Exploration

E8 Physics from $\mathrm{Cl}(8)$ via Elementary Cellular Automata Bits

John C. Gonsowski*

Abstract

In this article, I describe E8 Physics from $\mathrm{Cl}(8)$ via pairing elementary cellular automata bits. Smith relates the 256 dimensions of the $\mathrm{Cl}(8)$ Clifford Algebra to the 256 rules of Elementary Cellular Automata. The graded dimensions of $\mathrm{Cl}(8)$ correspond to graded dimensions of the E 8 Lie Algebra used in Smith's physics model. Six Cellular Automata (CA) rules with four one-bits are related to Smith's 8-dim Primitive Idempotent bookended by the single rule with no one-bits and the single rule with all eight bits as ones. The 64 other four one-bit rules are related to E8's 64 -dim vector representation used by Smith for a spacetime 8 -dim position by 8 -dim momentum. The two 28-dim D4 subalgebras of E8 are used for bosons and their ghosts and relate to the CA rules with two one-bits and six one-bits. Paired up CA bits are related to the Cartan subalgebras of these D4s. The two remaining 64-dim spinor representations for E8 are used for eight component fermions/antifermions and relate to the CA rules with one, three, five and seven onebits.

Keywords: E8 physics, Clifford algebra, Lie algebra, cellular automata, bit, subalgebra.

1. Introduction

Tony Smith [1] relates the 256 dimensions of the $\mathrm{Cl}(8)$ Clifford Algebra to the 256 rules of Elementary Cellular Automata [2]. The graded dimensions of $\mathrm{Cl}(8)$ correspond to graded dimensions of the E8 Lie Algebra used in Smith's physics model. An 8-dim Primitive Idempotent half spinor along with the 248 -dim E8 are embedded in the $256-\mathrm{dim} \mathrm{Cl}(8)$. The grading of this $\mathrm{Cl}(8)$ is 18285670562881 which sum to the 256 dimensions. This grading gives the quantity of Cellular Automata (CA) rules that have a certain number of one-bits.

The rule above is called rule 30 because the 4 one-bits produce a binary $2+4+8+16=30$. The $\mathrm{Cl}(8)$ grading indicates there are 70 rules with 4 of the 8 bits being a one. In other words there

[^0]are 70 ways to place 4 ones in the 8 bits to form a rule. The bits for the rule represent the next state value for the 8 possible values of the current state and the states to the left and right of the current state being evaluated. Via the $\mathrm{Cl}(8)$ grading there is one way to have 0 of 8 ones in the rule; 8 ways to have a single one; 28 ways to have two ones; 56 ways to have three ones; 70 ways to have four ones; 56 ways to have five ones; 28 ways to have six ones; 8 ways to have seven ones; and one way to have 8 ones.

2. Relating Basis Vectors to Cellular Automata Bits

Two CA bits are related via Smith's model to the Y and X basis vectors of a YX spatial rotation [3].

Two CA bits are related to the temporal T and spatial Z basis vectors of a Lorentz group TZ boost.

Two CA bits relate to the Conformal group (C) basis vector and an Anti-de Sitter/de Sitter group (A) translation basis vector to form a dilation (CA). This dilation is the Higgs VEV in Smith's physics model.

0000000100000100
The final two CA bits allow Standard Model Ghosts in Smith's physics using basis vectors M (magenta/minus for strong force anticolor and weak force negative charge) and G (green/greater than zero for strong force color/weak force positive charge). The MG bivector is a propagator phase in Smith's model.

3. Rotations and Boosts

The grading of the 248 -dim E8 in Smith's physics model is 2864646428 . The following bivectors are in the 28 s of his E 8 grading which match to the 28 s in the $\mathrm{Cl}(8)$ grading. The E8 28 s come from two D4 subalgebras which also relate to the four axes and 24 vertices of a $24-$ cell, D4's root vector polytope. The 28 Cellular Automata with 2 one-bits and the 28 CA with 6 one-bits will match to these two D4s. Here are the three Lorentz Group gravity spatial rotation [3] bivectors/double one-bits.

Here are the three Lorentz group gravity boost bivectors/double one-bits.

4. Translations, Dilation and Special Conformal Transformations

Here are the four Anti-de Sitter/de Sitter group gravity translation bivectors/double one-bits, the dilation (Smith's Higgs VEV), and the four special conformal transformations (dark energy related for Smith).

TA 10000100

Dilation:
ZA 00100100

01000100
00001100

CA
00000101

Conformal Transformations:

TC
ZC
YC

XC
10000001

$$
00100001
$$

$$
01000001
$$

00001001

5. Ghosts for the Standard Model Bosons and Propagator Phase

Here are the bivectors/double one-bits for the Standard Model ghosts and propagator phase of Smith's physics model.
$\mathrm{rgb} / \mathrm{rg} / \mathrm{rb} / \mathrm{gb}$ "half" Gluons:

TG

ZG

YG
$00110000 \quad 01010000$

XG

Photon/Z0/W-/W+/Phase:
cmy/cm/cy/my "half" Gluons:

AM
00000011

TM
$10000010 \quad 00100010$
00010001

$$
00000110
$$

YM

AG
$00010100 \quad 00010010$

XM

6. Ghosts for Rotations and Boosts

The above conformal gravity and Standard Model ghost bivectors fit with the 28 Cellular Automata rules with double one-bits. These 28 CA relate to the first 28 in the E 8 and $\mathrm{Cl}(8)$ grading. The conformal gravity ghost and Standard Model bivectors fit with the 28 CA with six one-bits. These CA relate to the second 28 in the E 8 and $\mathrm{Cl}(8)$ grading. The CA with six onebits are also the CA with double zero-bits. These double zero-bits will be matched to Smith's D4 conformal gravity ghost and Standard Model bivectors.

Besides using double zero-bits instead of double one-bits, this ghost boson-actual boson bivector mapping also exchanges XYZT vectors with GMAC vectors thus forming a negative transformation [4]. This may relate to how in Smith's model, the XYZT physical spacetime interacts with the GMAC Kaluza-Klein internal symmetry space. Here are the three Lorentz Group gravity spatial rotation bivectors/double zero-bit ghosts.

Here are the three Lorentz group gravity boost bivectors/double zero-bit ghosts.

CA
11111010

CM
11111100

CG

7. Ghost Translation, Dilation and Special Conformal Transformations

Here are the four Anti-de Sitter/de Sitter group gravity translation bivectors/double zero-bit ghosts, the dilation ghost (for Smith's Higgs VeV), and the four special conformal transformation ghosts (dark energy related for Smith).

Translations:

$11011110 \quad 11011011 \quad 11011101 \quad 11001111$

Dilation:

TZ
01011111

Conformal Transformations:

8. Standard Model Bosons and Propagator Phase Ghost

Here are the bivectors/double zero-bits for the Standard Model bosons and propagator phase ghost of Smith's physics model.

There's a pattern where rules (with G vs. M) that slant to the left vs. slanting to the right may relate to charge for the Standard Model bosons and direction change (X vs. Y) for gravity bosons. These reflection transformation [4] bits perhaps relate to how charge, mass, and change of direction are related in Smith's 4-dim Feynman Checkerboard.

9. The Primitive Idempotent and Spacetime Position and Momentum

The grading of the 8 -dim Primitive Idempotent (PI) half spinor embedded with E 8 in $\mathrm{Cl}(8)$ is 16 1. In Smith's physics, the PI performs a Standard Model Higgs-like role. This 6-dim PI middle grade is the lower left to upper right diagonal of the 6×6 matrix below. Subtracting the 6 middle grade of the PI from the $70 \mathrm{Cl}(8)$ middle grade gives the 64 middle grade for E 8 . This 64 middle grade is the position by momentum $8 \times 8=64$-dim vector part of Smith's E8 physics model [5]. This 64-dim part of E8 thus relates to the 4 -vector/four one-bit CA rules not used for the 6dim PI middle grade though the upper left to lower right diagonals of the two 4×4 matrices below form another PI half spinor that is part of the E8 middle grade. Both PI half spinors fit with the 16 Pertti Lounesto terms using basis vectors MGCATYZX [6]. The position and momentum are 8-dim due to the GMAC Kaluza-Klein internal symmetry space added to the XYZT physical spacetime in Smith's model.

0

TZYX
11101000

15-GMAC

GMAC
00010111

14-TZY
1-G
2-M
4-A
8-C

TZYG

$11110000 \quad 11100010$
11100100
11100001

TZXG

10111000
10101010
10101100
10101001

TYXG

11011000
TYXM

ZYXG

ZYXM
ZYXA
ZYXC
$01111000 \quad 01101010 \quad 01101100 \quad 01101001$

3-GM	5-GA	6-MA	9-GC	$10-\mathrm{MC}$
12-AC				

12-TZ

5-GA
6-MA
9-GC
10-MC
12-AC

TZGA

TZMA 10100110

TZGC

TYGM 11010010

TYMA
11000110
TYGC 11010001
10-TY

TXGM 10011010

TXGA
10011100

TXMA
9-GC
10-MC
12-AC rule 153

TXGC

TXMC 10011001

10001011

5-ZX

3-YX

	7-GMA	11-GMC	13-GAC	14-MAC
8-T	rule 150	rule 147	rule 149	rule 135
				A
	TGMA	TGMC	TGAC	TMAC
4-Z	10010110	10010011	10010101	10000111
	ZGMA	ZGMC	ZGAC	ZMAC
	00110110	00110011	00110101	00100111
$2-Y$	7-GMA	11-GMC	13-GAC	14-MAC
				rule 71
	YGMA	YGMC	YGAC	YMAC
1-X	01010110	01010011	01010101	01000111
				$\begin{aligned} & \text { rule } 15 \\ & \hline \hline=\sqrt{-1} \end{aligned}$
	XGMA	XGMC	XGAC	XMAC
	00011110	00011011	00011101	00001111

The two ones of the PI and $\mathrm{Cl}(8)$ grading fit with the CA rules having 0 of 8 ones and 8 of 8 ones:

10. Spacetime Components of Fermion Creation Operators

The two remaining 64s in the E8 grading of Smith's model are for 8 spacetime components of fermion creation operators and 8 spacetime components of antifermion creation operators. The E8 64 grading for fermions comes from the $8 \mathrm{Cl}(8)$ vectors plus the $56 \mathrm{Cl}(8) 3$-vectors. Thus the fermions relate to the Cellular Automata rules with a single one-bit and the rules with three onebits. Here are the rules for the neutrino creation operator [7].

Here are the rules for the electron creation operator.

Here are the rules for quark creation operators.

	3－GM	5－GA	6－MA	9－GC	10－MC	12－AC
8－T	rule 146	rule 148	rule 134	rule 145	rule 131	rule 133
		＋${ }^{1 / 4}$				
	TGM	TGA	TMA	TGC	TMC	TAC
4－Z	10010010	10010100	10000110	10010001	10000011	10000101
	rule 50	rule 52	rule 38	rule 49	rule 35	rule 37
			F	韭衔	衰身	
	ZGM	ZGA	ZMA	ZGC	ZMC	ZAC
$2-Y$	00110010	00110100	00100110	00110001	00100011	00100101
	rule 82	rule 84	rule 70	rule 81	rule 67	rule 69
	$\stackrel{\Delta}{4}$	V		＂糸	永险哭	䏤相
	YGM	YGA	YMA	YGC	YMC	YAC
1－X	01010010	01010100	01000110	01010001	01000011	01000101
					rule 11	rule 13
						器
	XGM	XGA	XMA	XGC	XMC	XAC
	00011010	00011100	00001110	00011001	00001011	00001101

11．Spacetime Components of Antifermion Creation Operators

The E8 64 grading for antifermions comes from the $8 \mathrm{Cl}(8) 7$－vectors plus the $56 \mathrm{Cl}(8) 5$－vectors． Thus the related Cellular Automata rules for the spacetime components of each antifermion creation operator have five one－bits or seven one－bits．Like with the ghost boson to actual boson mapping done earlier，the fermion to antifermion mapping is a negative transformation［4］．

Here are the rules for the antineutrino creation operator.

| 7-GMA
 rule 254 | 11-GMC | 13-GAC | 14-MAC | 15-GMAC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15-TZYX 251 | rule 253 | rule 239 | | |
| | | | | |
| | | | | |
| 11111110 | 11111011 | 11111101 | 11101111 | |

rule 247

TZYGMAC

11110111
rule 191
13-TZX

TZXGMAC
10111111
rule 223

11-TYX

TYXGMAC
rule 127

ZYXGMAC
01111111

Here are the rules for the positron creation operator.

XGMAC

00011111

Here are the rules for antiquark creation operators.

	3-GM	5-GA	6-MA	9-GC	10-MC	12-AC
14-TZY	rule 242	rule 244	rule 230	rule 241	rule 227	rule 229
	TZYGM	TZYGA	TZYMA	TZYGC	TZYMC	TZYAC
13-TZX	11110010	11110100	11100110	11110001	11100011	11100101
	rule 186	rule 188	rule 174	rule 185	rule 171	rule 173
	TZXGM	TZXGA	TZXMA	TZXGC	TZXMC	TZXAC
	10111010	10111100	10101110	10111001	10101011	10101101
11-TYX	3-GM	5-GA	6-MA	9-GC	10-MC	12-AC
	rule 218	rule 220	rule 206	rule 217	rule 203	rule 205
	TYXGM	TYXGA	TYXMA	TYXGC	TYXMC	TYXAC
7-ZYX	11011010	11011100	11001110	11011001	11001011	11001101
	rule 122	rule 124	rule 110	rule 121	rule 107	rule 109
			4	兆3㤩		
	ZYXGM	ZYXGA	ZYXMA	ZYXGC	ZYXMC	ZYXAC
	01111010	01111100	01101110	01111001	01101011	01101101

7-GMA 11-GMC 13-GAC 14-MAC
12-TZ

rule 182	rule	rule 181	rule 167
		4	
TZGMA	TZGMC	TZGAC	TZMAC
011011	101100	0110	010

10-TY

rule 214	rule 211	rule 213	rule 199
	'h	-	\|libs
TYGMA	TYGMC	TYGAC	TYMAC
11010110	11010011	11010101	11000111

9-TX

rule 158	rule 155	rule 157	rule 143
	A	$\text { . } 11 / 11$	
TXGMA	TXGMC	TXGAC	TXMAC
10011110	10011011	10011101	10001111

6-ZY

5-ZX

00111110001110110011110100101111
3-YX

12. Discussion

The reflection transformation bits mentioned earlier, G vs. M or X vs.Y, may relate to color (with neither/both bits making up the third color) for quarks and antiquarks. The bits may affect slant patterns in general (along with A / Z straight line and C / T periodicity/chaos) for bosons, position-momentum, and fermions/antifermions. Here is the partitioning of rule space [8] associated with this mapping of $\mathrm{Cl}(8), \mathrm{E} 8$ [9], and Elementary Cellular Automata.

	0	$\begin{gathered} 1 \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 2 \\ M \end{gathered}$	$\begin{aligned} & 4 \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { C } \end{aligned}$	$\begin{gathered} 3 \\ \mathrm{GM} \end{gathered}$	$\begin{gathered} \hline 5 \\ \text { GA } \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{MA} \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{GC} \end{gathered}$	$\begin{gathered} \hline 10 \\ \mathrm{MC} \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{AC} \end{gathered}$	$\begin{gathered} 7 \\ \text { GMA } \end{gathered}$	$\begin{gathered} 11 \\ \text { GMC } \end{gathered}$	$\begin{gathered} \hline 13 \\ \text { GAC } \end{gathered}$	$\begin{gathered} \hline 14 \\ \text { MAC } \end{gathered}$	$\begin{gathered} 15 \\ \text { GMAC } \end{gathered}$
15	232	248	234	236	233	250	252	238	249	235	237	254	251	253	239	255
TZYX	PM	P	P	P	P	BO	BO	BO	RO	RO	RO	AN	AN	AN	AN	PI
14	224	240	226	228	225	242	244	230	241	227	229	246	243	245	231	247
TZY	E	PM/PI	PM	PM	PM	AQ	AQ	AQ	AQ	AQ	AQ	GL	GL	GL	GL	AN
13	168	184	170	172	169	186	188	174	185	171	173	190	187	189	175	191
TZX	E	PM	PM/PI	PM	PM	AQ	AQ	AQ	AQ	AQ	AQ	GL	GL	GL	GL	AN
11	200	216	202	204	201	218	220	206	217	203	205	222	219	221	207	223
TYX	E	PM	PM	PM/PI	PM	AQ	AQ	AQ	AQ	AQ	AQ	TR	TR	TR	TR	AN
7	104	120	106	108	105	122	124	110	121	107	109	126	123	125	111	127
ZYX	E	PM	PM	PM	PM/PI	AQ	AQ	AQ	AQ	AQ	AQ	CO	CO	CO	CO	AN
12	160	176	162	164	161	178	180	166	177	163	165	182	179	181	167	183
TZ	BO	Q	Q	Q	Q	PM	PM	PM	PM	PM	PI	AQ	AQ	AQ	AQ	PR
10	192	208	194	196	193	210	212	198	209	195	197	214	211	213	199	215
TY	BO	Q	Q	Q	Q	PM	PM	PM	PM	PI	PM	AQ	AQ	AQ	AQ	EW
9	136	152	138	140	137	154	156	142	153	139	141	158	155	157	143	159
TX	BO	Q	Q	Q	Q	PM	PM	PM	PI	PM	PM	AQ	AQ	AQ	AQ	EW
6	96	112	98	100	97	114	116	102	113	99	101	118	115	117	103	119
ZY	RO	Q	Q	Q	Q	PM	PM	PI	PM	PM	PM	AQ	AQ	AQ	AQ	EW
5	40	56	42	44	41	58	60	46	57	43	45	62	59	61	47	63
ZX	RO	Q	Q	Q	Q	PM	PI	PM	PM	PM	PM	AQ	AQ	AQ	AQ	EW
3	72	88	74	76	73	90	92	78	89	75	77	94	91	93	79	95
YX	RO	Q	Q	Q	Q	PI	PM	PM	PM	PM	PM	AQ	AQ	AQ	AQ	DI
8	128	144	130	132	129	146	148	134	145	131	133	150	147	149	135	151
T	N	GL	GL	TR	CO	Q	Q	Q	Q	Q	Q	PM/PI	PM	PM	PM	P
4	32	48	34	36	33	50	52	38	49	35	37	54	51	53	39	55
Z	N	GL	GL	TR	CO	Q	Q	Q	Q	Q	Q	PM	PM/PI	PM	PM	P
2	64	80	66	68	65	82	84	70	81	67	69	86	83	85	71	87
Y	N	GL	GL	TR	CO	Q	Q	Q	Q	Q	Q	PM	PM	PM/PI	PM	P
1	8	24	10	12	9	26	28	14	25	11	13	30	27	29	15	31
X	N	GL	GL	TR	CO	Q	Q	Q	Q	Q	Q	PM	PM	PM	PM/PI	P
0	0	16	2	4	1	18	20	6	17	3	5	22	19	21	7	23
	PI	N	N	N	N	PR	EW	EW	EW	EW	DI	E	E E E PM TR: Translation boson/ghost			
PI: Primitive Idempotent RO: Rotation boson/ghost BO: Boost boson/ghost TR: Translation boson/ghost CO: Conformal boson/ghost DI: Dilation boson/ghost EW: Electroweak boson/ghost GL: Gluon boson/ghost PR: Propagator Phase Q: Quark creation E: Electron creation N: Neutrino creation AQ: Antiquark creation P: Positron creation AN: Antineutrino creation PM: Position-Momentum \square Wolfram Class 1 Rule \square Wolfram Class 2 Rule \square Wolfram Class 3 Rule																

The line of symmetry for the Wolfram Rule Classes (diagonal line from rule 232 to rule 23) has the same rules as the line of symmetry for Rodrigo Obando's [10] rule space partitioning. However, the two lines of symmetry have the rules in different locations on the line. These line of symmetry rules are the rules that are their own negative transformation [4].

Received November 1, 2017; Accepted January 17, 2018

References

[1] Smith Jr., Frank Dodd (Tony). "E8 Root Vectors and Geometry of E8 Physics." viXra.org. August 2008. http://vixra.org/pdf/1602.0319v3.pdf
[2] Weisstein, Eric W. "Elementary Cellular Automaton." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
[3] Smith Jr., Frank Dodd (Tony). "From Sets to Quarks." Personal website of Frank Dodd (Tony) Smith, Jr. 2005. http://tony5m17h.net/Sets2Quarks4a.html\#WEYLdimredGB
[4] Smith Jr., Frank Dodd (Tony). "From Ancient Africa." viXra.org. May 2015. http://vixra.org/pdf/0907.0040v4.pdf
[5] Smith Jr., Frank Dodd (Tony). "E8 Physics and 3D QuasiCrystals." viXra.org. October 2013. http://vixra.org/pdf/1301.0150v4.pdf
[6] Smith Jr., Frank Dodd (Tony). "Primitive Idempotents for $\mathrm{Cl}(8)$ Clifford Algebra." Personal website of Frank Dodd (Tony) Smith, Jr. 2004. http://tony5m17h.net/8idempotents.html
[7] Smith Jr., Frank Dodd (Tony). "Minimal Math Structures Needed for E8 Physics." viXra.org. March 2014. http://http://vixra.org/pdf/1402.0150v3.pdf
[8] Smith Jr., Frank Dodd (Tony). "Pure Spinors to Associative Triples to Zero-Divisors." Personal website of Frank Dodd (Tony) Smith, Jr. 2012. http://tony5m17h.net/PureSpinorZD.pdf
[9] Gonsowski, John C. "E8 for Psychological Types and Physics." viXra.org. May 2014. http://vixra.org/pdf/0910.0023v4.pdf
[10] Obando, Rodrigo A. "Partitioning of Cellular Automata Rule Spaces." Complex Systems 24.1 (2015): 27-48. http://www.complex-systems.com/pdf/24-1-2.pdf

[^0]: *Correspondence: John C. Gonsowski, Independent Researcher. Email: jcgonsowski@yahoo.com

