## Article

# Recent View about Twistorialization in TGD Framework

Matti Pitkänen 1

#### Abstract

The recent view about twistorialization in TGD framework is discussed:

- 1. A proposal made already earlier is that scattering diagrams as analogs of twistor diagrams are constructible as tree diagrams for CDs connected by free particle lines. Loop contributions are not even well-defined in zero energy ontology (ZEO) and are in conflict with number theoretic vision. The coupling constant evolution would be discrete and associated with the scale of CDs (p-adic coupling constant evolution) and with the hierarchy of extensions of rationals defining the hierarchy of adelic physics.
- 2. Logarithms appear in the coupling constant evolution in QFTs. The identification of their number theoretic versions as rational number valued functions required by number-theoretical universality for both the integer characterizing the size scale of CD and for the hierarchy of Galois groups leads to an answer to a long-standing question what makes small primes and primes near powers of them physically special. The primes  $p \in \{2, 3, 5\}$  indeed turn out to be special from the point of view of number theoretic logarithm.
- 3. The reduction of the scattering amplitudes to tree diagrams is in conflict with unitarity in 4-D situation. The imaginary part of the scattering amplitude would have discontinuity proportional to the scattering rate only for many-particle states with light-like total momenta. Scattering rates would vanish identically for the physical momenta for many-particle states.

In TGD framework the states would be however massless in 8-D sense. Massless pole corresponds now to a continuum for  $M^4$  mass squared and one would obtain the unitary cuts from a pole at  $P^2 = 0$ ! Scattering rates would be non-vanishing only for many-particle states having lightlike 8-momentum, which would pose a powerful condition on the construction of many-particle states. This strong form of conformal symmetry has highly non-trivial implications concerning color confinement.

4. The key idea is number theoretical discretization in terms of "cognitive representations" as space-time time points with  $M^8$ -coordinates in an extension of rationals and therefore shared by both real and various p-adic sectors of the adele. Discretization realizes measurement resolution, which becomes an inherent aspect of physics rather than something forced by observed as outsider. This fixes the space-time surface completely as a zero locus of real or imaginary part of octonionic polynomial.

This must imply the reduction of "world of classical worlds" (WCW) corresponding to a fixed number of points in the extension of rationals to a finite-dimensional discretized space with maximal symmetries and Kähler structure.

The simplest identification for the reduced WCW would be as complex Grassmannian - a more general identification would be as a flag manifold. More complex options can of course be considered. The Yangian symmetries of the twistor Grassmann approach known to act as diffeomorphisms respecting the positivity of Grassmannian and emerging also in its TGD variant would have an interpretation as general coordinate invariance for the reduced WCW. This would give a completely unexpected connection with supersymmetric gauge theories and TGD.

5.  $M^8$  picture implies the analog of SUSY realized in terms of polynomials of super-octonions whereas H picture suggests that supersymmetry is broken in the sense that many-fermion states as analogs of components of super-field at partonic 2-surfaces are not local. This requires breaking of SUSY. At  $M^8$  level the breaking could be due to the reduction of Galois group to

<sup>&</sup>lt;sup>1</sup>Correspondence: Matti Pitkänen http://tgdtheory.fi/. Address: Rinnekatu 2-4 8A, 03620, Karkkila, Finland. Email: matpitka6@gmail.com.

its subgroup G/H, where H is normal subgroup leaving the point of cognitive representation defining space-time surface invariant. As a consequence, local many-fermion composite in  $M^8$  would be mapped to a non-local one in H by  $M^8 - H$  correspondence.

**Keywords**: Twistorialization, zero energy ontology, causual diamond, world of classical worlds, TGD framework.

# 1 Introduction

The construction of scattering amplitudes is a dream that I have had since the birth of TGD for four decades ago. Various ideas have gradually emerged, some of them have turned out to be wrong, and some of them have survived. At this age I must admit that the dream about explicit algorithms that any graduate student could apply to construct the scattering amplitudes, would require a collective effort and probably will not be realized during my lifetime.

I have however identified a set of general powerful principles leading to a generalization of the recipes for constructing twistorial amplitudes and already now these principles suggest the possibility of rather concrete realizations. In the sequel several additional insights are developed in more detail. Some of them are discussed already earlier in the formulation of  $M^8 - H$  duality [26] in adelic framework [29, 30] and in the chapters developing the TGD based generalization of twistor Grasmannian approach [18, 24, 23, 25].

- 1. A proposal made already earlier [25] is that scattering diagrams as analogs of twistor diagrams are constructible as tree diagrams for CDs connected by free particle lines. Loop contributions are not even well-defined in zero energy ontology (ZEO) and are in conflict with number theoretic vision. The coupling constant evolution would be discrete and associated with the scale of CDs (p-adic coupling constant evolution) and with the hierarchy of extensions of rationals defining the hierarchy of adelic physics.
- 2. Logarithms appear in the coupling constant evolution in QFTs. The identification of their number theoretic versions as rational number valued functions required by number-theoretical universality for both the integer characterizing the size scale of CD and for the hierarchy of Galois groups leads to an answer to a long-standing question what makes small primes and primes near powers of them physically special. The primes  $p \in \{2, 3, 5\}$  indeed turn out to be special from the point of view of number theoretic logarithm.
- 3. The reduction of the scattering amplitudes to tree diagrams is in conflict with unitarity in 4-D situation. The imaginary part of the scattering amplitude would have discontinuity proportional to the scattering rate only for many-particle states with light-like total momenta. Scattering rates would vanish identically for the physical momenta for many-particle states.

In TGD framework the states would be however massless in 8-D sense. Massless pole corresponds now to a continuum for  $M^4$  mass squared and one would obtain the unitary cuts from a pole at  $P^2 = 0$ ! Scattering rates would be non-vanishing only for many-particle states having light-like 8momentum, which would pose a powerful condition on the construction of many-particle states. This strong form of conformal symmetry has highly non-trivial implications concerning color confinement.

4. The key idea is number theoretical discretization [29] in terms of "cognitive representations" as space-time time points with  $M^8$ -coordinates in an extension of rationals and therefore shared by both real and various p-adic sectors of the adele. Discretization realizes measurement resolution, which becomes an inherent aspect of physics rather than something forced by observed as outsider. This fixes the space-time surface completely as a zero locus of real or imaginary part of octonionic polynomial.

This must imply the reduction of "world of classical worlds" (WCW) corresponding to a fixed number of points in the extension of rationals to a finite-dimensional discretized space with maximal symmetries and Kähler structure [12, 9, 21].

The simplest identification for the reduced WCW would be as complex Grassmannian - a more general identification would be as a flag manifold. More complex options can of course be considered. The Yangian symmetries of the twistor Grassmann approach known to act as diffeomorphisms respecting the positivity of Grassmannian and emerging also in its TGD variant would have an interpretation as general coordinate invariance for the reduced WCW. This would give a completely unexpected connection with supersymmetric gauge theories and TGD.

5.  $M^8$  picture [26] implies the analog of SUSY realized in terms of polynomials of super-octonions whereas H picture suggests that supersymmetry is broken in the sense that many-fermion states as analogs of components of super-field at partonic 2-surfaces are not local. This requires breaking of SUSY. At  $M^8$  level the breaking could be due to the reduction of Galois group to its subgroup G/H, where H is normal subgroup leaving the point of cognitive representation defining space-time surface invariant. As a consequence, local many-fermion composite in  $M^8$  would be mapped to a non-local one in H by  $M^8 - H$  correspondence.

# 2 General view about the construction of scattering amplitudes in TGD framework

Before twistorial considerations a general vision about the basic principles of TGD and construction of scattering amplitudes in TGD framework is in order.

# 2.1 General principles behind S-matrix

Although explicit formulas for scattering amplitudes are probably too much to hope, one can try to develop a convincing general view about principles behind the S-matrix.

# 2.1.1 World of Classical Worlds

The first discovery was what I called the "world of classical worlds" (WCW) [12, 9, 21] as a generalization of loop space allowing to replace path integral approach failing in TGD work. This led to a generalization of Einstein's geometrization program to an attempt to geometrize entire quantum physics. The geometry of WCW would be essentially unique from its mere existence since the existence of Riemann connection requires already in the case of loop spaces maximal isometries. Super-symplectic and super-conformal symmetries generalizing the 2-D conformal symmetries by replacing 2-D surfaces with light-like 3-surfaces (metrically 2-D!) would define the isometries.

Physical states would be classical spinor fields in the infinite-dimensional WCW and spinors at given point of WCW would be fermionic Fock states. Gamma matrices would be linear combinations of fermionic oscillator operators associated with the analog of massless Dirac equation at space-time surface determined by the variational principle whose preferred extremals the space-time surfaces are. Strong form of holography implied by strong form of general coordinate invariance would imply that it is enough to consider the restrictions of the induced spinor fields at string world sheets and partonic 2-surfaces (actually at discrete points at them defining the ends of boundaries of string world sheets) [20, 21].

## 2.1.2 Zero Energy Ontology and generalization of quantum measurement theory to a theory of consciousness

The attempts to understand S-matrix led to the question about what does state function reduction really mean. This eventually led to the discovery of Zero Energy Ontology (ZEO) in which time=constant

snapshot as a physical state is replaced with preferred extremal satisfying infinite number of additional gauge conditions [31]. Temporal pattern becomes the fundamental entity: this conforms nicely with the view neuroscientists and computational scientists for whom behavior and program are basic notions. One can say that non-deterministic state function reduction replaces this kind time evolution with new one. One gets rid of the basic difficulty of ordinary quantum measurement theory.

Causal diamond (CD) is the basic geometric object of ZEO. The members of the state pair defining zero energy state - the analog of physical event characterized by initial and final states - have opposite total conserved quantum numbers and reside at the opposite light-like boundaries of CD being associated with 3-surfaces connected by a space-time surface, the preferred extremal. CDs form a fractal hierarchy ordered by their discrete size scale.

One ends up to a quite radical prediction: the arrow of time changes in "big" state function reduction changing the roles of active and passive boundaries of CD. The state function reductions occurring in elementary reactions represent an example of "big" state function reduction. The sequence of "small" state function reductions - analogs of so called weak measurements - defines self as a conscious entity having CD as imbedding space correlate [31].

In ZEO based view about WCW 3-surfaces  $X^3$  are pairs of 3-surfaces at boundaries of CD connected by preferred extremals of the action principle. WCW spinors are pairs of fermionic Fock states at these 3-surfaces and WCW spinor fields are WCW spinors depending on  $X^3$ . They satisfy the analog of massless Dirac equation which boils down to the analogs of Super Virasoro conditions including also gauge conditions for a sub-algebra of super-symplectic algebra. S-matrix describing time evolution followed by "small" state function reduction relates two WCW spinor fields of this kind.

#### 2.1.3 Generalization of twistor Grassmannian approach to TGD framework

Twistorial approach generalizes from  $M^4$  to  $H = M^4 \times CP_2$ . One possible motivation could be the fact that ordinary twistor approach describes only scattering of massless particles. In the proposed generalization particles are massless in 8-D sense and in general massive in 4-D sense [18, 24, 23, 25].

- 1. The existence of twistor lift of Kähler action as 6-D analog of Kähler action fixes the choice of H uniquely: only  $M^4$  and  $CP_2$  allow twistor space with Kähler structure. The 12-D product of the twistor spaces of  $M^4$  and  $CP_2$  induces twistor structure for 6-D surface  $X^6$  under additional conditions guaranteeing that the  $X^6$  is twistor space of 4-D surface  $X^4$  ( $S^2$  bundle over  $X^4$ ) its twistor lift. The conjecture that 6-D Kähler action indeed gives rise to twistor spaces of  $X^4$  as preferred extremals.
- 2. This conjecture is the analog for Penrose's original twistor representation of Maxwellian fields reducing dynamics of massless fields to homology. There is also an analogy with massless fields. Dimensional reduction of Kähler action occurs for 6-surfaces, which represent twistor spaces and the external particles entering CD would be minimal surfaces defining simultaneous preferred extremals of Kähler action satisfying infinite number of additional gauge conditions. Minimal surfaces indeed satisfy generalization of massless field equations. In the interior of CD defining interaction region there is a coupling to Kähler 4-force and one has analog of massless particle coupling to Maxwellian field.
- 3. 6-D Kähler action would give the preferred extremals via the analog of dimensional reduction essential for the twistor space property requiring that one has  $S^2$  bundle over space-time surface. I have considered the generalization of the standard twistorial construction of scattering amplitudes of  $\mathcal{N} = 4$  SUSY to TGD context. In particular, the crucial Yangian invariance of the amplitudes holds true also now in both  $M^4$  and  $CP_2$  sectors.
- 4. Skeptic could argue that TGD generalization of twistors does not tell anything about the origin of the Yangian symmetry. During writing of this contribution I however realized that the hierarchy of

Grassmannians realizing the Yangian symmetries could be seen as a hierarchy of reduced WCWs associated with the hierarchy of adeles defined by the hierarchy of extensions of rationals. The isometries of Grassmannian would emerge in the reduction of the isometry group of WCW to a finite-D isometry group of Grassmannian and would be caused by finite measurement resolution described number theoretically. Of course, one can consider also more general flag manifolds with Kähler property as candidates for the analogs of Grassmannians. I will represent the argument in more detail later.

This could also relate to the postulated infinite hierarchy of hyper-finite factors of type  $II_1$  (HFFs) [19, 11] as a correlate for the finite measurement resolution with included sub-factor inducing transformations which act trivially in the measurement resolution used.

**Remark:** There is an amusing connection with empiria. Topologist Barbara Shipman observed that honeybee dance allows a description in terms of flag manifold  $F = SU(3)/U(1) \times U(1)$ , which is the space for the choices of quantization axes of color quantum numbers and also the twistor space in  $CP_2$ degrees of freedom [1]. This suggest that QCD type physics might make sense in macroscopic length scales. p-Adic length scale hypothesis and the predicted long range classical color gauge fields suggest a hierarchy of QCD type physics. One can indeed construct a TGD based model of honeybee dance with aconcrete interpretation and representation for the points of F at space-time level [32].

# **2.1.4** $M^8 - H$ duality

 $M^8 - H$  duality provides two equivalent manners to see the dynamics with either  $M^8$  or  $H = M^4 \times CP_2$ as imbedding space [26]. One might speak of number theoretic compactification which is a completely non-dynamical analog for spontaneous compactification.

- 1. In  $M^8$  picture the space-time corresponds to a zero locus for either imaginary part IM(P) or real part RE(P) of octonionic polynomial (RE(o) and IM(o) are defined by the decomposition  $o = RE(o) + I_4 IM(o)$ , where  $I_4$  is octonion unit orthogonal to quaternionic subalgebra). The dynamics is purely algebraic and ultra-local.
- 2. At the level of H the dynamics is dictated by variational principle and partial differential equations. Space-time surfaces are preferred extremals of the twistor lift of Kähler action reduced to a sum of 4-D Kähler action and volume term analogous to cosmological term in GRT. The equivalence of these descriptions gives powerful constraints and should follow from the infinite number of gauge conditions at the level of H associated with a sub-algebra of supersymplectic algebra implying the required dramatic reduction of degrees of freedom[9, 21]. One has a hierarchy of these sub-algebras, which presumably relates to the hierarchy of HFFs and hierarchy of extensions of rationals.

 ${\cal H}$  picture works very nicely in applications. For instance, the notions of field body and magnetic body are crucial in all applications.

## 2.1.5 Adelic physics

The adelization of ordinary physics fusing real number based physics and various p-adic variants of physics in order to describe cognition.

- 1. Adelic physics [29, 30] gives powerful number theoretic constraints when combined with  $M^8 H$  duality and leads to the vision about evolutionary hierarchy defined by extensions of rationals. The higher the level in the hierarchy, the higher the dimension n of the extension identified in terms of Planck constant  $h_{eff}/h = n$  labelling the levels of dark matter hierarchy.
- 2. Adelic hypothesis allows to sharpen the strong form of holography to a statement that discrete cognitive representations consisting of a finite number of points identified as points of space-time

surface with  $M^8$  coordinates in the extension of rationals fixes the space-time surface itself. This dramatic reduction would be basically due to finite measurement resolution realized as an inherent property of dynamics. Cognitive representation in fact gives the WCW coordinates of the space-time surface in WCW! WCW reduces to a number theoretic discretization of a finite-dimensional space with Kähler structure and presumably maximal isometries.

- 3. In ZEO space-time surface becomes analogous to a computer program determined in terms of finite net of numbers! Of course, at the QFT limit of TGD giving standard model and GRT space-time is locally much more complex since one approximates the many-sheeted space-time with single slightly curved region of  $M^4$ . This is the price paid for getting rid (or losing) the topological richness of the many-sheeted space-time crucial for the understanding living matter and even physics in galactic scales.
- 4. Skeptic can argue that this discretization of WCW leads to the loss of WCW geometry based on real numbers. One can however consider also continuous values for the points of cognitive representations and assigning metric to the points of cognitive representation. Metric could be defined as kind of induced metric. One slices CD by parallel CDs by shift the CD along the axis connecting its tips. This allows to see the point of cognitive representation as point at one particular CD. One shifts slightly the point along its CD. Imbedding space metric allows to deduce the infinitesimal line element  $ds^2$  and to deduce the metric components. This allows a definition of differential geometry so that the analog of WCW metric makes sense as a hierarchy of finite-dimensional metrics for space-time surfaces characterize by the cognitive representations.

The interpretation in real context would be in terms of finite measurement resolution and the hierarchy would correspond to a hierarchy of hyper-finite factors (HFFs) [19, 11], whose defining property is that they allow arbitrarily precise finite-dimensional approximations. What would be new is that the hierarchy of extensions of rationals would define a hierarchy of discretizations and hierarchy of HFFs.

Thabove list involves several unproven conjectures, which I can argue to be intuitively obvious with the experience of four decades: I cannot of course expect that a colleague reading for the first time about TGD would share these intuitions.

# 2.2 Classical TGD

Classical TGD is now rather well understood both in both  $H = M^4 \times CP_2$  and  $M^8$  pictures. Applications of classical TGD are in H picture and rather detailed phenomenology has emerged.  $M^8$  picture has led to a rather precise vision about adelic physics and to understanding of finite measurement resolution.

# **2.2.1** Classical TGD in $M^8$ picture

Classical TGD in  $M^8$  picture is discussed in [26].

1. In  $M^8$  picture one ends to an extremely simple number theoretic construction of space-time surfaces fixing only discrete or even finite number of space-time points to obtain space-time surface for a given extension of rationals. The reason is that space-time surfaces are zero loci for RE(P) or IM(P) of octonionic polynomials obtained by continuing real polynomial with coefficients in an extension of rationals to an octonionic polynomial.

Needless to say, the hierarchy of algebraic extensions of rationals is what makes the dynamics at given level so simple. The coordinates of space-time surface as a point of WCW must be in the extension of rationals. As noticed, the points of space-time surface defining the cognitive representation determining the space-time surface serve as its natural WCW coordinates.

205

- 2. The highly non-trivial point is that no variational principle is involved with  $M^8$  construction. Therefore it seems that neither WCW metric nor Kähler function is needed. If this is the case, the exponential of Kähler function definable as action exponential does not appear in scattering amplitudes and must disappear also at *H*-side from the scattering amplitudes.
- 3. Skeptic could argue that one loses general coordinate invariance in this approach. This is not true. Linear  $M^8$  coordinates are the only possible option and forced already by symmetries. The choice octonionic and quaternionic structures fixes the linear  $M^8$  coordinates almost uniquely since time direction is associated with real octonion unit and one spatial direction to special imaginary unit defining spin quantization axis. In algebraic approach identifying space-time surface as a zero locus of RE(P) or IM(P) these coordinates define space-time coordinates highly uniquely.

Skeptic could also argue that number theoretic discretization implies reduction of the basic symmetry groups to their discrete sub-groups. This is true and one can argue that this loss of symmetry is due to the use of cognitive representations with finite resolution. Points with algebraic coordinates could be seen as a choices of representatives from a set of points, which are equivalent as far as measurement resolution is considered.

4. A physically important complication related to  $M^8$  dynamics is the possibility of different octonionic and quaternionic structures. For instance, external particles arriving into CD correspond to different octonionic and quaternionic structures in general since Lorentz boost affects the octonionic structure changing the direction of time axis, which corresponds to the real octonionic unit. In color degrees of freedom one has wave function over different quaternionic structures: essentially color partial waves labelled by color quantum numbers [13].

One can apply Poincare transformations and color rotations (or transformation in sub-groups of these groups if one requires that the image points belong to the same extension) to the discrete cognitive representation defining space-time surface. The moduli spaces for these structures are essential for the understanding the standard Poincare and color quantum numbers and standard conservation laws in  $M^8$  picture. Also the size scales of CDs define moduli as also Lorentz boosts leaving either boundary of CD unaffected.

## 2.2.2 Classical TGD in *H* picture

At the H side one action principle has partial differential equations and infinite number of gauge conditions associated with a sub-algebra of super-symplectic algebra selecting only extremely few preferred extremals of the action principle in terms of gauge conditions for a sub-algebra of super-symplectic algebra. This dynamics is conjectured to follow from the assumption that 6-D lift of space-time surface  $X^4$  to a  $CP_1$ bundle over  $X^4$  is twistor space of  $X^4$ . This condition requires the analog of dimensional reduction since  $S^2$  fiber is dynamically trivial.

For 6-D preferred extremals identifiable as twistor spaces of space-time surfaces the 6-D Kähler action in the product of twistor spaces of  $M^4$  and  $CP_2$  is assumed to dimensionally reduce to 4-D Kähler action plus volume term identifiable as the analog of cosmological constant term. This picture reproduces a description of scattering events highly analogous to that emerging in  $M^8$ . External particles correspond to minimal surfaces as analogs of free massless fields and all couplings disappear from the value of the action. The interior of CD corresponds to non-trivial coupling to Kähler 4-force which does not vanish. In  $M^8$  picture one has associative and non-associative regions as counterparts of these regions.

What is remarkable is that the dynamics determined by partial differential equations plus gauge conditions would be equivalent with the number theoretic dynamics determined in terms of zero loci for real or imaginary parts of octonionic polynomials.

206

# 2.3 Scattering amplitudes in ZEO

The construction of scattering amplitudes even at the level of principle is far from well-understood. I have discussed rather concrete proposals for the twistorial construction but the feeling is that something is still missing [18, 24, 23, 25]. This feeling might well reflect my quite too limited mathematical understanding of twistors and experience about practical construction of the scattering amplitudes. Later I will discuss possible identification of the missing piece of puzzle.

Consider first the general picture about the construction of scattering amplitudes suggested by ZEO inspired theory of quantum measurement theory defining also a theory of consciousness.

1. The portions of space-time surfaces outside CD correspond to external particles. They satisfy associativity conditions at  $M^8$  side making possible to map them to minimal surfaces in  $H = M^4 \times CP_2$  satisfying various infinite number of gauge conditions for a sub-algebra of super-symplectic algebra isomorphic with it.

**Remark:** There is an additional condition requiring that associative tangent space or normal space contains fixed complex subspace of quaternions. It is not quite clear whether this condition can be generalized so that the distribution of these spaces is integrable.

At both sides the dynamics of external particles is in a well-defined sense critical at both sides and does not depend at all on coupling constants.

- 2. Inside CDs associativity conditions break down in  $M^8$  and one cannot map this spacetime region call it  $X^4$  to H [26]. It is however possible to construct counterpart of  $X^4$  in H as a preferred extremal for the twistor lift of Kähler action by fixing the 3-surfaces at the boundaries of CD (boundary conditions). The dependence on couplings at the level of H would come from the vanishing conditions for classical Noether charges, which depend on coupling parameters.
- 3. If the two descriptions of the scattering amplitudes are equivalent, the dependence on coupling parameters in H should have a counterpart in  $M^8$ . Coupling constants making sense only at H side are expected to depend on the size scale of CD and on the extension of rationals defining the adele [29, 30]. Coupling constants should be determined completely by the boundary values of Noether charges at the ends of space-time surface, and therefore by the 3-D ends of associative space-time regions representing external particles at  $M^8$  side. This would suggest that coupling constants are functions of the coefficients of the polynomials and the points of cognitive representation.

## 2.3.1 Zero energy ontology and the life cycle of self

ZEO meant a decisive step in the understanding of quantum TGD since it solved the basic paradox of quantum measurement problem by forcing to realize that subjective and geometric time are not the same thing [31].

1. Both the passive boundary of CD and the members of state pairs at it are unaffected during the sequence of state reductions analogous to weak measurements (see http://tinyurl.com/zt36hpb) defining self as a generalized Zeno effect. The members of state pairs associated with the active boundary change and the active boundary itself drifts farther away from the passive one in the sequence of "small" state function reductions.

Also the space-time surfaces connecting passive and active boundaries change during the sequence of weak measurements. Only the 3-surfaces at the passive boundary are unaffected. Hence the geometric past relative to the active boundary changes during the life cycle of self. In positive energy ontology (PEO) this is not possible.

2. In "big" state function reduction the roles of passive and active boundary are changed and the arrow of time identifiable as the direction in which CD grows changes. In consciousness theory "big" state

function reduction corresponds to the death of self and subsequent re-incarnations as a self with an opposite arrow of geometric time.

3. In ZEO the life cycle of self corresponds to a sequence of steps. Single step begins with a unitary time evolution in which a superposition of states associated with CDs larger than the original CD emerges. Then follows the analog of weak measurement leading to a localization to a CD in the moduli space of CDs so that it has a fixed and in general larger size. A measurement of geometric time occurs and gives rise to an experience about the flow of time.

This option would allow to identify the total S-matrix as a product of the S-matrices associated with various steps in spirit with the interpretation as a generalized Zeno effect.

**Remark:** In the usual description one fixes the time interval to which one assigns the S-matrix. There is no division to steps giving rise to the experience of time flow.

4. The measurement of geometric time would be a partial measurement reducing more general unitary time evolution to a unitary time evolution in the standard sense. Can one generalize the notion of partial measurement to other observables so that one would still have unitary time evolution albeit in more restricted sense? Or should one consider giving up the unitary time evolution?

These observables should commute with the observables having the states at passive boundary as eigenstates: otherwise the state at passive boundary would change. If this picture makes sense, the "big" reduction to the opposite boundary meaning the death of self would necessarily occur when all observables commuting with the eigen observables at the passive boundary have been measured. It could of course occur already earlier.

Should one allow measurements of all observables commuting with the eigen observables at the passive boundary. This would lead to partial de-coherence of the zero energy state. In TGD inspired quantum biology this could allow to understand ageing as an unavoidable gradual loss of the quantum coherence.

## 2.3.2 More detailed interpretation of ZEO

There are several questions related to the detailed interpretation of ZEO. The intuitive picture is that inside CD representing self one has collection of sub-CDs representing sub-selves identified as mental images of self. On can loosely say, that sub-CDs represent mind. The sub-CDs are connected by on mass shell lines, which correspond to external particles - matter. Sub-CDs can also have sub-CDs and the hierarchy can have several levels.

The states at the boundaries of CD have opposite total quantum numbers. One can consider two interpretations.

1. In positive energy ontology (PEO) the notion of zero energy state could be seen only as an elegant manner to express conservation laws. This is done in QFT quite generally - also in twistor approach. Also the largest CD would have external particles emanating from its boundaries travelling to the geometric past and future. One would have however have only information about the interior of the CD possessed by conscious entity for which CD plus its sub-CDs (mental images) serve as correlates.

In this picture the arrow of time is fixed since it must be same for all sub-CDs in order to void inconsistency with the basic idea about self as generalized Zeno effect realized as a sequence of weak measurements.

2. ZEO suggest a more radical interpretation. Zero energy state defines an event. There would be the largest CD defining self and sub-CDs would correspond to mental images. There would be no external particles emanating from the boundaries of the largest CD. In this framework it becomes possible to speak about the death of self as the first state function reduction to the opposite boundary changing the roles of active and passive boundaries of self. This picture should be consistent with what we know about arrow of time and in TGD framework with the idea that the arrow of time can also change - in particular in living matter.

- 1. How would the standard arrow of time emerge in ZEO? One could see the emergence of the global arrow of geometric time as a process in which the size of the largest CD increases: the sub-CDs are forced to have the same arrow of time as the largest CD and cannot make state function reductions on opposite boundary (die) independently of it. During evolution the size of the networks with the same arrow of geometric time increases and fixed arrow of geometric time is established in longer scales.
- 2. This picture cannot be quite correct. The applications of TGD inspired consciousness require that the mental images of self can have arrow of geometric time opposite to that of self. For instance, motor actions could be sensory perceptions in non-standard arrow of time. Memory could be communications with brain of geometric past seeing in time direction involving signals to geometric past requiring temporary reversals of the arrow of time at some level of self-hierarchy. Hence space-time regions with different arrows of time but forming a connected space-time surface ought to be possible.

Many-sheeted space-time means a hierarchy of space-time sheets connected by what I call wormhole contacts having Euclidian signature of the induced metric. Space-time sheets at different levels of the hierarchy are not causally connected in the sense that one cannot speak of signal propagation in the regions of Euclidian signature. This suggests that the space-time sheets connected by wormhole contacts can have different arrows of geometric time and are associated with their own CDs.

In this manner one would avoid the paradox resulting when sub-self - mental image - dies so that its passive boundary becomes active and the particles emanating from it end up to the passive boundary of CD, where no changes are allowed during the life cycle of self. If the particles emanating from time-reversed sub-self and up to boundaries of parallel CD, the problem is circumvented.

3. Wormhole contacts induce an interaction between Minkowskian space-time sheets that they connect. The interaction is not mediated by classical signals but by boundary conditions at the boundaries between Minkowskian regions and Euclidian wormhole contact. These two boundaries are light-like orbits of opposite wormhole throats (partonic 2-surfaces).

In number theoretic picture the presence of wormhole contact is reflected in the properties set of points in extension of rationals defining the cognitive representation in turn defining the space-time surface. In particular, the points associated with wormhole contact have space-like distance although they are at opposite boundaries of CD and have time-like distance in the metric of imbedding space. This kind of point pairs associated with wormhole contacts serve serve as a tell-tale signature for them.

# 3 The counterpart of the twistor approach in TGD

The analogs of twistor diagrams could emerge in TGD [24, 25] in the following manner in ZEO.

1. Portions of space-time surfaces inside CDs would appear as analogs of vertices and the spacetime surfaces connecting them as analogs of propagator lines. The "lines" connecting sub-CDs would carry massless on mass shell states but possibly with complex momenta analogous to those appearing in twistor diagrams. This is true also classically at level of H: the coupling constants appearing in the action defining classical dynamics - at least Kähler coupling strength - are complex so that also conserved quantities have also imaginary parts.

**Remark:** At the level of  $M^8$  one does not have action principle and cannot speak of Noether charges. Here the conserved charged are associated with the symmetries of the moduli spaces such

as the moduli spaces for octonion and quaternion structures [26]. The identification of the classical charges in Cartan algebra at H level with the quantum numbers labeling wave functions in moduli space at  $M^8$  level could be seen as a realization of quantum classical correspondence.

2. At space-time level the vertices of twistor diagrams correspond to partonic 2-surfaces in the interior of given CD. In H description fermionic lines along the light-like orbits of partonic 2-surfaces scatter at partonic 2-surfaces. If each partonic 2-surface defining a vertex is surrounded by a sub-CD, these two views about TGD variants of twistor diagrams are unified. Sub-CD can of course contain more complex structures such as pair of wormhole contacts assignable to an elementary particle.

# 3.1 Could the classical number theoretical dynamics define the hard core of the scattering amplitudes?

The natural hope is that the simple picture about classical dynamics at the level of  $M^8$  should have similar counterpart at the level of scattering amplitudes in  $M^8$ . The above arguments suggest that the scattering diagrams correspond to CDs connected by external particle lines representing on mass shell particles. These surfaces are associative at the level of  $M^8$  and minimal surfaces at the level of H. This suggests that scattering amplitude for single CD serves as a building brick for scattering amplitudes: the rest would be "just kinematics" dictated by the enormous symmetries of WCW.

- 1. Everything in the construction should reduce to a hard core around which one would have integrations (or sums for number theoretic realization of finite measurement resolution) over various moduli characterizing the standard quantum numbers. Twistors for  $M^4$  and  $CP_2$  and the moduli for the choices of CDs should correspond to essentially kinematic contribution involving no genuine dynamics.
- 2. The scattering amplitudes should make sense in all sectors of adele. This poses powerful constraints on them. The exponential of Kähler function reducing to action exponential can in principle appear in the description at H-side but cannot be present at  $M^8$  side. Therefore it should disappear also at the level of H.

If the scattering amplitude at the level of H is sum over contributions with the same value of the action exponential, the exponentials indeed cancel and I have proposed that this condition holds true. In perturbative quantum field theory it holds practically always and in integrable theories is exact. This would mean enormous simplification since all information about the action principle in H would appear in the vanishing conditions for the Noether charges of the subalgebra of supersymplectic algebra at the ends of the space-time surface. These Noether changes indeed depend on the action principle and thus on coupling constants.

3. Could the hard core in the construction of the scattering amplitudes be just the choice of the cognitive representation as points if  $M^8$  belonging to the algebraic extension defining the adele and determining space-time surface in terms of octonionic polynomial inside this CD defining the interaction region?

The set of points of extension of rationals in the cognitive representation defines space-time surface and also its WCW coordinates. The restriction to a cognitive representation with given number of points in given extension of rationals would mean a reduction of WCW to a finite-dimensional sub-space.

The first wild guess is that this space is Kähler manifold with maximal symmetries - just as WCW is. A further wild guess is that these reduced WCWs are Grassmannians and correspond to those appearing in the twistor Grassmannian approach. A more general conjecture is inspired by the vision that super-symplectic gauge conditions effectively reduce the super-symplectic algebra to a Kac-Moody algebra of a finite-dimensional Lie group - perhaps belonging to ADE hierarchy. The

flag manifolds associated with these Lie groups define more general homogenous spaces as candidates for the reduced WCWs.

- 4. One must allow the action of Galois group and this gives several options for given set X of points in algebraic extension.
  - (a) One can construct  $X^4(X)$  in terms of octonionic polynomial and construct a representation of Galois group as superposition of space-time surfaces obtained from space-time surface by the action of Galois group on X giving rise to new sets  $X_g = g(X)$ .
  - (b) One can also consider the action of Galois group on X and get larger set Y of points and construct single multi-sheeted surface  $X^4(Y)$ . This surface corresponds to Planck constant  $h_{eff}/h = n$ , where n is the dimension of algebraic extension.
  - (c) One can also consider the actions of sub-groups of  $H \subset Gal$  to X to get space-time surface with  $h_{eff}/h = m$  dividing n. There are several options corresponding to representations for all sub-groups of Galois group. A hierarchy of symmetry breakings seems to be involved with unbroken symmetry associated with the largest value of  $h_{eff}/h$ .
- 5. In this picture the hard core would reduce to the classical number theoretical dynamics of spacetime surface in  $M^8$ . The additional degrees of freedom would be due to the possibility of different octonionic and quaternionic structures and choices of size scales and Lorentz boosts and translations of CDs. The symmetries would dictate the S-matrix in the moduli degrees of freedom: the dream is that this part of the dynamics reduces to kinematics, so to say.

The discrete coupling constant evolution would be determined by the hierarchy of extensions of rationals and by the hierarchy of p-adic length scales. The cancellation of radiative corrections in the sense of sub-CDs inside CDs could be achieved by replacing coupling constant evolution with its discrete counterpart.

If this dream has something to do with reality, the construction of scattering amplitudes would reduce to their construction in moduli degrees of freedom and here the generalization of twistorial approach relying on Yangian symmetry allowing to identify scattering amplitudes as Yangian invariants might "trivialize" the situation. It will be found that the Yangian symmetry could corresponds to general coordinate transformations for the reduced WCW forced by the restriction of the spacetime surfaces to those allowed by octonionic polynomials with coefficients in the extension of rationals.

# 3.2 Do loop contributions to the scattering amplitudes vanish in TGD framework?

In TGD scattering amplitudes interpreted as zero energy states would correspond at imbedding space level to collections of space-time surfaces inside CDs analogous to vertices and connected by lines defined by the space-time surfaces representing on-mass-shell particles. One would have massless particles in 8-D sense. The quaternionicity of 8-momentum leads to  $M^4 \times CP_2$  picture and  $CP_2$  twistors should replace  $E^4$  twistors of  $M^8$  approach.

## 3.2.1 Why loop corrections should vanish?

There are several arguments suggesting that the loop contributions should vanish in TGD framework. This would give rise to a discrete coupling constant evolution analogous to a sequence of phase transitions between different critical coupling parameters. Amplitudes would be obtained as tree diagrams.

1. In ZEO it is far from clear what the basic operation defining the loop contribution could even mean. One would have zero energy state for which the members of added particle pair have opposite but momenta but the amplitude is superposition of states with varying momenta. Why should one allow zero energy states containing one particle which is not an eigenstate of momentum? This suggests that ZEO does not allow loop contributions at all: the distinction between PEO and ZEO would make itself visible in rather dramatic manner.

- 2. The restriction of the BCFW to tree diagrams is internally consistent since the loop term is identically vanishing in this case. The first term in the BCFW for diagram with l loops involves a factor with l > 0 loops which vanishes. In l = 1 case the second term is obtained from (n + 2, l 1 = 0) diagram by generating loop but this vanishes by assumption.
- 3. Number theoretic vision does not favor the decomposition of the amplitude to an infinite sum of amplitudes since this is expected to lead to the emergence of transcendental numbers and functions in the amplitude in conflict with the number theoretical universality.

Loops indeed give logarithms and poly-logarithms of rational functions of external momenta in Grassmannian approach. This violates the number theoretical universality since the p-adic counterpart of logarithm exist only for the argument of form x = 1 + O(p). This condition cannot hold true for all primes simultaneously.

Discrete coupling constant evolution suggests the vanishing of loops. One can imagine two alternative mechanisms for the vanishing of loop contributions. Either the loop contributions do not make sense at all in ZEO, or the sum of loop contributions for the critical values of coupling constants vanishes. The summing up of loop contributions to zero for critical values of couplings should happen for all values of external momenta and other quantum numbers: this does not look plausible.

## 3.2.2 General number theoretic ideas about coupling constant evolution

The discrete coupling constant evolution would be associated with the scale hierarchy for CDs and the hierarchy of extensions of rationals.

- 1. Discrete p-adic coupling constant evolution would naturally correspond to the dependence of coupling constants on the size of CD. For instance, I have considered a concrete but rather ad hoc proposal for the evolution of Kähler couplings strength based on the zeros of Riemann zeta [10]. Number theoretical universality suggests that the size scale of CD identified as the temporal distance between the tips of CD using suitable multiple of  $CP_2$  length scale as a length unit is integer, call it *l*. The prime factors of the integer could correspond to preferred p-adic primes for given CD.
- 2. I have also proposed that the so called ramified primes of the extension of rationals correspond to the physically preferred primes. Ramification is algebraically analogous to criticality in the sense that two roots understood in very general sense co-incide at criticality. Could the primes appearing as factors of l be ramified primes of extension? This would give strong correlation between the algebraic extension and the size scale of CD.

In quantum field theories coupling constants depend in good approximation logarithmically on mass scale, which would be in the case of p-adic coupling constant evolution replaced with an integer n characterizing the size scale of CD or perhaps the collection of prime factors of n (note that one cannot exclude rational numbers as size scales). Coupling constant evolution could also depend on the size of extension of rationals characterized by its order and Galois group.

In both cases one expects approximate logarithmic dependence and the challenge is to define "number theoretic logarithm" as a rational number valued function making thus sense also for p-adic number fields as required by the number theoretical universality.

1. Coupling constant evolution with respect to CD size scale

Consider first the coupling constant as a function of the length scale  $l_{CD}(n)/l_{CD}(1) = n$ .

- 1. The number  $\pi(n)$  of primes  $p \leq n$  behaves approximately as  $\pi(n) = n/log(n)$ . This suggests the definition of what might be called "number theoretic logarithm" as  $Log(n) \equiv n/\pi(n)$ . Also iterated logarithms such log(log(x)) appearing in coupling constant evolution would have number theoretic generalization.
- 2. If the p-adic variant of Log(n) is mapped to its real counterpart by canonical identification involving the replacement  $p \to 1/p$ , the behavior can very different from the ordinary logarithm. Log(n)increases however very slowly so that in the generic case one can expect  $Log(n) < p_{max}$ , where  $p_{max}$  is the largest prime factor of n, so that there would be no dependence on p for  $p_{max}$  and the image under canonical identification would be number theoretically universal.

For  $n = p^k$ , where p is small prime the situation changes since Log(n) can be larger than small prime p. Primes p near primes powers of 2 and perhaps also primes near powers of 3 and 5 - at least - seem to be physically special. For instance, for Mersenne prime  $M_k = 2^k - 1$  there would be dramatic change in the step  $M_k \to M_k + 1 = 2^k$ , which might relate to its special physical role.

3. One can consider also the analog of Log(n) as

$$Log(n) = \sum_{p} k_p Log(p)$$
,

where  $p^{k_i}$  is a factor of n. Log(n) would be sum of number theoretic analogs for primes factors and carry information about them.

One can extend the definition of Log(x) to the rational values x = m/n of the argument. The logarithm  $Log_b(n)$  in base b = r/s can be defined as  $Log_b(x) = Log(x)/Log(b)$ .

4. For  $p \in \{2,3,5\}$  one has Log(p) > log(p), where for larger primes one has Log(p) < log(p). One has Log(2) = 2 > log(2) = .693..., Log(3) = 3k/2 > log(3) = 1.099, Log(5) = 5/3 = 1.666.. > log(5) = 1.609. For p = 7 one has  $Log(7) = 7/4 \simeq 1.75 < log(7) \simeq 1.946$ . Hence these primes and CD size scales n involving large powers of  $p \in \{2,3,5\}$  ought to be physically special as indeed conjectured on basis of p-adic calculations and some observations related to music and biological evolution [15, 16, 17, 22].

In particular, for Mersenne primes  $M_k = 2^k - 1$  one would have  $Log(M_k) \simeq klog(2)$  for large enough k. For  $Log(2^k)$  one would have  $k \times Log(2) = 2k > log(2^k) = klog(2)$ : there would be sudden increase in the value of Log(n) at  $n = M_k$ . This jump in p-adic length scale evolution might relate to the very special physical role of Mersenne primes strongly suggested by p-adic mass calculations [13].

5. One can wonder whether one could replace the log(p) appearing as a unit in p-adic negentropy [14] with a rational unit  $Log(p) = p/\pi(p)$  to gain number theoretical universality? One could therefore interpret the p-adic negentropy as real or p-adic number for some prime. Interestingly,  $|Log(p)|_p = 1/p$  approaches zero for large primes p (eye cannot see itself!) whereas  $|Log(p)|_q = 1/|\pi(p)|_q$  has large values for the prime power factors  $q^r$  of  $\pi(p)$ .

#### 2. The dependence of $1/\alpha_K$ on the extension of rationals

Consider next the dependence of  $\alpha_K$  on the extension of rationals. The natural algebraization of the problem is to consider the Galois group of the extension.

1. Consider first the counterparts of primes and prime factorization for groups. The counterparts of primes are simple groups, which do not have normal subgroups H satisfying gH = Hg implying invariance under automorphisms of G. Simple groups have no decomposition to a product of subgroups. If the group has normal subgroup H, it can be decomposed to a product  $H \times G/H$  and any finite group can be decomposed to a product of simple groups.

All simple finite groups have been classified (see http://tinyurl.com/jn44bxe). There are cyclic groups, alternating groups, 16 families of simple groups of Lie type, 26 sporadic groups. This includes 20 quotients G/H by a normal subgroup of monster group and 6 groups which for some reason are referred to as pariahs.

2. Suppose that finite groups can be ordered so that one can assign number N(G) to group G. The roughest ordering criterion is based on ord(G). For given order ord(G) = n one has all groups, which are products of cyclic groups associated with prime factors of n plus products involving non-Abelian groups for which the order is not prime. N(G) > ord(G) thus holds true. For groups with the same order one should have additional ordering criteria, which could relate to the complexity of the group. The number of simple factors would serve as an additional ordering criterion.

If its possible to define N(G) in a natural manner then for given G one can define the number  $\pi_1(N(G))$  of simple groups (analogs of primes) not larger than G. The first guess is that that the number  $\pi_1(N(G))$  varies slowly as a function of G. Since  $Z_i$  is simple group, one has  $\pi_1(N(G)) \ge \pi(N(G))$ .

3. One can consider two definitions of number theoretic logarithm, call it  $Log_1$ .

a) 
$$Log_1(N(G)) = \frac{N(G)}{\pi_1(N(G))}$$
,  
b)  $Log_1(G) = \sum_i k_i Log_1(N(G_i))$ ,  $Log_1(N(G_i)) = \frac{N(G_i)}{\pi_1(N(G_i))}$ .  
(3.1)

Option a) does not provide information about the decomposition of G to a product of simple factors. For Option b) one decomposes G to a product of simple groups  $G_i$ :  $G = \prod_i G_i^{k_i}$  and defines the logarithm as Option b) so that it carries information about the simple factors of G.

4. One could organize the groups with the same order to same equivalence class. In this case the above definitions would give

a) 
$$Log_1(ord(G)) = \frac{ord(G)}{\pi_1(ord(G))} < Log(ord(G))$$
,  
b)  $Log_1(ord(G)) = \sum_i k_i Log(ord(G_i))$ ,  $Log_1(ord(G_i)) = \frac{ord(G_i)}{\pi_1(ord(G_i))}$ .  
(3.2)

Besides groups with prime orders there are non-Abelian groups with non-prime orders. The occurrence of same order for two non-isomorphic finite simple groups is very rare (see http://tinyurl.com/ydd6uomb). This would suggests that one has  $\pi_1(ord(G)) < ord(G)$  so that  $Log_1(ord(G))/ord(G) < 1$  would be true.

5. For orders  $n(G) \in \{2,3,5\}$  one has  $Log_1(n(G)) = Log(n(G)) > log(n(G))$  so that the ordes n(G) involving large factors of  $p \in \{2,3,5\}$  would be special also for the extensions of rationals.  $S_3$  with order 6 is the first non-abelian simple group. One has  $\pi(S_3) = 4$  giving Log(6) = 6/4 = 1.5 < log(6) = 1.79 so that  $S_3$  is different from the simple groups below it.

To sum up, number theoretic logarithm could provide answer to the long-standing question what makes Mersenne primes and also other small primes so special.