Plausible Further Connection Between Photon Mass and Variation of the Fine Structure Constant

Golden G. Nyambuya
National University of Science & Technology, Faculty of Applied Sciences – School of Applied Physics, P. O. Box 939, Ascot, Bulawayo, Republic of Zimbabwe.

Abstract

In this paper, we explore the plausible further connection between the mass of photon and the observed cosmic variation of the Fine Structure Constant (FSC). In an earlier paper, we argued that the observed variation in the FSC may have something to do with the variation of the permittivity of free space ε_0. We reach the same conclusion from a different angle.

Keywords: Photon mass, Fine Structure Constant, variation, connection

1 Introduction

Further connection is here established between the mass of the Photon and the observed cosmic variation of the Fine Structure Constant (FSC) (see e.g., King et al. 2012, Murphy et al. 2009, 2003, 2001, Webb et al. 2011, 2001, 1999). In the reading Nyambuya (2014), a Gauge Invariant, Long Ranged and Long Lived Massive Photon Model [hereafter Massive Photon Model (MP-model)] was put forward while in the reading Nyambuya (2016), the observed variation in the FSC was partially connected to the MP-model, where it was argued that the observed variation in the FSC may have something to do with the variation of the permittivity of free space ε_0.

2 Massive Photon Model

In the MP-model of Nyambuya (2016), it is argued that usual Proca-Maxwell massive Photon electrodynamic theory be modified to include a St"uckelberg (1938) scalar field Ψ, so that this modified theory of described by the equation:

$$\partial^\mu F_{\mu\nu} - \kappa^2 A_\mu + \kappa^2 \partial_\nu \Psi = \mu_0 J_\nu.$$ \hspace{1cm} (2.1)

where, as usual:

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu.$$ \hspace{1cm} (2.2)

is the Maxwellian Electrodynamic (MED) field tensor, A_μ is the electrodynamic four vector potential, ∂_μ are the four-partial derivatives and J_μ is four electrodynamic current density, κ is the Photon-mass term and μ_0 is the permeability of free space.

By substituting into equation (2.1) the decomposed MED field tensor $F_{\mu\nu}$ as it is given in equation (2.2), equation (2.1) can be written equivalently as:

$$\Box A_\nu - \partial_\nu (\partial^\mu A_\mu) - \kappa^2 A_\nu + \kappa \partial_\nu \Psi = J_\nu.$$ \hspace{1cm} (2.3)

The novelty of the MP-model of Nyambuya (2016) lays in two basics assumptions, i.e.:

Correspondence: E-mail: physicist.ggn@gmail.com
1. The first assumption is to do away with the [Lorenz 1867] gauge condition, that is the condition:

$$\partial_{\mu} A_{\mu} = 0,$$

(2.4)

so that it is no longer holds true wherein this condition is now modified so that it becomes:

$$\partial_{\mu} A_{\mu} = \left(\frac{g_s^2 \kappa}{1 + g_s^2} \right) \Psi,$$

(2.5)

where \((g_s^2 \neq 0)\) is a dimensionless constant — this constant, \(g_s\), is expected to be a universal fundamental natural constant just as is the case with Planck’s constant \(\hbar\), Newton’s universal constant of gravitation \(G\) etc. If this constant \((g_s^2)\) is equal to zero, then we are back to the usual Lorenz [Lorenz 1867] gauge.

2. The second assumption is to introduce a so-called [Special Gauge Condition (SGC)], and this condition requires that the terms in the under-brace in equation (2.3), be set to zero, i.e.:

$$\partial_{\nu} (\partial_{\alpha} A_{\alpha}) + \kappa^2 A_{\nu} - \kappa \partial_{\nu} \Psi \equiv 0.$$

(2.6)

It is this SGC that allows one to attain the desired theory of massive Photons that are long ranged and long lived. From (2.6), it follows that taking the four divergence of this equation, one will have:

$$\Box (\partial_{\mu} A_{\mu}) + \kappa^2 (\partial_{\mu} A_{\mu}) - \kappa \Box \Psi \equiv 0,$$

(2.7)

and further, given (2.5), it follows that the equation resulting from equation (2.7) above, is an equation for the field \(\Psi\), i.e.:

$$\Box \Psi = g_s^2 \kappa^2 \Psi,$$

(2.8)

which is the Klein-Gordon equation [Klein 1926] for the St"uckelburg scalar.

Now, when all has been said and done, the resulting equation after the introduction of the SGC, is:

$$\Box A_{\nu} = \mu_0 J_{\nu}.$$

(2.9)

Equation (2.9) is the same as that for a massless Photons in MED theory [Maxwell 1873]. In a nutshell, all the above is the conceptual constitution of the MP-model of [Nyambuya 2016]. Amongst others, what this model is telling us, is that, the traditional method(s) used to investigate the mass of the Photon by trying to detect this mass via the Proca-mass-term \(\kappa^2 A_{\mu}\) (see e.g. [Hojman & Koch 2013], [Tu et al. 2005], [Luo et al. 2003], [Lakes 1998], [Chernikov et al. 1992], [Goldhaber & Nieto 2010], [Burman 1972], [1973], [Goldhaber & Nieto 1971], [Williams et al. 1971]), this (these) will yield no favourable result on the frontiers of a non-zero mass term because this mass term for the Photon as this terms is concealed deep in the SGC. Other new, ingenious and novel methods to detect the mass of the Photon will, thus have to be devised.

3 Photon Mass and Variable FSC Connection

Now, in-order to make further the case of the secular spatial and temporal variability of \(\mu_0\) and \(\varepsilon_0\), we have to set our eyes onto equation (2.9), first by taking the four divergence of this equation, where in one obtains:

$$\Box (\partial_{\alpha} A_{\alpha}) = \partial_{\alpha} (\mu_0 J_{\alpha}),$$

(3.1)

Further, using equation (2.5) to substitute for \(\partial_{\alpha} A_{\alpha}\) and expanding the differentials on the right handside of this equation (3.1), we will have:

$$\left(\frac{g_s^2 \kappa}{1 + g_s^2} \right) \Box \Psi = \mu_0 \partial_{\alpha} J_{\alpha} + J_{\alpha} \partial_{\alpha} \mu_0.$$

(3.2)

The strict and sacrosanct law of conservation of electric current and charge requires that \((\partial_{\alpha} J_{\alpha} \equiv 0)\), hence equation (3.2) reduces to:
\[\Box \Psi = \left(1 + \frac{g_s^2}{\kappa^2} \right) J_\alpha \partial^\alpha \mu_0. \] (3.3)

From (3.3), it is clear that we cannot have (\(\partial^\alpha \mu_0 = 0 \)), since:

\[\Box \Psi = \left(1 + \frac{g_s^2}{\kappa^2} \right) J_\alpha \partial^\alpha \mu_0 = \frac{g_s^2}{\kappa^2} \Psi \neq 0, \] (3.4)

and from this, one obtains:

\[J_\alpha \partial^\alpha \mu_0 = \left(\frac{g_s^4 \kappa^3}{1 + g_s^2} \right) \Psi \neq 0. \] (3.5)

Clearly, we must have:

\[\mu_0 = \mu_0(\mathbf{r}, t). \] (3.6)

That is, the permeability of free space must vary spatially and temporally not on local but cosmological scales. Furthermore, since the speed of Light in vacuo, \(c \), is related to the \(\mu_0 \) and \(\varepsilon_0 \) by the equation:

\[c^2 = \frac{1}{\mu_0 \varepsilon_0}, \] (3.7)

and with this as given and assuming this speed, \(c \), to be a universal and fundamental natural constant throughout the Universe at all times, it follows that:

\[\frac{\Delta \mu_0}{\mu_0} = -\frac{\Delta \varepsilon_0}{\varepsilon_0} = \frac{\Delta \alpha_0}{\alpha_0}. \] (3.8)

4 Discussion

We have shown that the MP-model of Nyambuya (2016) requires that evidence for a massive Photon be engrained deep in the secular interstices of the cosmos in the forms of a spatial and temporal variation of two fundamental natural constants \(\mu_0 \) and \(\varepsilon_0 \), hence the FSC (\(\alpha_0 = e^2/4\pi\varepsilon_0\hbar c \)). The variation of the FSC has been observed and this point to the variation of one or more of the four (\(e, \varepsilon_0, \hbar, c \)) variables that make up this parameter.

Received December 30, 2017; Accepted February 19, 2018

References

