On the Langer Transformation

J. Morales¹, G. Ovando¹ & J. López-Bonilla²

¹CBI-Área de Física Atómica Molecular Aplicada, UAM-Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas CP 02200, CDMX, México
²ESIME-Zacatenco, Instituto Politécnico Nacional, México

Abstract
We exhibit a simple procedure to deduce the Langer and Bateman et al-Mavromatis transformations to map the Coulomb problem into the Morse and simple harmonic oscillators, respectively.

Keywords: Langer mapping, Morse potential, Coulomb interaction.

1. Introduction

The Schrödinger equation for the Coulomb potential is given by [1-3]:

\[
\frac{1}{2} \left[\frac{d^2 R}{dr^2} - \frac{l(l+1)}{r^2} R \right] + \frac{\alpha}{r} R = \beta R, \quad l = 0, \ldots, n - 1,
\]

where:

\[
\alpha = \frac{Z q^2}{4\pi \varepsilon_0}, \quad \beta = \frac{Z^2 q^4}{32 \pi^2 \varepsilon_0^2 n^2}, \quad n \geq 1.
\]

Here we exhibit how changes (1) under the mapping:

\[
R = A g(u) \psi(u), \quad r = B f(u), \quad A, B \text{ are constants},
\]

that is, the independent variable \(r \) and the Coulomb radial wave function \(R \) are transformed trying to obtain a new Schrödinger-like equation for \(\psi \) in the variable \(u \). Hence the aim is find \(f \) and \(g \) implying another potential of physical interest associated to \(\psi \).

In Sec. 2 we show that our approach gives, in natural manner, the Langer transformation [4] which allows to relate [5] the Coulomb potential with the Morse interaction [1, 2, 6, 7] for the vibrational motion of a diatomic molecule. Besides, it is also possible to deduce the Bateman et al [8]-Mavromatis [9] mapping which has been investigated in the context of connecting (1) and oscillator systems.

* Correspondence: J. López-Bonilla, ESIME-Zacatenco-IPN, Edif. 5, Col. Lindavista CP 07738, CDMX, México
E-mail: jlopezb@ipn.mx
2. Mappings between Schrödinger equations

We apply (3) into (1) to obtain:

$$\frac{1}{2} \left[\psi'' + \left(\frac{2 \frac{g''}{g} - \frac{f''}{f} \right) \psi' + \left(\frac{g''}{g} - \frac{f''}{f} \right) - \frac{l(l + 1)}{f^2} \right] \psi + \alpha B \frac{\alpha^2}{f} \psi = \beta B^2 f'^2 \psi, \quad (4)$$

such that $\psi' = \frac{d\psi}{du}$; then (4) may be a Schrödinger-like equation if into it we eliminate the coefficient of ψ', thus:

$$\frac{f''}{f'} = 2 \frac{g'}{g} \quad \therefore \quad f' = c \ g^2, \quad c = \text{constant}, \quad (5)$$

and (4) acquires the structure:

$$\frac{1}{2} \left[\psi'' + \left(\frac{g''}{g} - 2 \frac{g'^2}{g^2} - c^2 \frac{\frac{l(l + 1)}{g^2}}{f^2} \right) \psi \right] + c^2 \alpha B \frac{\alpha^4}{f} \psi = c^2 \beta B^2 g^4 \psi. \quad (6)$$

Now (6) offers several options, for example, into it we can make the coefficient of $-c^2 l(l + 1)\psi$ equals to one, that is:

$$f = g^2, \quad (7)$$

then (5) implies the Langer transformation [4]:

$$f = e^{cu}, \quad g = e^{\frac{c}{2}u}, \quad (8)$$

and (6) takes the form:

$$-\frac{1}{2} \psi'' + \frac{\alpha B c^2}{2} \left(\frac{2 \beta B}{\alpha} e^{2cu} - 2 e^{cu} \right) \psi = -\frac{c^2}{2} \frac{1}{(l + \frac{1}{2})^2} \psi, \quad (9)$$

which is very attractive because permits to introduce the Morse potential [1, 2, 6, 7] if we select the values $c = -\alpha$ and $\frac{2\beta B}{\alpha} = 1$ with the notation $D = \frac{abc^2}{2}$, then from (2):

$$B = \frac{4\pi e_0}{2q^2} \ n^2, \quad D = \frac{a^2}{2} \ n^2, \quad a > 0, \quad (10)$$

therefore (9) becomes the vibrational Schrödinger equation for the Morse interaction:

$$-\frac{1}{2} \psi'' + D(e^{-2au} - 2 e^{-au}) \psi = E \psi, \quad E = -\frac{a^2}{2} \frac{1}{(l + \frac{1}{2})^2}, \quad (11)$$
where a is a range parameter (associated with the width of the potential well) and D is the energy of dissociation (well-depth) [10, 11].

Finally, from (3), (8) and (10) we obtain [5]:

$$ R = A e^{-\frac{a}{2}u} \psi(u), \quad r = \frac{4\pi\varepsilon_0}{z_q^2} n^2 e^{-au}, \quad (12) $$

where, by normalization, we can employ the value $A^2 = \frac{z_q^2}{4\pi\varepsilon_0 n(l+\frac{1}{2})}$. Now we back to the equation (6) seeking an alternative to (7), for example, to make the coefficient of $c^2\alpha\beta\psi$ equals to one, that is:

$$ f = g^4, \quad (13) $$

then (5) gives the Bateman et al [8]-Mavromatis [9] transformation:

$$ f = \frac{c^2}{4} u^2, \quad g = \sqrt[4]{\frac{c}{2}u}, \quad (14) $$

and (6) adopts the form:

$$ -\frac{1}{2} \left[\psi'' - \frac{(4l+1)(4l+3)}{4u^2} \psi \right] + \frac{c^4\beta B^2}{4} u^2 \psi = c^2\alpha B \psi, \quad (15) $$

being achieved the mapping of the hydrogen-like atom into the 3-dimensional simple harmonic oscillator with certain parameters.

It is clear that in (6) we can try different connections between f and g, respecting the constraint (5), to deduce Schrödinger-like equations associated to several potentials.

References

6. P. Morse, Diatomic molecule according to wave mechanics. Vibrational levels, Phys. Rev. 34, No. 7 (1929) 57-64