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Article
How Far Should the Principle of Relativity Go?

Elemér E Rosinger

Abstract

The Principle of Relativity has so far been understood as the covariance of laws
of Physics with respect to a general class of reference frame transformations. That
relativity, however, has only been expressed with the help of one single type of math-
ematical entities, namely, the scalars given by the usual continuum of the field R
of real numbers, or by the usual mathematical structures built upon R, such as the
scalars given by the complex numbers C, or the vectors in finite dimensional Eu-
clidean spaces R”, infinite dimensional Hilbert spaces, etc.

This paper argues for progressing deeper and wider in furthering the Principle of Rel-
ativity, not by mere covariance with respect to reference frames, but by studying the
possible covariance with respect to a large variety of algebras of scalars which extend
significantly R or C, variety of scalars in terms of which various theories of Physics
can equally well be formulated.

First directions in this regard can be found naturally in the simple Mathematics of
Special Relativity, the Bell Inequalities in Quantum Mechanics, or in the considerable
amount of elementary Mathematics in finite dimensional vector spaces which occurs
in Quantum Computation.

The large classes of algebras of scalars suggested, which contain R and C as partic-
ular cases, have the important feature of typically no longer being Archimedean, see
Appendix, a feature which can prove to be valuable when dealing with the so called
"infinities" in Physics.

The paper has a Comment on the so called "end of time".

1. The Status-Quo, and Going Beyond ...

As argued in the sequel, Theoretical Physics has for long by now been confined
to the following status-quo, without however being aware of that confinement, and
instead, taking it for granted as the only obvious and natural way :

e The scalars used are based on the set R of real numbers, upon which the com-
plex numbers C, as well as various finite dimensional Euclidean, or for that mat-
ter, infinite dimensional Hilbert spaces are constructed.

e Asithappens, R is algebraically a field, see Appendix, that is, addition, subtrac-
tion, multiplication and division can be made without restriction, except for
division with zero.
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e Asitalso happens, R is algebraically Archimedean, which means among others
that it cannot conveniently operate with infinity or distinguish between variants
of infinity, some more infinite than other ones. This leads to the well known
theoretical difficulties called "infinities in physics".

There have been attempts to go beyond such a confinement by considering the
use of scalars other than R or C. Such attempts, however, were found not particularly
encouraging in view, among others, of the following :

e The alternative scalars were required to be again fields, just as is the case with R
and C.

e The use of non-Archimedean scalars has been seen as too difficult, thus they
tended to be avoided.

As it turns out - and a fact which appears not to be particularly familiar with the-
oretical physicists - the previous two points are simply just about incompatible with
one another. Indeed, according to a classical theorem of Pontrjagin, [22], the only
fields which are not discrete are R, C and the Hamiltonian quaternions H, the latter
being non-commutative, however, Archimedean as well.

Therefore, in case one is interested in a genuine and rich enough class of new pos-
sible scalars, one has to abandon the requirement that such scalars constitute a field.

Now, as it happens, such a requirement is in fact not at all hard for theoretical
physicists, or for that matter, engineers and economists, or others as well, since they
have for long been familiar with the use of matrices. And certainly, the square matri-
ces of any given order n > 2 do no longer constitute a field, since there are plenty of
nonzero matrices one cannot divide with, if their determinants vanish.

However, with square matrices of a given order n > 2, one can still do unrestricted
addition, subtraction and multiplication, as well as division, except for those with
zero determinant.

In this way, square matrices constitute an algebraic structure which is called alge-
bra, see Appendix, a structure which is but slightly more general, hence only marginally
less rich or convenient, than that of a field.

And thus if we are ready to give up looking for fields - a choice severely restricted
by the Pontrjagin theorem - then we need not go farther but to the very next milder al-
gebraic structure, namely, of algebras, a structure physicists, engineers, economists,
and others as well, have in fact been familiar with for quite a while by now ...

And once we are ready for that step, a very large class of easy to construct and use
algebras turn out to be available, as shown in the sequel, algebras which are commu-
tative as well.

And as one of the unexpected additional advantages, these algebras turn out to be
non-Archimedean.
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And why their non-Archimedean algebraic structure is actually an advantage, when
theoretical physicists tend to think otherwise ?

Well, as argued in the sequel, and so far not much familiar with theoretical physi-
cists, the fact is that, contrary to accepted views, we simply do not have the freedom
of choice between Archimedean and non-Archimedean algebraic structures. Indeed,
the former prove to be but minuscule subsets of the latter. Thus by choosing to work
exclusively with the former, we confine ourselves without ever becoming aware of
that fact ...

Ever, except perhaps when, like for instance in Theoretical Physics, we keep hitting
time and again upon the difficulties brought about by the so called "infinities in
physics" ...

And then, what may be the way forward ?

Well, the existence of the mentioned very large class of algebras - called reduced
power algebras - offers not only the possibility to redo much of Physics in their terms,
but also the following one, so far not considered, see [14], which could bring with it a
significant further deepening and widening of the Principle of Relativity itself :

e To explore the extent to which theories of Physics are, or on the contrary, are not
independent of the respective scalars they use in their mathematical formula-
tion.

2. Main Moments in the Evolution of the Principle of
Relativity

The Principle of Relativity in Physics has so far undergone the following three
stages:

e Aristotelian and pre-Galilean,
e Galillean - Newtonian and of Special Relativity,

e General Relativity.

Here, following several recent papers, [8-10,14,15,17,18], a fourth stage will be sug-
gested, namely one which takes the Principle of Relativity

e from reference frame relativity to the relativity of mathematical models involved
in the theories of Physics.

In the first, Aristotelian and pre-Galilean stage there was simply no Principle of
Relativity, but precisely its very opposite. Indeed, it was considered that Planet Earth
was immobile, and of course, at the very center of the Universe. And as recalled in the
sequel, Aristotle believed to have a perfectly valid proof of it. That view was closely
related to Aristotle’s assumption that, when formulated in modern terms, velocity -
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and not acceleration - was proportional to force in motion. Since in ancient Greek
times no experiments of any more substantive nature were made in this regard, and
since they could not avail themselves of Calculus, no one realized the immediately
resulting contradiction. Namely, such an assumption would mean that the law of
motion would be given by a first order differential equation in terms of position. Thus
contrary to obvious and elementary facts of common experience, one would only be
able to impose one single initial condition on motion, be that, for instance, an initial
position, or an initial velocity. Certainly, one could not impose two independent ini-
tial conditions, say, both an initial position and an initial velocity, as is the case with
Newton’s law of motion, his second law in fact, which is given by a second order dif-
ferential equation in terms of position.

[t was Galileo, with his by now classical argument about moving with constant ve-
locity in the belly of a boat on a still lake which, as far as known, introduced for the
first time the idea of the Principle of Relativity for the motion of objects within Clas-
sical Mechanics. This Galilean Principle of Relativity was fully taken over by Newton,
and expressed in his mentioned law of motion, according to which acceleration - and
not velocity - in motion is proportional with force. This law, as mentioned, is given by
a second order differential equation in terms of position, thus it is perfectly compat-
ible with the commonly known possibility of being able to impose no less than two
independent initial conditions.

Einstein’s Special Relativity took over the Galilean - Newtonian Principle of Rela-
tivity, and extended it to Electro-Magnetism as well. And in fact, as mentioned later,
as far as Special Relativity is concerned, this relativity axiom alone is sufficient, since
it does imply a finite and constant speed for light in vacuum.

The third stage in the evolution of the Principle of Relativity in Physics occurred
with Einstein’s General Relativity. And this stage introduced a massive deepening and
widening of that principle. Indeed, this time that principle was no longer limited to
inertial reference frames, as in its original Galilean-Newtonian and Special Relativity
versions.

Moreover, a further essential difference between the above stages two and three is
the following.

Both Classical Mechanics and Special Relativity are background dependent. In
other words, within these theories the space-time is given a priori and once and for
ever, as a four dimensional Euclidean algebraic structure of vector space, being thus
totally independent of the physical processes which take place in it. In this way, that
specific background is in fact forced upon those theories of Physics, which therefore
do not have any freedom, but to depend on it.

In sharp contradistinction to that, General Relativity is background independent, since
it creates its own space-time background as given by the respective solution of the
Einstein equations, once a distribution of masses is specified.

And then, in line with the mentioned three above stages undergone by the Princi-
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ple of Relativity, and with an aim to explore its possible further extensions, one may
rather naturally ask :

e How far and deep background independence may actually go ? Is there still some
given background upon which even General Relativity happens to depend ?

Unrelated to such questions, a rather natural other question has for a while by
now started to insinuate itself into the physical thinking, as seen for instance in the
literature cited in [8,9,14,15,17,18]. Namely, there have been questions raised with
respect to

what scalars should be used in Physics?

beyond and above the usual real and complex numbers.

However, we can look at that question within a far deeper and wider context,
namely, of the possible further extensions of he Principle of Relativity, and thus, a fur-
ther diminishing of background dependence of theories of Physics. In other words,
we can try to strive not only for a reference frame relativity, as achieved so far and
in a considerable measure in General Relativity, but also for a relativity with respect
to the very mathematical models used in the theories of Physics. And needless to
say, within this context, the scalars used in theories of Physics - scalars which are in-
volved in the construction of so many other entities in theories of Physics, among
them space-time for instance - are some of the obvious first elements of such math-
ematical models which come naturally to attention.

As seen in the sequel, there exists indeed a considerable variety of scalars which

can be used in theories of Physics, namely, the so called reduced power algebras,
which turn out to be rather natural extensions of the usual real and complex num-
bers.
And thus there exists an effective opportunity to explore the extent to which theo-
ries of Physics are indeed, or on the contrary, are not independent of the respective
scalars they use in their mathematical formulation. A first step in this regard was out-
lined and pursued to an extent in [14], as somewhat earlier suggested in [8,9].

As it happens, there are important theories of Physics where a good deal of the
arguments only employ relatively simple Mathematics. Such is the case, for instance,
with Special Relativity, the Bell Inequalities in Quantum Mechanics, or for that mat-
ter, in the considerable amount of rather elementary Mathematics in finite dimen-
sional vector spaces which occurs in Quantum Computation. An example of a non-
trivial classical theory of physical interest is that of Chaos, where the one dimensional
case is rather well understood, and specifically, the role played by the two Feigen-
baum constants alpha and delta. Such a theory, which again, contains a good deal
of quite elementary Mathematics, could be subjected to a reformulation in terms of
reduced power algebras, with a corresponding study of what remains valid, and what
becomes different.
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Here one should immediately note the considerable relevanceboth a positive, and
alternatively, a negative answer to such a mathematical model independence may of-
fer.

Indeed, in the case of a positive answer, one would obtain a significant extension and
deepening of the Principle of Relativity. And based on that, one could further pursue,
possibly by other means than the scalar algebras suggested here orin [8,9,14,15,17,18],
the study of the extension and deepening of the Principle of Relativity.

On the hand, a negative answer would immediately raise rather fundamental ques-
tions, not least among them about the status of those laws of Physics which fail to be
independent with respect to the scalar algebras suggested here.

Finally, let us mention that as a byproduct of considering algebras of reduced
powers, one is naturally led to scalars which are non-Archimedean, see Appendix for
the algebraic notions and properties used in the sequel. And such non-Archimedean
scalars differ considerably from both the real and complex numbers in their far more
easy, convenient, and above all, sophisticated ways of dealing with "infinities".

In this regard, one simply is made aware of the fact that it has been but an historical
accident that we ended up with the Archimedean scalars of the usual real and com-
plex numbers, thus with considerable difficulties in dealing with "infinities".

And what one discovers in the process is that Archimedean algebraic structures,
and in particular scalars, such as the usual real and complex numbers, are but most
particular subsets of by no means less natural non-Archimedean algebraic structures.
This is precisely the reason why "infinities" - so troubling in theories of Physics -
do inevitably appear in Archimedean algebraic structures, namely, due to the sim-
plistic approach such algebraic structures exhibit, when compared with the non-
Archimedean ones.

In this regard, one may recall how primitive human tribes would have a counting
system that would only know about the following distinctions :

nn

"one", "two", "three", and "many" ...

And as it turns out, a somewhat similar situation occurs with Archimedean al-

gebraic structures which, the moment one reaches somewhat farther towards large
quantities, are only able to record that in one and only one way, namely, as a "blow
up" which puts an instant end to all algebraic operations, since one has reached a so
called "infinity" ...
On the other hand, and in sharp contradistinction, non-Archimedean algebraic struc-
tures, such as for instance the reduced power algebras in the sequel, are sophisticated
enough in order to be able to incorporate without any difficulty within their algebraic
operations such situations which are simply "no go" realms for Archimedean alge-
braic structures.

Consequently, one finds that in fact, one does not have the freedom of choice
between Archimedean and non-Archimedean algebraic structures, see [15,17,18] in
this regard, since the choice of the former inevitably confines one to a particular and
highly inconvenient situation, even if it has been the one we happened to choose his-
torically a long time ago, and have limited ourselves to it ever since ...
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3. Was That an Equivocation with Relativity ... 2

As it happens, Relativity Theory, both in its Special and General versions, and
introduced by Einstein in the early 1900s, is considered along the not much later
originated Quantum Theory, as being the two truly revolutionary theories of modern
Physics. And yet, as far as Relativity is concerned, its fundamental idea, the very idea
which is reflected in its name, has not always been seen with enough clarity. Indeed,
Einstein himself, when formulating his theory of Special Relativity, [2-5], set at its
foundations two axioms, the first of which is about what is in fact an extension of the
classical Galilean Principle of Relativity, incorporating this time Electro-Magnetism
as well, while the second is about the velocity of light in vacuum. Here we reproduce
in the translation the respective section which is in the preamble to his famous 1905

paper [2] :

"Examples of this sort ... suggest that the phenomena of electrodynamics
as well as of mechanics possess no properties corresponding to the idea
of absolute rest. They suggest rather that, as has already been shown to
the first order of small quantities, the same laws of electrodynamics and
optics will be valid for all frames of reference for which the equations of
mechanics hold good. We will raise this conjecture(the purport of which
will hereafter be called the "Principle of Relativity") to the status of a pos-
tulate, and also introduce another postulate, which is only apparently ir-
reconcilable with the former, namely, that light is always propagated in
empty space with a definite velocity ¢ which is independent of the state of
motion of the emitting body."

And here we already have a first instance of what may be seen as a sort of equivo-
cation with respect to the idea of Relativity, since soon after, [6,19], it was shown that
Einstein’s second axiom is in fact a consequence of the first one.

A second equivocation, and in fact, a somewhat more manifest and significant
one, occurred during the next decade, when Einstein tried to include in Relativity
gravitation as well, and he did so based on the axiom of equivalence between gravi-
tational and inertial mass. In this process, however, Einstein had several well known
unsuccessful attempts, until in the late 1915 he found the formulation of General Rel-
ativity which has been accepted ever since.

And why can these two episodes be seen as equivocating attempts at incorporat-
ing the Principle of Relativity into Physics ?

Well, in the case of the first one, this follows from the very fact that the two re-
spective axioms are actually not independent, and with the second one considered
by Einstein not being recognized by him as a mere consequence of the first one. As
is well known from Einstein’s biography, the issue of the velocity of light had preoc-
cupied him for most of the previous decade, thus it is not surprising to have taken a
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position among his two axioms, even if it turned out to be dependent on the first one.
Certainly, Einstein was above all a physicists, and as such, he was no doubt fascinated
with the phenomenon of light, thus giving it a position which, as an independent ax-
iom, it proved simply not to have.

As it turned out, this deep attachment to physical intuition had a yet greater influ-
ence on the way Einstein was to reach General Relativity. Indeed, instead of simply
searching for those laws of Physics which are covariant not merely with respect to
Lorentz, but with respect to as general as possible reference frame transformations,
Einstein placed a considerable importance on the Principle of Equivalence. The ef-
fect was the well known series of unsuccessful attempts, prior to late 1915, in reaching
the correct form of the General Relativity.

This somewhat equivocating approach to the Principle of Relativity is further high-
lighted by the fact that in various later publications aimed at a larger readership, [3,4],
Einstein placed an obvious stress on that principle, considering it to be the funda-
mental one.

In our own days, however, there is an increased clarity, [20], about the fact that
the Principle of Relativity is indeed fundamental, and it should be seen as a general
covariance property of the laws of Physics. And among others, this means the back-
ground independent nature of such laws, and in general, of theories of Physics.

4. But, How Deep and Wide Does the Background Go ?

For a better understanding of the Principle of Relativity in what it may be its fur-
ther and yet more full relevance in Physics, it may seem appropriate to start ques-
tioning our usual assumptions involved in its present formulation. And as it turns
out, some of such assumptions are so usual in fact, as to be accepted by us through
a less than conscious mental, if not even emotional, reflex. And needless to say, our
long human record in regard of having such kind of assumptions, and on top of it,
of dealing with them in such a reflex manner, is certainly clear and well established,
even if not often enough up front in our awareness.

After all, and as one of the many blatant examples, we can recall how many even
among the most learned and considered to be wise sages did, for ages and up un-
til Copernicus, do nothing else but take absolutely for granted the assumption that
Planet Earth was immobile at the center of the Universe ?

Aristotle himself firmly believed to have a most simple and incontrovertible proof of
it : when one drops a stone from a tall tower, it always falls at the foot of that tower ...
So much for our long historical record with respect to understanding the Principle of
Relativity ...

So then, let us try to see which may be the backgrounds presently involved, be it
consciously or less so, in the formulation of the Principle of Relativity.

e One of the deepest backgrounds, no doubt, is that of physical intuitions, a source
which often is so much valued by physicists as to lead to its much preferred
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top priority - if not in fact nearly exclusive - use, and then, like with the men-
tioned two cases involving Einstein, to certain less than best possible processes
in thinking.

Amusingly, such a much preferred just about exclusively exclusive reliance on
physical intuition firmly rejects taking even one single page from the Nobel Lau-
reate physicist Eugene Wigner’s celebrate 1960 argument about the ... unrea-
sonable effectiveness of mathematics in natural sciences ...

This background of physical intuition, however, is at present clearly outside of
an approach sufficiently accessible to science, as far as its more relevant ways
of functioning are concerned.

Nevertheless, the essential role of this background in setting up the theories of
Physics is all too obvious, as shown by the history of science which records ever
new insights as well as a better understanding of older ones, as times goes on.

e Alessdeep, yet still fundamental background is that of the logicused. And this is
already at a level which, ever since Aristotle, and even more so in our times, has
been the subject of considerable scientific study. In this regard, what is used in
theories of Physics is, so far, exclusively the usual binary valued logic, with the
rule of the excluded middle, and without allowing circular arguments.

In this regard, however, there are already two remarkable novelties. Namely,
rigorous mathematical theories have been developed, [1], in which circular ar-
guments play an essential role. Also, rigorous mathematical theories in which
contradictions are allowed, [7,21], have been a subject of study.

In view of that, it may perhaps come the time in the not too distant future for
certain theories of Physics to embrace logical structures such as already studied
and applied in [1,7,21].

e However, before venturing into realms of nonclassical logic which still seem so
strange to many, there is another, and nearer to us, fundamental level which, so
far, has seldom been subjected to enquiry. Namely, and as mentioned, see also
(8,9,14,15,17,18] and the references cited there, it is about the issue of :

— What scalars should we use in theories of Physics ?

Indeed, in their decreasing order of depth as background to theories of Physics,
physical intuition and logic are naturally followed by the scalars used in such theo-
ries. And if due to various possible reason, among them those mentioned above, we
may not yet be ready to question or reconsider the first two, as they happen to be
used at present, then perhaps even more so it may be high time to do such a recon-
sideration with the third one, namely, with the scalars presently used in theories of
Physics.

And if we are to pursue consistently the Principle of Relativity, then we should
realize the following :

e The physical intuition of physicists is by its nature an extraordinarily rich and
creative source. Therefore, if not relied upon too exclusively or narrowly, it can
hardly conflict with the background free nature of the Principle of Relativity.
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e The presently used logic in the theories of Physics, on the other hand, by its very
uniqueness, by its very exclusivity, does inevitably nail down a specific back-
ground, either we like it or not, either we are aware of it or not. And the ques-
tion is wide open, and in fact, hardly ever considered, whether holding to such a
fixed background, no matter how natural it may seem, may in fact conflict with
the background free nature of the Principle of Relativity.

e Reconsidering the scalars used in theories of Physics remains, therefore, at present
the only workable alternative to conforming more deeply to the Principle of
Relativity, and doing so beyond the present view of it as only reduced to the
covariance of laws of Physics with respect to large classes of reference frame
transformations.

e And as it happens, such a reconsideration of the scalars used in theories of
Physics is significantly facilitated by the easily accessible and usable abundance
of a large variety of algebras available for that purpose, as indicated in the se-
quel, see also [8,9,14,15,17,18,23-38,45-48], as well as the particular case in [49],
and the literature cited there.

¢ Finally, once theories of Physics are reformulated in such algebras, [14], a con-
sistent pursuit of the Principle of Relativity requires the study of the correspond-
ing extended concept of covariance, namely, to what extent laws of Physics do,
or on the contrary, do not depend on the specific scalars used in the respective
theories.

Contrary to what many physicists may tend to believe, the issue is not about whether
Physics, or for that matter, Mathematics is the primary scientific venture. Therefore,
the issue is not in any way of a mere partisan nature.

As it happens, however, few studies, if any, have been conducted about the more fun-
damental possible interactions between Physics and Mathematics.

On the part of mathematicians, and even more so of many prominent ones, the role
of Physics in inspiring and developing outstanding new Mathematics has been well
known and made fruitful use of for a long time by now.

The problem, therefore, seems to be more on the side of the physicists. And too many
of them tend to see Mathematics as a sort of unpleasant exercise which, unfortu-
nately in their perception, cannot always be avoided.

Needless to say, there have been even in recent times noted exceptions on both
sides involved. For instance, the fundamentally important mathematical field of Cat-
egory Theory, introduced in the 1940s, happened not to be embraced by many promi-
nent mathematicians. Among them was the well known French group under the col-
lective name of N Bourbaki, whose eventual demise in the 1980s is considered by
many to have been caused among others by their systematic refusal to redo Math-
ematics in terms of Category Theory, and thus go beyond its present foundation on
Set Theory.

What is even more amusing is that mathematicians specializing in Category Theory
were not those who recently started a most massive extension of that theory, by intro-
ducing what is called N-Categories. Indeed, certain more abstract minded physicists
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from Quantum Field Theory happened to be the originators of that latest develop-
ment.

So much for trying to draw clear and sharp lines in such an issue as the more funda-
mental possible interactions between Physics and Mathematics ...

A rather unique and most impressive moment happened with the mentioned pa-

per of Eugene Wigner, entitled "The Unreasonable Effectiveness of Mathematics in
the Natural Sciences", Communications in Pure and Applied Mathematics, Vol. 13,
No. 1, February 1960, which raised a more fundamental issue in the pursuit of mod-
ern science, one not limited only to the interaction between Physics and Mathemat-
ics.
As it happened, however, there was hardly any notable debate following that paper ...
Quite everybody in Natural Sciences seemed to be far too busy with trying to pursue
their own interests, and do so with their own specific means, of which Mathematics
would, when on occasion unavoidable, be seen rather as a necessary but unpleasant
detour ...

As for Wigner’s mentioned paper, itself does not seem to go deep enough, beyond
the exemplification of that unreasonable effectiveness of Mathematics, and towards
the possible reasons for it.

And indeed, which may be such possible reasons ?

Well, one way to see the whole issue is perhaps as follows.
First of all, we should realize that Mathematics got a wrong naming, since its essence
is in no way reflected in it.
And what is the essence of Mathematics ?
Well, quite likely that, so far, it is the only science developed by us humans which is

e both abstract
e and precise.

Philosophy, for instance, is certainly abstract at its best, however, it is quite far
from being precise as well. With Physics, on the other hand, the situation is the other
way round, since it is rather precise, but clearly not abstract enough, not enough even
to include, say, Chemistry, let alone, Biology, and so on.

And then, it may be that it is the abstract nature of Mathematics, in conjunction,
of course, with its precise character which makes it so widely effective in Natural Sci-
ences. After all, Philosophy is even more widely relevant, due to its abstract nature.
Yet lacking precision, it is not of much effective help on more detailed levels in Natu-
ral Sciences.

And in case such a view of Mathematics may indeed have enough merit, then
the interest physicists should exhibit in it would come precisely from the deeper and
more general patterns Mathematics can access, patterns which often go far beyond
more usually accessible insights, and patterns which may nowadays be not only use-
ful, but also quite necessary to physicists, if not in fact, of fundamental importance,
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given the increasingly counter-intuitive nature of much of modern Physics, starting
with Relativity, and including of course the rather mysterious realms of Quanta ...

In this way, it is a rather open question, and quite likely to remain as such for a
long time to come, how deep and wide may the background go, with respect among
others to the Principle of Relativity ?

5. A Long Ongoing Reflex Ancient Egyptian and Archimedean
Choice ...

Ever since Euclid’s geometry, as later algebrized by Descartes, there has been one
and only one choice of scalars used in Physics, namely, as given by the usual con-
tinuum of the field R of real numbers. Indeed, the complex numbers C, the finite
dimensional Euclidean spaces R"”, or even infinite dimensional Hilbert spaces, etc.,
are all built upon the real numbers R.

No less that five fundamental features of the real numbers R play an important
role, one that has for long by now been taken for granted. Namely, Ris a:

o field,

e linearly, or totally ordered,

e Archimedean, see Appendix,

e complete topologically, in other words, a continuum, and

e the only onewith the above four properties.

Such a list of credentials seems indeed more than enough to confer upon R a
position as the undisputed exclusive mathematical model to be used in theories of
Physics.

Not to mention that on top of it, and according to a well known result obtained in the
1930s by Pontrjagin, [22], the only fields which are not totally disconnected are R, C
and the Hamiltonian quaternions H, the latter being noncommutative.

Nevertheless, such an impressive list of credential should rather be left to explain

the reasons why, historically, we happened to come across the real and complex num-
bers, than to end up by confining us for evermore to their exclusive use in the theories
of Physics.
After all, as noted, a more consistent pursuit of the background free nature of the
Principle of Relativity is not supposed to acquiesce in the exclusive use of no matter
which only one logic. Therefore, it is even less supposed to do so to the exclusive use
of one single, no matter how naturally looking, set of scalars.

There are, however, a number of additional reasons why we nevertheless ended
up with the real numbers R playing such a uniquely fundamental role in theories of
Physics. One of them comes from the fact that R is a field, that is, the operations of
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addition, subtraction, multiplication and division can be effectuated freely, except
for division with zero.
Also, the multiplication in R is conveniently commutative.

Here however, we can note that physicists, and even engineers, have for long by
now been accustomed to dealing with matrices. And square matrices in general, that
is, of a given order n > 2, are not a field, since there are plenty of such nonzero ma-
trices which have their determinant zero, thus they do not have an inverse, and then
one cannot divide with them. Furthermore, the multiplication of such matrices is in
general not commutative.

Such algebraic structures in which addition, subtraction and multiplication can
be done without restrictions, while division cannot always be done with nonzero el-
ements are called algebras. Fields are, therefore, particular cases of algebras.

Some of the algebras, like for instance those of matrices of a given order n > 2, are
noncommutative. However, there are plenty of commutative algebras as well, and a
large class of them will be presented in the sequel.

6. There Are Plenty of Scalar Algebras Easy to Construct
and Use ...

It appears, therefore, that one of the reasons why physicists have been so much
limiting themselves to the use of the real numbers R and of the structures built upon
them is that the real numbers constitute a field, and thus, one can do unrestricted
divisions with such numbers, the only exception being division with zero.

And yet as is well known, the real numbers R are not the only field available.
Therefore, if so much tempted by the advantages of working with scalars in a field,

then why not choose scalars in some other field for formulating the theories of Physics
?

The answer, although not quite clearly stated, or for that matter, consciously enough
known by physicists is that the other fields available do happen to involve certain dif-
ficulties. Indeed, let us recall here the two classical results already mentioned in this
regard :

e The theorem according to which R is the only field which is totally ordered,
topologically complete, thus, it is a continuum, and it is also Archimedean.

e The theorem of Pontrjagin, according to which the real numbers R, the com-
plex numbers C and the quaternions H are the only fields which are not totally
disconnected.

It follows, therefore, that all other possible fields must inevitably fail to be a con-
tinuum and/or Archimedean. And indeed, the field *R of nonstandard real numbers,
for instance, fails to be Archimedean, while the various p-adic fields fail to be a con-
tinuum.
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Added to the above difficulties come also the technically involved manner such fields
are constructed, a manner which makes their use rather cumbersome, when com-
pared with the use of the usual real numbers in R.

And then, precisely here comes in the possibility to set aside the use of scalars in
a field, and instead, use scalars in a large class of algebras presented in the sequel.
And the advantages in doing so will be as follows :

e Obtaining an easy to construct and use large setup within which we can con-
sider the further extension and deepening of the Principle of Relativity, and do
so this time not only with respect to reference frame transformations or the
usual background independence of the type encountered in General Relativity,
but also within the significantly more general concept of background indepen-
dence with respect to the mathematical models which give the scalars used in
the theories of Physics.

e Doing away with the long ongoing and difficult issue of "infinities in physics",
a thus as well with the need for the rather ill-founded variety of methods called
"renormalization".

e Becoming aware of the fact that we do not have the freedom of choice to avoid
dealing with scalars which belong to non-Archimedean algebras.

7. The Simple Algebraic Construction of the
Large Class of Reduced Power Algebras

In order to diminish the possible difficulties for physicists, we start by pointing
out that, fortunately, our fundamental building block for reduced power algebras is
still the familiar set R of the usual scalars given by the real numbers.

Power Algebras

Added to that, there are only fwo new ingredients. The first one is any infinite set
A of indices A € A. The second one will come not much later.

The first step in constructing the reduced power algebras is to go from the usual
real number scalars in R, which by the way, algebraically constitute a field, to the
vastly larger algebra that is no longer a field, namely the power algebra

(7.1) RA

and which, as known in Set theory, can naturally be identified with the set of all
sequences of real numbers with indices in A, namely

(7.2) &€= (&) ren, wWhere & R
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Alternatively, and equally naturally, R* can be seen as the set of all real valued
functions defined on A, that is

(73) £:A— R, where A A—¢(N) =& R
Now the way R” is an algebra is as follows.

Given two sequences £ = (&\)xea, 1 = (M) aea € RA, their addition is defined
term-wise, that is, by

(7.4) £+n=(& +m)rer €RA

and similarly, one defines term-wise their multiplication, namely

(7.5) &.n=(&-m)rer ERY

Finally, the multiplication of sequences in R* with real number scalars from R
is also defined term-wise. Thus given a real number scalar o € R and a sequence
€= (&\) aen € RY, we define

(7.6) af=(a&)ren €RY

It should be pointed out that all of the above definitions of algebraic operations in
(7.4) - (7.6) are but standard. Moreover, in terms of the representation of R* in (7.3)
as a set of real valued functions on A, these operations are precisely the usual ones
with functions.

Consequently, there should not be any unease with the algebra R*.
And why is R* only an algebra, and not a field as well 2

Simple, namely, there are many elements, that is, sequences in R” which are not
identically zero, yet one cannot divide with them. This fact is easier to follow if we
use the function representation (7.3) for the elements of R*. Indeed, as is well known,
given any function

(7.7) €:A—R

it is not possible to divide with that function ¢, unless it never vanishes, that is,
unless it satisfies the condition

(7.8) &(N) #0, forall e A

And obviously, since A contains at least two different elements, being assumed to
be in fact an infinite set, there are many functions (7.7) in R* which vanish on some
nonvoid part of A, yet do not vanish on another nonvoid part of it. Thus such func-
tions are not identically zero, yet they fail to satisfy (7.8), and then, one can no longer
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divide with them.

For clarity, let us give a simple example, when A = N. In this case, the sequence
¢€=1(1,0,1,0,1,0,...) € R* = RY

is evidently not identically zero, yet one cannot divide by ¢, and in particular, 1/£
is not well defined, since ¢ happens to contain terms which are zero, thus fails to sat-

isfy (7.8).

In view of its form, see (7.1), which is standard notation in Set Theory, the algebra
R? can be seen as a power algebra, obtained from the real numbers R by exponentia-
tion with the infinite index set A.

What is important to note is that R* is an algebra extension of the usual real num-
bers in R. Indeed, to every real number z € R, let us associate the following sequence
of real numbers, sequence indexed by indices in A, namely

(7.9) u, = (vy)rea € RY, where vy =2, for A€ A

thus u, is the constant sequence whose terms are each the same, namely, . Then
one obtains the following algebra embedding, that is, an injective algebra homomor-
phism

(7100 R>z+— u, € RA

In this extension of R, however, the power algebra R” is immensely larger than the
real numbers R, due to the fact that A is an infinite set. In this regard, let us note that
in case A would be a finite set with n > 2 elements, the corresponding power alge-
bra R* would be - as a vector space, and without the multiplication operation in (7.5)
- the n-dimensional Euclidean space R”, which itself is already considerably larger
than R, for n large enough.

In this way, the power algebras R*, with A an infinite set, can be seen, when con-
sidered to be vector spaces, as infinite dimensional extensions of usual Euclidean
spaces.

As for the algebra embedding (7.10), we note that in case A would have only two
elements, thus the power algebra R* would be as a vector the two dimensional Eu-
clidean space R?, then the set { u, | = € R }, which is the range of the embedding
(7.1), would be precisely the diagonal subset of R?.

Furthermore, it is easy to see that in the general case of (7.10), the set

(711) Upy={u, | zeR} CRA

is a subalgebra of R*, and as an algebra, it is isomorphic with R.
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Reducing the Power Algebras

And now comes the second and last step in the construction of the reduced power
algebras.

For that, we take as a second ingredient any proper ideal 7 in the power algebra
RA, that is

A
(7.12) IGR

and construct the quotient algebra, see the respective standard method in the Ap-
pendix

(7.13) A=RA/T

which quite appropriately is called a reduced power algebra. Indeed, its construc-
tion can now be summarized as follows :

In addition to the usual set R of real numbers, it contains two ingredients, namely

e an infinite index set A which is used to construct from R the immensely larger
power algebra R*, and

e a proper ideal T in the power algebra R* with which to reduceby a standard quo-
tient construction the algebra R*, and thus obtain the aimed at reduced power
algebra A = R*/T.

The Abundance in the Amount of Reduced Power Algebras

The resulting abundance in the amount of reduced power algebras available will
now be made obvious, as it results from the freedom to choose the infinite index sets
A, and also the proper ideals Z ¢ R*.

Related to the choice of the index sets A there is no need for further comments,
except to mention how the various resulting reduced power algebras may relate to
one another. This issue has been studied and presented in [9].

Here we recall the way the choice of the proper ideals Z ¢ R* contributes to the
abundance in the amount of reduced power algebras available. That issue was also
studied and presented in [9].

The essential and most convenientproperty of the properideals Z ¢ R* is that they
can be put into a direct one-to-one correspondence with the much simpler mathe-
matical entities given by filters F on the index sets A, see Appendix for the concept of
filter.

This two-way correspondence happens as follows.
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Given any proper ideal Z C R, we associate with it the following filter on A
(714) Fr={Z(§) [T}

where for ¢ € R, one denotes Z (&) = {\ € A | £(\) = 0}, that is, the so called zero
set of .

Conversely, given any filter F on A, we associate with it the proper ideal
(7.15) Ir={EcR)| Z(¢) e F}
Let us show here how easy it is to prove (7.14) and (7.15).

For (7.14), we have to show, see Appendix, that 77 # ¢. But this results immedi-
ately from the fact that Z # ¢.

Further, we have to show that ¢ ¢ F7. Assume therefore that Z(¢) = ¢, for some
¢ € . Then obviously £()\) # 0, for A € A, hence 1/¢ is well defined, and 1/¢ € RA.
However, since Z is an ideal in R%, it follows that

E.(1/) eIRMNCT
But obviously ¢ . (1/£) = uy, thus u; € Z, which means that
RACZIRMCT
thus we obtain the contradiction that 7 is not a proper ideal in R?.
Also, we have to show that
ILJeFr = InJeFs
Let therefore ¢, € R, then obviously
Z(6)N Z(n) = Z(€2 4 ?)
while £2 + 7% € Z, since 7 is an ideal in R?.
Finally, we prove that
leFr, I CJCA = JeFz
Indeed, let ¢ € R%, such that Z(¢) C J. Let now n, € R* be the characteristic func-

tion of J in A. Then ¢ .7 € Z, since 7 is an ideal in R, hence Z(¢.7) € Fz. And now
we note that Z(¢.n) = J, thusindeed J € F7.
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Remark
It is important to note that in the proof of the relation
ZE)NZn) = Z(&+n?)
we essentially used the fact that the respective functions ¢, : A — R have values
in R, that is, are real valued. In other words, we used the property of real numbers,
according to which, for z,y € R, we have

2+ =0 <= x=y=0

a property which, for instance, is not true for complex numbers.

As for (7.15), let £, € R, then obviously
Z(E+n) 2 Z(€)NZ0n)

therefore
EnmeEly = {+nelr

Also it is easy to see that
Z(&.n) 2 Z(§)

therefore
Ee€elyr = E.nelyr

Further, for x € R, we obviously have
Z(z.€) 2 Z(¢)

thus
Eely = v.£€TF

In this way Zr is indeed an ideal in R, and it only remains to show that it is also a
proper ideal, that is

Ir SR

Assuming on the contrary that above we have equality, then obviously u; € T,
thus Z(u,) € F. However Z(u,) = ¢, thus ¢ € F, which is a contradiction.
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Now, the above constructed one-to-one correspondence between proper ideals 7
in R*, and on the other hand, the much simpler filters F on A, namely

(7.16) Z+— F7z, Fr—1Ir

has the following important properties. First, this correspondence when iterated
twice, it returns ideals into the same ideals, and filters into the same filters, namely

(7.17) Il—)fIl—>I]:I:I, Fl—)If’—>IIF:F

Second, it is monotonous in the following sense. Given Z, 7 two ideals in RA, and
F, G two filters on A, then

Igj:>}"1§}"g

(7.18)
FCG = 1rClg

In view of the above it follows that the reduced power algebras in (7.13) are in fact
of the specific form

(7.19) A=R"/Ir

where F are arbitrary filters on A. For convenience, we shall use the notation

(7.20) Ay =RA/Ir

In this way, the abundance of the reduced power algebras (7.13), (7.20) is given
by the arbitrariness of the infinite index sets A and of the corresponding filters 7 on
these index sets.

Natural Homomorphisms between Reduced Power Algebras

Given the mentioned abundance in reduced power algebras, the question arises
what possible relationships can be established between them ?

Here we show fwo natural families of algebra homomorphisms which exists be-
tween various reduced power algebras, depending of the infinite index sets A and on
the corresponding filters F on these index sets which, according to (7.19) define these
reduced power algebras.

First, we fix an infinite index set A and consider two filters on it, namely

(7.21) FCg

Then (7.18), (7.17) yield the surjective algebra homomorphism

(7.22) Ar3&é+1r—E+1g € Ag
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which means that the algebra Ag is smaller than the algebra Az, more precisely
(7.23) Ag and Ax/(Zg/Ir) areisomorphic algebras

Now, let us consider the case of two infinite index sets A C I'. Then for every filter
F on I' which satisfies the condition

(7.24) Ae F
we have the surjective algebra homomorphism, see [14, pp. 14,15]

(7.25) Ar>&+TZr—&|a +ZiF) € A(}-|A)

8. Should the Background Independence Go as Deep and
Wide as Independence of Reduced Power Algebras ?

We are now in a position to offer a first tentative answer to the question
"But How Deep and Wide Does the Background Go ?"

in the title of section 4 above. Indeed, we have seen the following features of the
reduced power algebras (7.17), namely

e the ease in their construction and use,

e their abundance in terms of the infinite index sets and corresponding filters
which define them,

e the large amount of natural algebra homomorphism among these algebras, as
their defining index sets and corresponding filters change.

Consequently, it may appear as natural to study the extent to which the laws of
Physics may, or for that matter, may not be independent of the particular reduced
power algebras (7.17), when their elements are used as scalars instead of the usual
real or complex numbers.

And as mentioned above, both a positive and negative answer would have its in-
terest.

A few first steps in this regard were suggested recently in [14].

9. Comment on the End of Time and other
Background Independent Attempts

9.1. Preliminaries
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It is argued that a background independence of theories of Physics in which all
background is totally eliminated is in fact a throw back to the assumption of a unique
and universally valid background. Consequently, as a more genuine background in-
dependence, it is suggested that theories of Physics should simultaneously be formu-
lated in multiple backgrounds, and then proven to be independent of them. A rather
natural suggestion for such multiple backgrounds is given.

9.2. Alternatives for Implementing Background
Independence

The idea that fundamental theories of Physics should be background independent
has been gaining recognition, and it can be seen as one of the most important lasting
legacies of Einstein’s General Relativity with respect to foundational issues in Physics,
[20].

Newtonian Mechanics, as much as Special Relativity are notbackground indepen-
dent, since they are formulated in an a priori given four dimensional Euclidean vector
space, corresponding to one time dimension and three space dimensions. Certainly,
the way time and space are seen in Newtonian Mechanics, on one hand, and Special
Relativity, on the other, are very different.

However, both these theories assume as a starting point the existence of the men-
tioned four dimensional vector space which is isomorphic with R*, even if it has its
specific additional Minkowskian geometry in the case of the latter.

In contradistinction to such a situation, General Relativity is the first, and so far
the only fundamental and widely accepted theory of Physics which does nof start
with the assumption of any a priori given and universally valid space-time back-
ground. Instead, that theory itselfis each time setting up its specific space-time back-
ground which results from solving the Einstein equations for every given particular
distribution of masses.

Nevertheless, such a background independence like that exhibited by General
Relativity appears to some theoretical physicists involved in Quantum Gravity, for
instance, as been insufficient. And indeed, its main feature is not the inexistence of
any background at all, but rather the inexistence of a unique and universally valid
background, such as happens in the case of Newtonian Mechanics and Special Rela-
tivity.

Certainly, each of these three theories operates in a uniquely given space-time
background, the difference with General Relativity being that the respective back-
ground is no longer universally valid and given once and for all, but it is determined
each time in a unique manner, depending on the given distribution of masses.

The above situation being quite clear in the respective literature, the problem
starts with the ways it is attempted to be transcended in the name of a more sig-
nificant background independence.
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Namely, typically, a total, thus extreme negation of all possible backgrounds is
suggested, the consequence being that only various possible relationships between
physical entities are supposed to exist, and they are only allowed to do so as if within
a perfectly empty background.

No wonder that the corresponding inevitable massive reduction of the structures in-
volved to an unprecedented level of barrenness has so far had the rather unintended
and undesirable effect of not giving much chance for the elaboration of theories able
to match anywhere near the rich complexity of many of the known physical phenom-
ena.

Not to mention the fact, usually missed, that the total lack of any background is, after
all, and inevitably, a background itself. And to add to it, it is a unique and universally
valid one, thus it is a throw back to no less than the situation in Newtonian Mechan-
ics and Special Relativity, missing therefore the sophistication of General Relativity.

A typical attempt in this regard has been suggested in Barbour J : End of Time :
The Next Revolution in Physics, Oxford University Press, 2001, where time as such is
simply eliminated completely, and all that is retained is some set of so called "now"-
s. The consequence is that, after some decades of holding to such an idea of a rather
extreme barrenness of the underlying structure, and nevertheless trying to develop it
into a relevant enough theory of Physics, not much has be achieved so far.

In this regard, one may note that the mentioned exclusive focus on "now" has an age
old most respected tradition among a variety of esoteric teachings across continents.
However, such teachings are not supposed to, and in fact, do not in any way aim at
setting up operationally effective theories in one’s everyday practical realms, such as
the theories of Physics are expected to be. On the contrary, such teachings aim to
teach one to differentiate between what is eternal and immutable, and what on the
other hand is changing. And then, for the latter, one is simply advised to address
each and every changing situation as an uninvolved participant and according to the
specifics of the need that happens to arise in the "now" ...

And of course, we are all aware that such teachings have never contributed much and
in a more direct manner to the development of any science.

In this way the question arises :

e What may all the possible ways be to implement background independent and
relevant enough theories of Physics ?

A first fact to note in this regard is, perhaps, the following.

Going from manifestly background dependent theories, such a Newtonian Me-
chanics and Special Relativity, to background independent one involves a certain
negation
And as it happens, we humans do not seem to be particularly good with the logical
operation of negation, since it often involves a far more emotional situation than log-
ical operations such a "and", "or", and so on.

Consequently, we tend, when negating, to do it in fotal and extreme ways ...
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Returning now to the issue of the negation of background dependence, and ap-
proaching the logical operation of negation in a more careful manner, we can note
the following :

The negation of background dependence can apparently result in at least fwo al-
ternatives :

1) No background at all, and thus, as so often assumed so far, no possibility of
background dependence.

2) No unique background, be it one universally valid as in Newtonian Mechanics
and Special Relativity, or unique to each specific mass distribution as in General Rel-
ativity.

And as we have seen, so far only alternative 1) has been explored, in spite of the
fact that "no background at all" can hardly be seen as anything else but yet another
kind of "background", and one which on top of it is not only unique, but also univer-
sally valid, thus a throw back to the situation in Newtonian Mechanics and Special
Relativity.

Therefore, we suggest the exploration of alternative 2) above, with certain corre-
sponding specifics mentioned in the next section.

9.3. Independence of Many Backgrounds as
Background Independence

In section 4, a more detailed consideration of what may be seen as background in
theories of Physics was presented. And it was argued that, at the present time, what
may appear as more realistic, or at least, less unrealistic in this regard, is to formulate
theories of Physics in terms of scalars given by various so called reduced power alge-
bras which constitute a very large family, can be constructed and used quite easily,
and are natural extensions of the usual scalars given by the field R of real numbers or
the field C of complex numbers.

The respective simultaneous formulation of theories of Physics in all, or in most
of such algebras of scalars would offer the possibility of identifying which of the the-
ories are independent of the specific scalar algebras used, and which are not.

Certainly, and as mentioned, such an independence would mean a significant ex-
tension and deepening of the Principle of Relativity.

However, of importance here, a further advantage would be the resulting obvi-
ous background independence of such theories of Physics, at least as far as the large
amount of different backgrounds given by the respective scalar algebras is concerned.

And needless to say, reformulating theories of Physics in terms of various such
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scalar algebras would be a far easier and more natural venture than building such
theories from the start within such structurally barren backgrounds as those sug-
gested so far by various proponents of background independent theories. Indeed,
the suggested algebras of scalars are in fact richer structures than the usual real or
complex numbers, thus their use can offer the possibility not so much of having to
reinvent Physics in a structurally barren setup, but rather to enrich it with the new
possibilities available.

Appendix

For the convenience of physicists, we recall here a few basic concepts on filters
on arbitrary sets, as well as from Algebra, Partially Ordered sets and convergence
structures on Algebras. The respective concepts are introduced step by step, culmi-
nating with the ones we are mostly interested in, namely, fields and algebras, their
Archimedean, respectively, non-Archimedean instances.

A detailed textbook to consult regarding Algebras in general is Cohn P M : Algebra,
Volumes 1 and 2. Wiley, New York, 1974.

A.1. Filters on Sets

A modern and powerful concept, in spite of its intuitive simplicity, in formulating,
among others, large classes of limiting type processes is that of filter on an arbitrary
nonvoid set, as defined next.

Let A be a nonvoid set. A set F of subsets I C A is called a filter on A, if and only if
the following four conditions hold

F#¢

¢ EF

I.JEF = INJeF

le F,ICJCAN = JeF

The meaning of the above is as follows. The subsets I C A which belong to a filter
F, that is, for which we have / € F, are supposed to be "large", while their comple-
ments A \ I are supposed to be "small" in A. Thus the first above condition means
that, actually, there exist "large" subsets in A. The second condition means that the
void subset in A is not "large". The third condition requires that the intersection of
two "large" subsets is still "large". Finally, the fourth condition requires that a set
containing a "large" subset is itself "large".

A typical usual situation where we encounter a filter is when we define in Calculus
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the concept of limit
lim ,, 00 Tn =T
where z,,, with n € N, and z are real scalars. Indeed, this definition is as follows :
Ve>0:dmeN:VneNn>m.: |z—x,|<e¢

This in usual intuitive terms means that | x — z,, | becomes negligible for nearly all
indices n € N, that is for all "large" subsets I of indices in N. Thus if we take A = N,
then its "large" subsets I of indices n of interest are those for which exists a corre-
sponding m € N, such that {n € N=A|n > m } C I. And obviously, the set F of all
such "large" subsets I C A = Nisafilteron A = N.

It should, however, be mentioned that filters are useful not only with respect to
Calculus, or more generally, Topology. Indeed, as is well known, they prove to be
powerful tools in a variety of branches of Mathematics. In this paper, in particular,
they are used to define the reduced power algebras, following well known ideas in
Model Theory, a branch of Mathematical Logic.

A.2. Basic Algebraic Structures

We start with an auxiliary but basic algebraic concept. Namely, a group is a struc-

ture (G, «), where G is a nonvoid set and
a: G x G — G is a binary operation on G which is :

e associative :

VxyzeG : alalr,y),z) =alr,aly,z))

e has a neutral elemente € G :

VeeG: alr,e)=ale,z) =1z

e and each element x € G hasaninversez’ € G :

alz,z’) =alz’,z)=e

It is easy to see that the neutral element e is unique. Also, for any given x € G, its
inverse element =’ € G is unique.

The group (G, «) is commutative, if and only if :

Vao,yeG : alr,y) =alyz)
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In such a case the binary operation « is simply denoted by + and called addition,
namely

alz,y)=x+y, z,yeqG

Further, in this commutative case, the neutral element is denoted by 0, namely,
e = 0, while for every x € G, its inverse =z’ is denoted by —z.

It will be useful to recall the following. Given any group element = € G and any
integer number n > 1, we can define the group element nz € G, by

zifn=1

r+x+x+...+azifn>2

where the respective sum has n terms. The meaning of this operation is easy to
follow. Namely, nx can be seen as n steps of length = each, in the direction z. This
interpretation will be particularly useful in understanding the condition defining the
Archimedean property, and thus, of the non-Archimedean property as well.

We recall that the usual addition gives a commutative group structure on the in-
teger numbers Z, as well as on the rational numbers Q, real numbers R, complex
numbers C, and also on the set M™" of m x n matrices of real or complex numbers,
for every m,n > 1.

Our main interest is in the algebraic structures of field and algebra. In this regard,
we must first start with the following somewhat more general concept. A ringis a
commutative group (S, +) on which a second binary operation 5 : S x S — S, called
multiplication, is defined with the properties :

e [ is associative

e (is distributive with respect to addition :
Vx,yzeSs :
B(x,y+2) = Bz, y) + Bz, 2)
Blx+y,z) = Blz,2) + By, 2)

Usually, this second binary operation g is called multiplication, and it is denoted
by A., namely

Blx,y) =zy, z,yeSs
and often, it is denoted even simpler as merely zy = z.y, with z,y € S.

The ring (S, +, .) is called unital, if and only if there is an element u € S, such that
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VeeS ur=zu=x

Usually, the respective unitelement u € S is denoted by 1, namely
u=1

and it is easy to see that it is unique, whenever it exists.

The ring (S, +, .) is called commutative, if and only if
Vz,ye S : zy=yx

We recall that with the usual addition and multiplication, the integer numbers Z
are commutative unital rings, and so are the rational numbers Q, the real numbers
R and complex numbers C, while the set M = M"™™ of n x n square matrices, with
n > 2, is a noncommutative unital ring.

As we shall see, a crucial issue in rings, and thus in fields, and more generally, in
algebras is the possibility to perform divisions. Indeed, as can be noted, in rings one
can make arbitrary additions, subtractions and multiplications. However, as seen al-
ready with the 2 x 2 square matrices in M?, division is a far more sensitive operation.
In this regard, several important concepts in rings are the following, and they can cer-
tainly be encountered in the case of square matrices in M", with n > 2.

Given aring (S, +,.), an element x € S is called invertible, or a unit - which is not
to be confused with the above concept of unit element - if and only if it has a multi-
plicative inverse, that is, there exists =’ € S, such that

in which case it follows easily that «’ € S is unique for the respective x € S. Usu-
ally, the multiplicative inverse, when it exists, is denoted by

Obviously 0 € S cannot have a multiplicative inverse, except in the case when
0 = 1, which means that the ring S is trivial, since it reduces to the single element
0. Thus the issue is whether or not all nonzero elements x # 0 in a given ring S may
have a multiplicative inverse. And in general, this is not the case, as one can already
see with the 2 x 2 square matrices M?. For instance, the matrix

(o o)

is not zero, yet it has zero determinant, thus it cannot have a multiplicative in-
verse.

Now, aring (S, +, .) is called a division ring, or a skew field, if and only if each of its
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nonzero elements = # 0 has a multiplicative inverse.

Clearly, Q, R and C are each a division ring, while the ring M? of 2 x 2 square ma-
trices is not a division ring, since as we have seen above, the nonzero matrix

1 0
0 0
does nothave a multiplicative inverse.
A second concept in rings is a follows. In a given ring (.5, +, .), a nonzero element
x # 0 is called a zero divisor, if and only if there is another nonzero element y # 0,
such that their product nevertheless vanishes, that is
xzy =0

A nontrivial ring (.S, +, .) which does nothave zero divisors is called entire. And in
case the ring is also commutative, then it is called integral domain.

In this regard, it is easy to see that a division ring is always entire.

A property of importance in rings is the following cancelation law. Given a € S
which is not a zero divisor, then for every x,y € S, we have

if ar =ay or ra =ya, then z =y

The consequence of the above is that in rings with zero divisors one cannot always
simplify factors in a product. Namely, for =,y € S, the relation

.y =20
need not always imply that
r=0o0ry=0

as illustrated in the sequel by the product of two matrices in M?. This further
means that, given x,y, z € S, the relation

T.Y =1xT.2
or for that matter, the relation
YT = 2.7
need not always allow the simplification by z, thus need not always imply that

y==z
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even if x £ 0.

As an effect, in rings with zero divisors not every nonzero element has an inverse.
Indeed, assuming the contrary, let x.y = 0, with x,y € S,z # 0. Then there exists
a multiplicative inverse 2’ € S for x, which means that x.z" = z’.x = 1. Hence
z'.(x.y) = x'.0, or due to the associativity of the product, we have (z'.z).y = 0, which
means y = 1.y = (z’.z).y = 0. Thus we obtained that z.y = 0 and x # 0 imply y = 0,
which gives the contradiction that S cannot have zero divisors.

Clearly, Q, R and C are rings without zero divisors, while the set M of 2 x 2 matri-
ces has zero divisors, a fact illustrated by such a simple example as

(o) (610 0)

An algebraic structure of great importance is that of fields. Aring (F, +,.) is a field,
if and only if

e every nonzero element x € F has a multiplicative inverse ' € F, thus F'is a
division ring, or a skew field, and

e the multiplication in F’ is commutative.

It follows that a field cannothave zero divisors. In this regard, Q, R and C are fields,
while Z and M", with n > 2, are not fields. The ring Z is nevertheless an integral do-
main. Butitis not a field, since none of its nonzero elements, except for 1 and —1, has
an inverse. On the other hand, as we have seen, the rings M", with n > 2, have zero
divisors, thus they cannot be fields.

Lastly, aring (A, +,.) is called an algebra over a given field K, if and only if there ex-
ists a third binary operation v : K x A — A, called multiplication with a scalarin K,
namely, for each scalar « € K, and each algebra element z € A, we have y(a,z) € A.
Usually, this binary operation ~ is also written as a multiplication ., even if that may
on occasion cause confusion. However, one should remember that in an algebra
there are two multiplications, namely, one between two algebra elements z,y € A,
and which gives the algebra element 2.y € A, and another multiplication between a
scalar ¢ € K and an algebra element = € A, giving the algebra element a.x € A.

The properties of this second binary operation, namely, of multiplication with
scalars, are as follows. Fora,b € K, x,y € A, we have

° a.(x+y)=(a.x)+(a.y)
° (a+b).x=(a.x)+(b.x)
° (a.b).x=a.(b.x)

° l.x=x
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Thus an algebra is in fact a structure (A, +, ., .) with one addition and two multi-
plications. And clearly, any field K can be seen as an algebra over itself, in which case
the two multiplications are in fact the same, and not only denoted in the same way.
Otherwise, and algebra is a somewhat more general structure than a field, and the
difference is in the stronger restrictions on division in the former.

Also, unlike in fields, the multiplication in algebras can be non-commutative.

Given a field K, such as for instance, K = R, or K = C, a typical and important
algebra over K is the set M} of n x n square matrices with elements which are scalars
in K, where n > 2. Here the difference between the two multiplications in an algebra
is obvious. The first multiplication is that between two matrices A, B € Mg . The
second multiplication is that between a scalar « € K and a matrix A € Mg.

Clearly, the multiplication between two matrices in M, is non-commutative, when-
evern > 2.

At last, in order to have a better insight into the relative scarcity of available fields,
when compared with the abundance, as well as ease to construct and use of algebras,
we recall several well known results about the former.

An important concept is that of the characteristic of a field (F,+,.) which is de-
fined as follows. Let 1 € F be unit element of the multiplication in F. If there is
some integer n > 2, such that

then the field F is said to have characteristic n, provided that n is the smallest with
that property, in which case it can be shown that » must be a prime number.
If there is no such an integer, then F is said to have characteristic zero.

Clearly, Q, R and C are fields with characteristic zero. On the other hand, the fields
Z,, of integers modulo any prime number p > 2, have characteristic p.

The following well known result, Cohn [Vol. 1, p. 125], gives a simple classification
of all possible fields :

Every field F' contains a smallest sub-field F, which is isomorphic to Q, if the char-
acteristic of F is zero, and alternatively, it is isomorphic to Z,, if the characteristic of
F'is a prime number p > 2.

A.3. Quotient Structures

Given a commutative group (G, +), there is a basic construction which leads to
certain further groups, called quotient groups of GG. Namely, let H C G be any sub-
group of G. Then we define the set
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G/H={z+H |z€G}

where z + H = {z + y | y € H}, and we note that for z,y € G, we have
xr+H=y+H < y—ze€ H

Actually, the binary relation ~y on G, given for z,y € G, by
xRy <= r+H=y+H

is an equivalence relation on G, that is, it is reflexive, symmetric and transitive.
Thus in fact

Now the set G/H can be endowed with a commutative group structure generated
by the one given on GG. Namely, we simply define the addition +5 on G/H, by

(x+H)+yg(y+H)=(r+y)+H, z,yeG
And then
(G/H,+u)

is called the quotient group of G generated by the subgroup H. For simplicity, the
addition +y in the quotient group G/H will be denoted by +.

What is important is that the above quotient group construction is valid also for
non-commutative groups (G, .), provided that the following mild restriction is made.
Instead of an arbitrary subgroup H of GG, we only consider normal subgroups H of G,
namely, subgroups H which satisfy the condition

r. H=H.x, v€G

The importance of the quotient group construction is, among others, in the fact
that it goes well beyond groups.
Indeed, let X be a ring, field or an algebra, then X has a commutative group struc-
ture with respect to the addition operation + in the respective ring, field or algebra.
Therefore, if Y C X is a subgroup of X in that commutative group structure, then as
above, one can define the commutative quotient group

(X/Y,+)

The fact of interest is that, corresponding to X being respectively a ring, field or
algebra, this quotient X/Y will also be a ring, field or algebra, provided that Y is not
only a subgroup in X, but also an ideal, namely; it satisfies the condition
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r. YUY . xCY ze€X
The ideal Y in X is called proper, if and only if

Y S X

A.4. The Archimedean Property

The Archimedean property, as much as the property of being non- Archimedean,
is essentially related to certain algebraic plus partial order structures. A simple way
to deal with the issue is to consider ordered groups. And in fact, we can restrict our-
selves to commutative groups. Commutative groups were defined above, therefore,
here we briefly recall the definition of partial orders and then relate them to the group
structure.

In general, a partial order < on an arbitrary nonvoid set X is a binary relation
r < y between certain elements z,y € X, which has the following three properties

e itis reflexive :

VeeX :xz<zx

e itis antisymmetric :

e it is transitive :
Vaz,yzeX x<y y<z = x<z
In case we have the additional property
Vx,ye X : either z <y, ory<uz
then < is called a linear order on X.

Given now a commutative group (G, +), a partial order < on G is called compati-
ble with the group structure, if and only if

VaoyzelG :2<y = x+2<y+z

A partially ordered commutative group is by definition a commutative group (G, +)
together with a compatible partial order < on G. In such a case, for simplicity, we
shall use the notation (G, +, <). In particular, we have a linearly ordered commuta-
tive group when the compatible partial order < is linear. It is easy to see that in the

ISSN: 2153-8301 www.prespacetime.com

Prespacetime Journal
Published by QuantumDream, Inc.



Prespacetime Journal | February 2011| Vol. 2 | Issue 2 | pp. 93-132
Rosinger, E. How Far Should the Principle of Relativity Go? 126

general case of a partially ordered commutative group (G, +, <), the above condition
of compatibility between the partial order < and the group structure can be simpli-
fied as follows

z,y>0 —= z+y >0
where 0 € G is the neutral element in G.

We recall that Z, Q and R are commutative groups. It is now easy to see that with
the usual order relation <, each of them is a linearly ordered commutative group.

Examples of partially ordered commutative groups which are notlinearly ordered
are easy to come by. Indeed, let us consider the n-dimensional Euclidean space R",
with n > 2. With the usual addition of its vectors, this space is obviously a commu-
tative group. We can now define on it the partial order relation < as follows. Given
two vectors © = (z1,%9,23, ..., Tn),y = (Y1,Y2, Y3, .-, Yn) € R", then we define z < y
coordinate-wise, namely

r<y < 11 <Y1, T2 <Yz, T3 Y3, Ty S Yy

It is easy to see that this partial order is compatible with the commutative group
on R", but it is not a linear order, when n > 2. Indeed, this can be seen even in the
simplest case of n = 2, if we take = = (1,0) and y = (0, 1), since then we do not have
either x <y, ory < z.

In particular, C, as well as Mp"", and M¢"™", with m > 2 orn > 2, are partially
and not linearly ordered commutative groups. Indeed, when it comes to their group
structure, each of them can be seen as an Euclidean space. Namely C is isomorphic
with R?, while M"" is isomorphic with R™", and M¢"" is isomorphic with R*"™".

Finally, we can turn to the issue of being, or for that matter, of not being Archimedean.

A partially ordered commutative group (G, +, <) is called Archimedean, if and only
if

(ARCH) dueG,u>0:VoeeG z>0:dneN:nu>zx

There are several alternative and not necessarily equivalent formulations of that
condition. However, the above one has the following clear intuitive interpretation :
by choosing as step size u € GG, one can in a finite number n of steps pass beyond any
givenz € G.

Let us note that the commutative groups Z,Q and R, when considered with the
usual partial order <, are each Archimedean, in the sense of (ARCH) since one can
obviously choose u = 1 in that condition.

The Archimedean property (ARCH) also holds for the commutative groups C and
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R", with n > 2, as well as for Mz"" and M¢"", with m > 2 and/or n > 2. Indeed, since
each of these commutative groups are isomorphic with a corresponding Euclidean
space, it is sufficient to show that the Euclidean spaces R", with arbitrary n > 2, are
Archimedean in the sense of (ARCH). For that, however, it is enough to note that one
can choose u = (1,1,1,...,1) € R" in the above condition.

In an alternative form, instead of (ARCH), the Archimedean property is formu-
lated as

VeeG, x>0 :
(ARCH+) 3 yed :

VneN: — =0
nr <y

Here we can note that in a linearly ordered group (G, +, <), we have
(ARCH+) = (ARCH)

Indeed, assume that (ARCH) does not hold, then
VeeG ax>0:3JyeG :VneN:nxty

Thus since < is assumed to be a linear order, it follows that
VeeG, x>0:dyeG:VneN:nr<y

and then (ARCH+) is obviously contradicted.

In the case of partially ordered groups which are not linearly ordered, the condi-
tion (ARCH+) is usually meant as being the Archimedean property.

As above, it is easy to see that the commutative groups Z,Q, R, C and R", with
n > 2, as well as for M;"" and M, with m > 2 and/or n > 2, satisfy the condition
(ARCH+).

Of relevance with respect to the reduced power algebras, we can note that infinite
dimensional vector spaces, such as for instance RY, are not Archimedean in the sense
of (ARCH), when the natural partial order < is considered on these spaces.

Indeed, this natural partial order < on R" is defined again coordinate-wise, as fol-
lows. Given x = (xy, 12, 23,...),y = (Y1,%2, ¥3, ...) € RY, then

<y <= 11 <Y1, T2 < Yo, 3 S Y3,

and thus it turns RY into a partially ordered commutative group that, however, is
notlinearly ordered, when n > 2.
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And now, given any u = (uy, us, us, ...) € RY, we can obviously take
T = (1.U1, 2.U2, 3.U3, ) € RN

and then clearly, the relation x < nu will nothold for any n € N, hence condition
(ARCH) is not satisfied.

Let us now consider a somewhat milder partial order < on RY which is defined as
follows. Given z = (1, 9,73, ...), ¥ = (Y1, Y2, Y3, ...) € RY, then

dmeN : >

r 3y =
y ( Tm é Yms Tm+1 S Ym+15 Tm+2 S Ym+2, ---

and with this partial order RY becomes again a partially ordered commutative
group which is not linearly ordered, if n > 2.

Obviously, for z, y € RY, we have
r<y = z3y
As it turns out, RY with this partial order < fails to satisfy condition (ARCH+).
Indeed, let us take
v=(1,1,1,..), y=(1,2,3,..) € RN
then clearly
VneN:nrly
while at the same time
x>0, #0

Here however we can note that even finite dimensional Euclidean spaces can turn
out not to be Archimedean, when considered with certain linear orders.

The simple example of the so called lexicographic order 4 on R? can already illus-
trate that fact. Indeed, we recall that - is defined as follows. Given = = (z1,3), y =
(yl, yg) - R2, then

1 < Yo
rdy < | or
r1 =1 and zo <y

and thus R? becomes a linearly ordered commutative group.
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Now if we take x = (0,1), y = (1,0) € R?, then clearly

VneN:nrx-y

while at the same time

Oz, x#0

therefore condition (ARCH+) is not satisfied.

Obviously, rings, algebras and fields each have, as far as their respective opera-
tions of addition are concerned, a commutative group structure as part of their defi-
nition. And when a partial order is defined to be compatible with the respective ring,
algebra or field structure, it will among other conditions be required to be compatible
with the mentioned commutative group structure of addition.

Consequently, the Archimedean conditions (ARCH) or (ARCH+) on rings, algebras
and fields can be defined exclusively in terms of the partially ordered commutative
group structure of their respective operations of addition.
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