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Abstract

The intrinsic unification of the quantum theory and relativity has been discussed here in the light
of the last developments. Such development is possible only on the way of the serious deviation from
traditional assumptions about a priori spacetime structure and the Yang-Mills generalization of the
well known U(1) Abelian gauge symmetry of the classical electrodynamics. In fact, more general
gauge theory should be constructed. Formally we deal with the quantum version of the gauge the-
ory of the deformable bodies - the gauge theory of the deformable quantum state. More physically
this means that the distance between quantum states is strictly defined value whereas the distance
between bodies (particle) is an approximate value, at best. Thereby, all well known solid frames
and clocks even with corrections of special relativity should be replaced by the flexible and anholo-
nomic quantum setup. Then Yang-Mills arguments about the spacetime coordinate dependence of
the gauge unitary rotations should be reversed on the dependence of the spacetime structure on the
gauge transformations of the flexible quantum setup. One needs to build “inverse representation” of
the unitary transformations by the intrinsic dynamical spacetime transformations. In order to achieve
such generalization one needs the general footing for gauge fields and for ”matter fields”. Only funda-
mental pure quantum degrees of freedom like spin, charge, hyper-charges, etc., obey this requirement.
One may assume that they correspond some fundamental quantum motions in the manifold of the
unlocated quantum states (UQS’s). Then “elementary particles” will be represented as a dynamical
process keeping non-linear coherent superposition of these fundamental quantum motions.

Keywords: Quantum theory, relativity, quantum relativity, Yang-Mills generalization.

1 Introduction

Quantum mechanics (QM) is not logically closed and cannot be such a theory [1, 2, 3]. Developments of
quantum field theory, theory of elementary particles (in the framework of the Standard Model), and recent
astronomical observation clearly tell that initial assumption about Minkowski spacetime structure in the
vicinity of “elementary” quantum particles was too simple. Probably, Einstein was correct and in this
matter: bodies don’t move in spacetime. If we apply this assumption to extended quantum particles like
electrons then it will be agreed with the experimental impossibility to find their finite “effective” radius:
one may say that this simply is zero since quantum particles move in a different space. Better to say that
the radius of elementary particle does not have an invariant sense (relative a choice of setup) since it is
state-dependent. If one assumes that the “real placement” of quantum particles is some Hilbert space
of the quantum states then the most general physically motivated invariant is the action and, therefore,
there is the problem of the separation of momentum from distance and energy from time interval and,
generally, physical dynamical variables from geometric parameters.

The state-dependent dynamics was already demonstrated due to essential achievements of QM itself in
the framework of so-called Complex Mechanics (CM) [4, 5]. In fact, relativistic QM needs a modification
as well as the Newton’s mechanics was generalized to relativistic kinematics and dynamics under the
influence of the Maxwell electrodynamics. Quantum geometry should be related to the state-dependent
invariants of elementary particles since the fundamental quantum degrees of freedom are invariant relative
changes of quantum setups. The infinitesimal version of such invariance for two slightly different setups
S1 and S2 will be realized for two slightly different values of the boson electromagnetic-like field. This
field taking the place of the functional argument of the total (Schrödinger) quantum state “cum location”
whereas the unlocated quantum state (UQS) correspond to QDF’s [8, 9, 7, 6, 2, 3].
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The gauge field is commonly treated as the mean of the momentum “improvements” in respect with
the gradient transformations due to introduction of the (non-affine) connection in the fiber bundle over
physical spacetime. Such construction looks very realistic as the direct generalization of the definitely
correct the Abelian gauge symmetry U(1) of the classical electrodynamics. Nevertheless, such generaliza-
tion leads to heavy artificial problems in QFT. Besides this, the separation between gauge fields and the
“fields of matter” thereby obtains the forever legitimation which cannot be accepted from the principle
point of view. The unification of the relativity and quantum principles is possible on the level of the
quantum degrees of freedom (QDF) that are common for all kinds of physical fields. Namely, more gen-
eral version of the gauge invariance relative the local projective coordinates transformations will be used.
The spacetime and its transformations will be built “from inside” due to separation from the isotropy
subgroup H = U(1)×U(N − 1) of G = SU(N) acting on the quantum state space of rays CP (N − 1) by
the diffeomorphic coset transformations G/H = SU(N)/S[U(1)×U(N−1)] = CP (N−1). This approach
means that the Yang-Mills arguments about the spacetime coordinate dependence of the gauge unitary
rotations should be reversed on the dependence of the spacetime structure on the gauge transformations
of the flexible quantum setup.

2 Quantum relativity

The principle of Quantum Relativity (QR) (I called this principle initially as ”super-relativity” [19, 20])
assumes the invariance of physical properties of “quantum particles”, i.e. their quantum numbers like
mass, spin, charge, etc., lurked behind two amplitudes |Ψ1 >, |Ψ2 > in two setups S1 and S2. The invariant
content of these properties will be discussed here under the infinitesimal variation of the “flexible quantum
setup” described by the amplitudes |Ψ(π, p, q) > due to a small variation of the boson electromagnetic-like
field Pα(p, q) serving as the coefficient functions of LDV’s Dα = Φiα

∂
∂πi + c.c. on the complex projective

Hilbert space CP (N − 1) of QDF’s [16]. I put here short explanations for the clarity.
The mathematical formulation of the QR principle is based on the similarity of any physical systems

(“setup”, if somebody wants) which are built on the “elementary” particles. This similarity is obvious
only on the level of pure quantum degrees of freedom of quantum particles. Therefore, all “external”
details of the “setup” should be discarded as non-essential and only the ratios of the components of the

“unitary spin” like (π1 = ψ2

ψ1 , ..., π
N−1 = ψN

ψ1 ) should be taken into account. These ratios are the local

projective coordinates in the complex projective Hilbert space CP (N − 1). One may think about these
coordinates as parameters of the “shape of quantum particle” in the spirit of the [12]. This “shape” is
unlocated quantum state (UQS) of the “unitary spin”. These coordinates are analog of an angle in the
trigonometry that is the invariant characteristic of all similar triangles. Thereby, the coefficients functions
Φiα of the generators of SU(N) defined as the Lie derivative of the ratios πi under the infinitesimal unitary
variation

Φiσ = lim
ε→0

ε−1
{

[exp(iελσ)]imψ
m

[exp(iελσ)]jmψm
− ψi

ψj

}
= lim
ε→0

ε−1{πi(ελσ)− πi}, (2.1)

[16] may be treated as the special functions of this “unitary spin” as the analog of the sin and cos
functions. The parameter ε has different physical sense depends on the choice of the SU(N) generator.

The operators Dα =
∑
i Φiα

∂
∂πi comprise the unholonomic basis - the “flexible quantum setup” (FQS)

whose “orientation” will be given by the gauge electromagnetic-like fields [16] that will be found. One
should take into account that dynamical spacetime (DST) must be introduce intrinsically only by the
means of the geometry of the CP (N − 1) and FQS (quantum geometry).

Such approach dictates the new formulation of the inertia principle [9, 7, 6] and a new expression for
the unified energy-momentum-potential of the massive particle like electron together with four-potential.
New equation cannot contain the mass as a free parameter but as consequence of the natural geometric
restriction. Physically this means that ordinary separation the mass from the acceleration is not allowed.
Acceleration is perfectly defined for a material point, angle velocity and kinetic momentum applicable for
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a classical solid body but in the case of “elementary particle” these notions are not so clear because they
are state-dependent and depend on an environment. How we should take into account this dependence?
The good allusion gives the gauge theory of the classical deformable body [12]. One should distinguish
the “total quantum state” (cum location) as an analog of the spatial coordinates of the system of material
points with their “orientation coordinates”, and the “unlocated quantum state” of the quantum vacuum
(QV) as an analog of the “unlocated shape coordinates”.

3 Quantum vacuum

The quantum vacuum (QV) being understood as the motion of the quantum degrees of freedom (QDF’s)
under the unitary transformations comprises the manifold of the unlocated quantum states (UQS’s).
These “elementary” motions (say, spin/charge currents in CP (3) discussed below) replace “elementary
particles” of the Standard Model. Its localizable in DST excitations then realized as known “elemen-
tary particles”. The intrinsic “unitary field” acting without super-selection rule continuously splits the
multiplete of the spin, charge, hypercharge, etc., into zones. QDF’s acts as unified “chiral” field whose
dynamics will be discussed properly.

The fundamental quantum degrees of freedom like spin, charge, hyper-charges, etc., are common for
gauge and matter fields. These fundamental quantum motions take the place in the manifold of the
UQS’s which described by the rays of states |ψ >∈ CN of the “unitary spin” S : 2S + 1 = N . Physics
requires to use in this background the local coordinates of UQS’s and the state-dependent generators of
the unitary group G = SU(N) [19, 20, 16]. This nonlinear representation of the SU(N) group on the
coset manifold G/H = SU(N)/S[U(1)× U(N − 1)] = CP (N − 1) is primary and this is independent on
the spacetime manifold. The last one should be introduced in a special section of the fiber bundle over
CP (N − 1) [19, 20, 10, 8, 9, 7, 6]. The breakdown of the global SU(N) symmetry down to the isotropy
subgroup H|ψ> = U(1) × U(N − 1) of the some quantum state |ψ > has natural geometric counterpart
in CP (N − 1).

The coset manifold G/H|ψ> = SU(N)/S[U(1) × U(N − 1)] = CP (N − 1) contains locally unitary
transformations deforming “initial” quantum state |ψ >. This means that CP (N−1) contains physically
distinguishable, “deformed” quantum states. Thereby the unitary transformations from G = SU(N) of
the basis in the Hilbert space may be identified with the unitary state-dependent gauge field U(|ψ >)
that may be represented by the N2− 1 unitary generators as functions of the local projective coordinates
(π1, ..., πN−1) [9]. This manifold resembles the “shape space” of the deformable body [12, 9, 7, 6]. But
now it is the manifold of the deformed physically distinguishable UQS’s, i.e. the geometric, invariant
counterpart of the quantum interaction or self-interaction. Then the classical acceleration is merely an
“external” consequence of this complicated quantum dynamics in the some section of the frame fiber
bundle over CP (N − 1).

Now I will introduce the necessary construction of the internal dynamics of QDF’s in terms of the local
coordinates πk of UQS’s. Thereby they will live in the geometry of CP (N − 1) with the Fubini-Study
metric tensor

Gik∗ = (1/κ)[(1 +
∑
|πs|2)δik − πi

∗
πk](1 +

∑
|πs|2)−2, (3.1)

where κ is holomorphic sectional curvature of the CP (N −1) [15]. The contra-variant metric tensor field

Gik
∗

= κ(δik + πiπk∗)(1 +
∑
|πs|2), (3.2)

is inverse to the Gik∗ thereby
Gik∗G

i∗q = δqk. (3.3)

The affine connection agrees with the Fubini-Study metric is as follows

Γimn =
1

2
Gip

∗
(
∂Gmp∗

∂πn
+
∂Gp∗n
∂πm

) = −δ
i
mπ

n∗
+ δinπ

m∗

1 +
∑
|πs|2

. (3.4)
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The curvature tensor of Riemann in holonomic basis is proportional to the constant section curvature
since

Riklm∗ = κ2(δilGkm∗ + δikGlm∗) (3.5)

[15].

4 The flexible quantum reference frames

The flexible quantum setup inherently connected with local projective coordinates will be built from
so-called local dynamical variables (LDV’s) [16]. These LDV’s realize a non-linear representation of the
unitary global SU(N) group in the Hilbert state space CN . Namely, N2 − 1 generators of G = SU(N)
may be divided in accordance with the Cartan decomposition: [B,B] ∈ H, [B,H] ∈ B, [B,B] ∈ H. The
(N − 1)2 generators

Φih
∂

∂πi
+ c.c. ∈ H, 1 ≤ h ≤ (N − 1)2 (4.1)

of the isotropy group H = U(1)× U(N − 1) of the ray (Cartan sub-algebra) and 2(N − 1) generators

Φib
∂

∂πi
+ c.c. ∈ B, 1 ≤ b ≤ 2(N − 1) (4.2)

are the coset G/H = SU(N)/S[U(1)×U(N − 1)] generators realizing the breakdown of the G = SU(N)
symmetry. Notice, the partial derivatives are defined here as usual: ∂

∂πi = 1
2 ( ∂
∂<πi − i

∂
∂=πi ) and ∂

∂π∗i =
1
2 ( ∂
∂<πi + i ∂

∂=πi ).
Here Φiσ, 1 ≤ σ ≤ N2 − 1 are the coefficient functions of the generators of the non-linear SU(N)

realization. They give the infinitesimal shift of the i-component of the generalized coherent state driven
by the σ-component of the unitary field exp(iελσ) rotating by the generators of AlgSU(N) and they are
defined as follows:

Φiσ = lim
ε→0

ε−1
{

[exp(iελσ)]imψ
m

[exp(iελσ)]jmψm
− ψi

ψj

}
= lim
ε→0

ε−1{πi(ελσ)− πi}, (4.3)

[16].
Quantum reference frames (QRF) will be used as an analog of the classical deformable solid body. One

needs the QRF as an internal quantum analog of the “setup” since the spacetime distance should be re-
placed by the distance between UQS’s (Fubini-Study metric) and the QRF “orientation” will given by the
functional coefficients (affine gauge fields of the energy-momentum and electromagnetic-like potentials).

The main idea of the affine quantum gauge theory is as follows: the curvature tensor of the group
sub-manifold CP (N − 1) is the non-singular tensorial source of the electromagnetic, etc. interactions.
Thereby, the curvature of the SU(N) is the true reason of such anholonomy as the geometric phase. The
physics is free from singularities. Degeneracy and singularity are merely the mathematical properties
of the mapping and they are false reasons of the fictional “electric” and “magnetic” fields. It should be
noted that so-called “covariant derivative” in spacetime including Abelian or non-Abelian gauge potential
will be replaced by the true covariant derivative in the affine connection agrees with Fubini-Study metric
in CP (N − 1) [7, 6].

More technically one may note that the Riemann tensor of the curvature in CP (N − 1) guarantees
the most general gauge invariance due to its pure locality of the action: quantum physics is the same
anywhere. Locality of the vector field of LDV’s instead of the bi-locality of the probabilistic approach
rids us from the measurement dependence from pre-history and post-history [10] and from the misty
assumption of Multiverse. The transversal and longitudinal gauge fields of Jacobi clearly related to the
curvature tensor in CP (N − 1) [7, 6].
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The operator of the curvature tensor in the two-dimension direction (α, β) in the adjoint representation
of SU(N) acting on the vector field Xn(π, π∗) is as follows

R(Dα, Dβ)Xk = {[∇Dα ,∇Dβ ]−∇[Dα,Dβ ]}X
k

= {(DαΦiβ −DβΦiα)Γkin + (ΦiαΦs
∗

β − ΦiβΦs
∗

α )Rkins∗

+Φmα ΓkmpΦ
i
βΓpin − ΦiβΓkipΦ

m
α Γpmn − C

γ
αβΦiγΓkin}Xn. (4.4)

This operator was initially calculated in [10] without clear physical interpretation. I show that this
operator is the tensorial charge of the multipole of the unitary field. Indeed, it is poli-linear operator
in fields and this gives the Coriolis tensor describing vortexes of UQS’s in CP (N − 1). It is important
that at the origin (π1 = ... = πN−1 = 0) all terms will be equal zero, besides

R(Dα, Dβ)(0)Xk = (ΦiαΦs
∗

β − ΦiβΦs
∗

α )Rkins∗(0)Xn

= κ(ΦiαΦs
∗

β − ΦiβΦs
∗

α )(δknδis∗ + δki δns∗)Xn

= κ(ΦkαΦn
∗

β − ΦkβΦn
∗

α )Xn (4.5)

where α, β = b in horizontal direction, since all vertical components Φih(0) = 0.
Now it may be assumed that the unification of the fundamental interactions is possible in new manner:

the different components of the single universal tensorial charge will be correspond to different kinds of
interactions.

One may assume that that the curvature tensor

R(Dµ, Dν)Xk = {[∇Dµ ,∇Dν ]−∇[Dµ,Dν ]}X
k

= {(DµΦiν −DνΦiµ)Γkin + (ΦiµΦs
∗

ν − ΦiνΦs
∗

µ )Rkins∗

+Φmµ ΓkmpΦ
i
νΓpin − ΦiνΓkipΦ

m
µ Γpmn − C̃λµνΦiλΓkin}Xn. (4.6)

being defined by the Dirac’s vector fields in the two dimension direction (µ, ν) where 0 ≤ µ, ν ≤ 3,
1 ≤ λ ≤ 15 and C̃λµν is linear combination of the structure constants, will be related to the spacetime
components of electromagnetic-like fields. Calculation of this tensor gives the result R(D1, D2)(0)X3 =
(1− i)X3 of the complex rotation at the origin of the local map. This provides the mentioned above the
“inverse representation” of the CP (3) infinitesimal motions by the infinitesimal boost and rotation due
to the anholonomy generated by the curvature of the CP (3).

5 The total quantum state of the extended quantum electron
(the quantum state cum location)

The imperturbable confidence in the collision method of “palpation” of the deep zone of “elementary”
particles is close to the end because the physics-imposed limit of this method [13]. In fact this method
of investigation is not applicable to the root problems of the self-interaction and stability of elementary
particles since the typical energy of collisions is much higher than rest masses. Beside this, the Higgs-
mechanism of the mass generation seems to me very questionable [14]. It is obvious that behind the
success of the QFT and SM lies the shadow of the divergences and anomalies. Say, the oldest problem of
the accelerated charged particle is one of the acute challenges for QFT, high energy physics, and for the
theory of elementary particles. There is an interesting attempt to solve this problem in the spirit of my
concept of the deformation of UQS [11]. Namely, the “backreaction of space” clearly close to the DST
concept [8, 9, 7, 6]. Physically this concept is based on the absence of the solid scales of spatial distance
and time interval at the subatomic area, therefore one needs some flexible (state-dependent) quantum
setup and its appropriate mathematical description.

Attempt to build the QFT over UQS space CP (N − 1) ,i.e. the field theory where the spacetime
separation between bodies (particles) was replaced by the distance between UQS’s leads to the deep
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problem of the separation of the spacetime and energy-momentum variable since the invariant sense has
only action interval. Thereby the notion of the “acceleration” as a reaction of the UQS on a deformation
should be clarified.

Intrinsic introduction of the DST requires attachment of the local Lorentz reference frame to some
UQS |ψ > in CP (N − 1), not to a body. It is assumed that to infinitesimally close quantum states
connected by the H|ψ> = U(1)×U(N − 1) correspond two infinitesimally close Lorentz reference frames.
That is only infinitesimal state-dependent Lorentz transformations have a sense. These transformation
should be separated from the gauge transformations given by the Jacobi vector field corresponding the
geodesic rotations (deformations).

We deal with following problem. Let assume that there is a single quantum electron of Dirac. The
problem of the self-interaction, i.e. “off-shell” zone of the dispersion law is in the focus of our attention.
This may be presumably formulated as a “diffusion” of the mass-shell and short range deformation of
the light cone (the long range deformation was studied initially by Einstein in the framework of general
relativity) treated as the perturbation of the “square root of the cosmic potential” c2 whose value defined
in the Dirac theory by the eigenvalues of the unitary matrices dx

dt = [H,x] = cαx. In order to do this one
needs replace the fifteen SU(4) Dirac matrices by the fifteen state-dependent vector fields which evidently
show the deviation from the relativistic mass-shell relation.

Let me introduce new definition of the local DST as the special linear combinations of the Lie deriva-
tives of the local projective coordinates (π1, π2, π3) in directions given by the Dirac matrices in the Weyl
representation. This construction is most transparent for the fundamental fermion like the electron. More
general case of higher dimension should be discussed elsewhere. For this aim I will use the following set
of the Dirac matrices

γt =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ1 = −iσ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

γ2 = −iσ2 =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , γ3 = −iσ3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 . (5.1)

Then the corresponding coefficients of the SU(4) generators will be calculated according to the equation

Φiµ = lim
ε→0

ε−1
{

[exp(iεγµ)]imψ
m

[exp(iεγµ)]jmψm
− ψi

ψj

}
= lim
ε→0

ε−1{πi(εγµ)− πi}, (5.2)

[9] that gives

Φ1
0(γt) = i(π3 − π1π2), Φ2

0(γt) = i(1− (π2)2), Φ3
0(γt) = i(π1 − π2π3);

Φ1
1(γ1) = −i(π2 − π1π3), Φ2

1(γ1) = −i(−π1 − π2π3), Φ3
1(γ1) = −i(−1− (π3)2);

Φ1
2(γ2) = −i(i(π2 + π1π3)), Φ2

2(γ2) = −i(i(π1 + π2π3)), Φ3
2(γ2) = −i(i(−1 + (π3)2));

Φ1
3(γ3) = −i(−π3 − π1π2), Φ2

3(γ3) = −i(−1− (π2)2),Φ3
3(γ3) = −i(π1 − π2π3). (5.3)

Such choice of the vector fields lead to the “imaginary” basic in local DST which conserves 4D Eucledian
geometry along geodesic in CP (3) for real four vectors (p0, p1, p2, p3) and correspondingly 4D pseudo-
Eucledian geometry for four vectors (ip0, p1, p2, p3).

The complex DST “tangent vector” in µ direction defines the four complex shifts in DST that will be
introduced as follows:

∂

∂xµ
= Φiµ

∂

∂πi
(5.4)
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for 0 ≤ µ ≤ 3. In fact one may define the similar “tangent vector” in α direction

∂

∂xα
= Φiα

∂

∂πi
(5.5)

for 1 ≤ α ≤ 15 in the space R15 of the adjoint representation of the SU(4). Thereby, the DST cannot
be treated as the “space of events”. It is rather 8-dimension subspace of the adjoint representation of the
SU(4). The quantum operator of the energy-momentum will be expressed in ordinary manner

P µ = i~
∂

∂xµ
= i~Φiµ

∂

∂πi
. (5.6)

The eight λ-matrices (λ4, λ11), (λ2, λ14), (λ1, λ13), (λ5, λ12) of the AlgSU(4) were involved in the def-
inition of the shift vector fields. There are additional seven λ-matrices (λ6, λ7), (λ9, λ10), (λ3), (λ8), (λ15)
involved in the definition of the boosts, rotations and gauge parametrization that all together with the
eight λ-matrices comprise of the full set of the fifteenth matrices of the AlgSU(4).

One may see that such definition of the “spacetime derivative” in xµ direction provides the ordinary
properties of the derivative in spacetime, namely: the linearity for the linear superposition

∂[af(π) + bg(π)]

∂xµ
= Φiµ

∂[af(π) + bg(π)]

∂πi
= a

∂f(π)

∂xµ
+ b

∂g(π)

∂xµ
, (5.7)

symmetry for the multiplication of two functions

∂[f(π)g(π)]

∂xµ
= Φiµ

∂[f(π)g(π)]

∂πi
= g(π)

∂f(π)

∂xµ
+ f(π)

∂g(π)

∂xµ
, (5.8)

and the chain rule for superposition of two functions

∂f [g(π)]

∂xµ
= Φiµ

∂f [g(π)]

∂πi
= Φiµ

∂f

∂g

∂g(π)

∂πi
=
∂f

∂g

∂g(π)

∂xµ
. (5.9)

Notice, that DST shift is “absolute” in the flexible reference frame since generated by physically essential
(invariant) deformations of UQS by (π1, π2, π3) variations.

The metric of the DST is state-dependent that may be demonstrated directly by the calculations of

the square of the speed velocity dS2

dτ2 of the geodesic distance in CP (3). Let me assume that one has
the 4D energy-momentum constant components Pµ = const taking the place of the “target parameters”.
Then along the geodesic given by the equation

π1 =
f1

g
tan gτ, π2 =

f2

g
tan gτ, π3 =

f3

g
tan gτ, (5.10)

in the complex direction (f1 = c1 + is1, f
2 = c2 + is2, f

3 = c3 + is3) where g =
√
|f1|2 + |f2|2 + |f3|2

one has

dS2

dτ2
= Gik∗

dπi

dτ

dπk
∗

dτ
= Gik∗P

µΦiµP
ν∗

Φk
∗

ν + ∆2

= gµν∗PµP ν
∗

+ ∆2 = −(P 0)2 + (P 1)2 + (P 2)2 + (P 3)2 + ∆2, (5.11)

where ∆2 = Gik∗P
aΦiaP

b∗Φk
∗

b = ηab∗P
aP b

∗
under the initial conditions (f1 = 1 + i, f2 = 0, f3 = 0). If

one takes the different initial conditions for the rotated geodesic (f1 = 0, f2 = 1 + i, f3 = 0). Then one
has

dS2

dτ2
= G̃ik∗

dπ̃i

dτ

dπ̃k
∗

dτ
= G̃ik∗P

µΦ̃iµP
ν∗

Φ̃k
∗

ν + ∆̃2
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= g̃µν∗PµP ν
∗

+ ∆̃2 = −(P 0)2 + (P 1)2 + (P 2)2 + (P 3)2

+2[(P 0)2 + (P 3)2 − 2iP 0P 3](cos gτ)2(sin gτ)2 + ∆̃2. (5.12)

“Diffusion” of the mass-shell is evident here but the scale of such diffusion is unknown since the value of
the sectional curvature κ included in Gik∗ is a free parameter up to now. The key idea of the mass-shell

diffusion closely connected with the non-separability of the inertial mass m from the acceleration d2x
dt2 in

the Newton’s expression for the force dp
dt = md2x

dt2 = F . One needs the quantum expression for the velocity
of the energy-momentum variation. The simplest non-trivial expression of the quantum momentum in

CP (N − 1) gives P i = dπi

dτ [9]. It was assumed that this momentum in CP (N − 1) may be expressed

as the contraction of the SU(N) generator Φiµ
∂
∂πi + c.c. in the projective representation and the energy-

momentum Pµ(x) in the local DST that should be found due to the new formulation of the quantum
inertia principle [8, 9, 7, 6]. One will see below that the speed of the momentum variation will be treat now
as field equation with localizable solution instead of the equation for trajectory of the point-wise particle.

It is not the problem of propagation of the EM field an its value in the remote area in a remote
reference frame. The problem is to find self-consistent self-field (I called this field as the “field-shell”) in the
“proper” reference frame intrinsically defined by the pure quantum means. There is no initially prescribed
spacetime coordinates at all. One has initially pure UQS with three complex coordinates (π1, π2, π3).
There are fifteen vector fields of the adjoint representation of the SU(4) generators concerning dipole,
quadruple and octuple moments of in the “unitary field” of the coherent spin/charge degrees of freedom.

The numbers xµ play the role of coordinates of the placeholder in the complex gradient of the action.
In fact these coordinates should be initially separated from the full set of the variables Pα(q, p) of the
total quantum state denoted by the |Ψ(π, q, p) >. The Hamiltonian vector field

H(q, p, π) =

N2−1∑
α=1

N∑
i=1

Pα(q, p)Φiα
∂

∂πi
+ c.c. (5.13)

with

dπi

dτ
=
c

~

N2−1∑
α=1

Pα(q, p)Φiα (5.14)

lead to the “Schrödinger equation”

i~
|Ψ(π, q, p) >

dτ
= cPαΦiα

∂|Ψ(π, q, p) >

∂πi
+ c.c. = C|Ψ(π, q, p) > . (5.15)

Notice, the “setup” will be specified by the action that should be found due to solution of the Schrödinger-
like field equations for the “total wave function cum location” |Ψ(πi, q, p) > of self-interacting quantum
electron moving in DST like a material point with the rest dynamical mass m(π, q, p) and continuous
spin/charge variable (π1, π2, π3). The coordinates (p, q) correspond to the shifts, rotations, boosts and
gauge parameters of the local DST.

This means that the first equality in (5.15) is the tautology if

dπi

dτ
=
c

~
PαΦiα;

dπi∗

dτ
=
c

~
Pα∗Φi∗α , (5.16)

and the last one is the equation for the eigen-state problem. The most primitive motion of the QDF’s
is the motion along geodesic in CP (N − 1) thereby Pα taking the place of the generalized momentum-
potentials (inertial term mc plus electromagnetic-like self-potentials), whereas their variations related to
the Jacobi vector field describing electromagnetic-like fields.

The covariant derivative in the sense of the Fubini-Study metric of the right part should be zero

(PαΦiα);k =
∂Pα

∂πk
Φiα + Pα(

∂Φiα
∂πk

+ ΓiklΦ
l
α) = 0. (5.17)
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Let me take initially only shifts in DST without rotations and boosts. Then in the equation (5.17) one
will have the summation only of four terms

(PµΦiµ);k =
∂Pµ

∂πk
Φiµ + Pµ(

∂Φiµ
∂πk

+ ΓiklΦ
l
µ) = 0. (5.18)

According our definition of the DST derivative for k = i one may rewrite this as follows

∂Pµ

∂xµ
+ Pµ(

∂Φiµ
∂πi

+ ΓiilΦ
l
µ) = 0. (5.19)

Thus one has the field equation as the gauge restriction. For the parallel transported Φiµ this coincides
with the ordinary Lorentz gauge. This linear PDE has the traveling wave solutions (TWS), say, in the
form Pµ = Kµ +AµF (Φiµ) tanh(C0 +C1x+C2y+C3z +C4t) +BµG(Φiµ) tanh(C0 +C1x+C2y+C3z +

C4t)
2 +Hµ(Φiµ). These solutions realize the state-dependent gauge conditions on the energy-momentum

(potentials) and show that in such definition of the DST coordinates xµ the complicated highly nonlinear
field equations (5.18) transform into the linear PDE’s (5.19) with localizable solutions. Thereby, the “wave
front” of the action is given by the Schrödinger-like field equation (5.15) and the “rays” of localizable
TWS taking the place of particles trajectories.

6 Discussion

Quantum Relativity is a new kind of the gauge theory: instead of the adaptation of the unitary transfor-
mations to spacetime location one needs to accommodate dynamical spacetime structure to the unitary
field acting in the space of the pure quantum degrees of freedom. There are a lot of open questions in such
approach. One of the fundamental problem is how to glue local DST’s at least in the macroscopic “piece”
of the Riemannian 4D spacetime. The second fundamental problem is the connection between tensorial
charge, holomorphic sectional curvature and the unification of the interactions of different unitary fields.
Some problems concerning PDE’s look as merely technical but their solutions requires essential physical
reinterpretation that will be discussed elsewhere.
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