p
i, 0 ≤ n(i) < p be the p-adic expansion of n. Then Np(n!) can be expressed in the

form

Np(n!) =
k∏

i=1

N(i)n(i) ,

N(1) =
1

p
,

N(i+ 1) = N(i)p−1p−i . (2.13)

An explicit expression for N(i) reads as

N(i) = p−
∑i

m=0 m(p−1)i−m

. (2.14)

Proof: n! can be written as a product

Np(n!) =
k∏

i=1

X(i, n(i)) ,

X(k, n(k)) = Np((n(k)p
k)!) ,

X(k − 1, n(k − 1)) = Np(

n(k−1)pk−1∏
i=1

(n(k)pk + i)) = Np((n(k − 1)pk−1)!) ,

X(k − 2, n(k − 2)) = Np(

n(k−2)pk−2∏
i=1

(n(k)pk + n(k − 1)pk−1 + i) , )

= Np((n(k − 2)pk−2)!) ,

X(k − i, n(k − i)) = Np((n(k − i)pk−i)!) . (2.15)

The factors X(k, n(k)) reduce in turn to the form

X(k, n(k)) =

n(k)∏
i=1

Y (i, k) ,

Y (i, k) =

pk∏
m=1

Np(ip
k +m) . (2.16)

The factors Y (i, k) in turn are indentical and one has

X(k, n(k)) = X(k)n(k) ,

X(k) = Np(p
k!) . (2.17)

The recursion formula for the factors X(k) can be derived by writing explicitely the expression of Np(p
k!) for a

few lowest values of k:
1) X(1) = Np(p!) = p−1.
2) X(2) = Np(p

2!) = X(1)p−1p−2 ( p2! decomposes to p − 1 products having same norm as p! plus the last term
equal to p2.
i) X(i) = X(i− 1)p−1p−i

Using the recursion formula repeatedly the explicit form of X(i) can be derived easily. Combining the results
one obtains for Np(n!) the expression

Np(n!) = p−
∑k

i=0 n(i)A(i) ,

A(i) =
i∑

m=1

m(p− 1)i−m . (2.18)
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The sum A(i) appearing in the exponent as the coe�cient of n(i) can be calculated by using geometric series

A(i) = (
p− 1

p− 2
)2(p− 1)i−1(1 +

i

(p− 1)i+1
− (i+ 1)

(p− 1)i
) ,

≤ (
p− 1

p− 2
)2(p− 1)i−1 . (2.19)

2.3.2 Upper bound for Np(
xn

n!
) for p > 2

By using the expressions n =
∑

i n(i)p
i, Np(x

n) = p−Kn and the expression of Npn! as well as the upper bound

A(i) ≤ (
p− 1

p− 2
)2(p− 1)i−1 . (2.20)

For A(i) one obtains the upper bound

Np(
xn

n!
) ≤ p−

∑k
i=0 n(i)p

i(K−(
(p−1)
(p−2)

)2(
(p−1)

p
)i−1) .

(2.21)

It is clear that for Np(x) < 1 that is K ≥ 1 the upper bound goes to zero. For p > 3 exponents are negative for
all values of i: for p = 3 some lowest exponents have wrong sign but this does not spoil the convergence. The
convergence of the series is also obvious since the real valued series 1

1−
√

Np(x)
serves as a majorant.

2.4 p = 2 case

In p = 2 case the norm of a general term in the series of the square root function can be calculated easily using the
previous result for the norm of n!:

Np(an) = Np(
(2n− 3)!!

2nn!
)Np(x

n) = 2−(K−1)n+
∑k

i=1 n(i)
i(i+1)

2i+1 . (2.22)

At the limit n → ∞ the sum term appearing in the exponent approaches zero and convergence condition gives
K > 1, so that one has

Np(Z) ≡ (Np(det(Z)))
1
8 ≤ 1

4
. (2.23)

The result does not imply disconnected set of convergence for square root function since the square root for half
odd integers exists:

√
s+

1

2
=

√
2s+ 1√

2
, (2.24)

so that one can develop square as a series in all half odd integer points of the p-adic axis (points which are ordinary
p-adic numbers). As a consequence, the structure for the set of convergence is just the 8-dimensional counterpart
of the p-adic light cone. Space-time has natural binary structure in the sense that each Np(t) = 2k cylinder consists
of two identical p-adic 8-balls (parallelpipeds as real spaces).
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